Comprehensive Modeling of the Effects of Hazardous Asteroid Mitigation Techniques

PI: Prof. Daniel J. Scheeres, The University of Colorado

Co-Is:
- Prof. Erik Asphaug, Arizona State University
- Prof. Alireza Doostan, The University of Colorado
- Dr. Brandon Jones, The University of Colorado
- Dr. Jay McMahon, The University of Colorado
- Dr. Paul Sanchez, The University of Colorado

Collaborators:
- Dr. Claudio Bombardelli, Technical University of Madrid
- Dr. Steven Chesley, Jet Propulsion Laboratory
- Dr. Eric Herbold, Lawrence Livermore National Laboratory
- Dr. Paul Miller, Lawrence Livermore National Laboratory
- Dr. Mike Owen, Lawrence Livermore National Laboratory

Approach
- Model main mitigation techniques:
 - High energy kinetic impacts and nuclear blasts
 - Non-gravitational techniques using solar photons
 - Asteroid tugs using gravity and ion-beams
- Asteroid shapes/models to motivate development (see figure)
 - Golevka: small, strongly non-spheroidal body
 - Itokawa: rubble pile, strongly bifurcated body, high resolution surface models for statistical analysis
 - 1999 KW4: binary asteroid, fast spinning oblate primary
- Inputs are rotation state, geophysical and material parameters

Research Objectives
- Integrate computational tools and theory to create a tool able to evaluate and design hazardous asteroid mitigation techniques.
- Design tools to apply the main mitigation techniques to a realistic range of asteroid morphologies and geophysical parameters: high energy impacts and blasts, non-gravitational energy source, tugs.
- Combine current state of the art scientific computational tools and asteroid analysis and modeling tools into a system software tool that will achieve TRL 4, with elements of TRL 5 with respect to analyzing the system response of a mitigation attempt and scenario using realistic models.

Potential Impact
- Creates a state of the art computational tool for predicting, evaluating and designing asteroid mitigation scenarios
- Enables strategic development of mitigation responses to future actual and hypothesized hazardous asteroid mitigation scenarios
- Allows for a metric-based approach for choosing which mitigation technologies to further pursue and develop