Detection, Tracking, and Identification of Asteroids through On-board Image Analysis

- Dr. Gregory Hager, JHU, Principal Investigator
- Dr. Philippe Burlina, JHU/APL Co-Investigator
- Dr. Andrew Rivkin, JHU/APL Co-Investigator
- Mr. Christopher Krupiarz, JHU/APL Co-Investigator

Research Objectives

- Define a spacecraft flight software data processing pipeline for asteroid detection, tracking and identification.
- Move software to the source of the observation to increase the probability of detection.
- Increase spacecraft autonomy to more quickly make scientifically interesting observations.
- Increase TRL level of software and algorithms from TRL-1 to TRL-3 by the end of the two-year effort.

Approach

- Identify baseline mission designs using small spacecraft
- Define typical avionics and instruments for the mission design to constrain algorithms
- Develop suite of candidate algorithms for data pipeline
- Attain metrics on algorithm functional performance
- Attain metrics on algorithm processor/memory performance
- Select most suitable algorithms for further development
- Refine algorithms for a flight-like environment
- Operate algorithms on flight-like processors to ensure potential transition to TRL-4 and higher.

Potential Impact

- Reduce bandwidth requirements for small spacecraft
 - Correspondingly reduce mass and power constraints and margins
 - Broaden the range of spacecraft for this type of mission
- Improve turn-around time for follow-up observations
 - Increases probability of maintain asteroid orbit estimate
- Enhance flight software capabilities for “Smart Spacecraft”
 - Algorithms can be adapted for additional targeting use cases

The algorithmic pipeline modularizes the algorithms to provide a plug-and-play ability to swap algorithms as needed.