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Abstract 
In the Northeast U.S. region, an age-structured projection model of fish population 
dynamics (AGEPRO) has been used for making short-term catch predictions under 
recruitment uncertainty. This model has been used to determine annual catch quotas 
under court-mandated stock rebuilding plans for eleven New England groundfish stocks, 
including the Georges Bank cod (Gadus morhua) and haddock (Melanogrammus 
aeglefinus) stocks.  Research has shown that recruitment strength of Georges Bank cod 
and haddock stocks may be influenced by environmental covariates such as the North 
Atlantic Oscillation Index. We used NASA and NOAA satellite data products to develop 
predictive models of how sea surface water temperature, as indexed by Pathfinder v5 5.5 
km monthly SST and primary productivity, as indexed by SeaWiFS monthly ocean color 
measurements, influenced recruitment strength of the Georges Bank cod and haddock 
stocks. We found that Georges Bank cod recruitment strength was significantly 
negatively associated with average sea surface temperature during February-May. 
Haddock recruitment was positively associated with the strength of the autumn plankton 
bloom in the previous year and with the haddock age-0 research survey index in the 
current year. These results were used to develop several predictive models of cod and 
haddock recruitment using from 1985-2004. The resulting models were added to the 
NOAA Fisheries Toolbox AGEPRO projection module. These models were then 
compared to previous recruitment prediction models by predicting observed recruitments 
during 2005-2007. While some of the new recruitment prediction models performed 
poorly, several resulted in substantial reductions in the root mean-square error of 
predicted versus observed recruitment during 2005-2007. For cod, the best model was 
based on spring sea surface temperature and reduced the root mean-square error of 
predicted recruitment by about 70%. For haddock, five models that used combinations of 
spring sea surface temperature, primary productivity, and the haddock age-0 survey index 
variables reduced prediction error by 66% to 81%. In this case, the best predictive model 
was a model-averaged combination of two predictive models, one that used sea surface 
temperature and the haddock age-0 index, and one that used only sea surface temperature.  
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The results of this project illustrate that it may be possible to improve short-term 
predictions of recruitment for some major fishery resources using readily available 
satellite data products. Further, the results suggest that it may be useful to consider 
multiple model inference techniques (e.g., Burnham and Anderson 2002) to better 
understand the factors affecting recruitment dynamics and to formulate better predictive 
models. In the future, this research approach may have practical application to Pacific 
marine fisheries where remotely-sensed oceanographic conditions may also be expected 
to influence recruitment strength, e.g., salmonids and tunas. 
 
Introduction 
Recruitment, the abundance of annual broods of fish, is an intrinsically important factor 
affecting fishery productivity and management. It has long been recognized that 
environmental conditions influence the recruitment strength of marine fishes by altering 
early life history survival. Spawner abundance and population age structure also affect 
recruitment strength through total egg production and egg size or quality. Predator and 
prey abundances of egg and larval stages also affect recruitment and such trophic 
interactions are often categorized as environmental conditions as well. Annual variability 
in environmental conditions has made it difficult to accurately predict recruitment on a 
short-term basis even with knowledge of spawner abundance. This uncertainty directly 
impacts fishery management decisions to set annual catch quotas, especially when adult 
fish abundance is low and quotas depend heavily on incoming recruitment. In this case, if 
recruitment is overestimated, catch quotas may be set too high compromising resource 
conservation. Alternatively, if recruitment is underestimated, quotas may be too low and 
short-term yields may be forgone. In general, improving the accuracy of recruitment 
predictions would help fishery managers to set appropriate catch quotas. This is 
particularly important when fishing effort and catch quotas have to be reduced to rebuild 
overfished stocks (e.g., Greene 2002).   
 
In the Northeast US, an age-structured simulation model of fish population dynamics 
(AGEPRO) has been used by the Northeast Fisheries Science Center (NEFSC) to make 
short-term catch projections under recruitment uncertainty. This model has been used to 
estimate annual catch quotas under court-mandated stock rebuilding plans for eleven 
New England groundfish stocks (Brodziak et al. 1998, Overholtz et al. 1999, New 
England Fishery Management Council[NEFMC] 2004), including the commercially-
important Georges Bank cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) 
stocks. The AGEPRO model has also been used to compute groundfish bycatch quotas 
for special access programs designed to harvest the abundant haddock stock in closed 
areas on Georges Bank (Figure 1). Overall, this model has served as an important 
decision support tool for managing New England groundfish stocks. 
 
Recent research has shown that recruitment strength of Georges Bank cod and haddock 
stocks may be influenced by environmental covariates such as the North Atlantic 
oscillation index (Brodziak and O’Brien. 2005, Stige et al. 2006) which have localized 
effects on water temperatures and wind patterns.  In 2003, the Georges Bank haddock 
stock produced an extremely abundant year class, the largest ever-recorded. Subsequent 
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investigation of NOAA buoy data indicated a southwestward wind stress over haddock 
spawning areas during spring 2003 (Brodziak and Mountain, unpublished data). This 
southwesterly wind pattern likely enhanced the retention of haddock eggs and larvae in 
shoal waters of the continental shelf instead of advective losses off Georges Bank under a 
southeastward wind stress. To investigate whether oceanographic conditions that enhance 
larval retention on Georges Bank have a significant positive effect on cod and haddock 
recruitment (Page et al. 1999, Mountain et al. 2003, Brodziak 2005), a concurrent project 
was developed to assess the importance of wind stress on cod and haddock recruitment 
and this project was funded through NOAA’s Fisheries and the Environment program 
(Mountain et al. 2006). As a result, the focus of this project was to investigate the 
importance of other environmental covariates on cod and haddock recruitment, such as 
water temperature and food availability, that are known to affect larval growth and early 
life history stage survival of cod and haddock (Laurence and Rogers 1976, Green et al. 
2004, Rideout et al. 2005).  
 
To address this research need, we extended the AGEPRO model to include 
environmental covariates or other biological variables for short-term recruitment 
predictions. We used NASA and NOAA satellite data products to develop predictive 
models of how sea surface water temperature and primary productivity influences 
recruitment strength of the Georges Bank haddock and cod stocks using data from 1985-
2004. These models were then applied to make out-of-sample predictions of observed 
recruitments during 2005-2007. The accuracy of the predictions using environmental 
covariates was compared to that of existing recruitment prediction models for these 
stocks. 
 
Materials and Methods 
In this section, data and methods are described beginning with the AGEPRO model and 
the stock-recruitment and projection data for Georges Bank cod and haddock stocks. 
Satellite data and the associated environmental covariates are covered next followed by 
descriptions of the analyses to investigate recruitment strength and environmental 
covariates and the out-of-sample projections to compare the recruitment prediction 
models. 
 
Age-Structured Projection Model 
The AGEPRO model is an age-structured projection model for evaluating the outcomes 
of alternative harvest policies on an exploited fish stock accounting for random variation 
in initial stock size estimates, recruitment, and natural mortality (Brodziak et al. 1998, 
available at http://nft.nefsc.noaa.gov/). The AGEPRO model is coded in Fortran 95 with a 
graphical user interface (GUI) and standardized input and output files along with 
graphical output options. The inputs consist of biological data, fishery data and harvest 
scenario information to parameterize the age-structured projection model. The output 
consists of annual distributions of stock size, spawning biomass, landings, realized 
fishing mortality (if quotas are specified as the harvest control variable), recruitment, 
initial and final population size at age, landings by market category if applicable, 
probabilities that spawning biomass target is achieved in each year and overall, 
probabilities that fishing mortality threshold is exceeded if applicable and so on. 
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Two key uncertainties for the AGEPRO model are the fish population numbers at age at 
the beginning of the projection period and the stochastic recruitment generated during the 
projection time period. Typically, the uncertainty in the initial stock size is evaluated 
using resampling techniques such as the non-parametric bootstrap or using Markov Chain 
Monte Carlo samples generated from the posterior distribution of stock size estimates at 
the start of the projection. The submodels used to project future recruitment can be either 
dependent or independent of spawner abundance and include a random error term. For 
some fish stocks, such as Georges Bank haddock, there may be a pronounced maternal 
effect and adequate spawner abundance must be maintained to produce high recruitments, 
on average (Brodziak et al. 2001), while for other stocks, no apparent relation between 
spawner abundance and recruitment is apparent.  
 
In this project, four new submodels for stochastic recruitment prediction were developed 
to incorporate relevant environmental data collected by NASA and NOAA satellites or 
other predictive biological variables. These new submodels were added to the fifteen 
existing recruitment submodels in the AGEPRO software for application to the Georges 
Bank cod and haddock data sets. The first new submodel was a linear recruits per 
spawner predictor with a normal error term. In this submodel, recruitment (R) per unit of 
spawner abundance (S) is predicted from a linear function of one or more covariates (Xj) 
and an additive normal error term (ε) with zero mean and constant variance (σ2).  
 

(1.1) 0 j j
j

R
X

S
       

 
The simulated value of recruits per spawner (R/S) is then multiplied by projected 
spawner abundance to generate recruitment.  
 
The second submodel was a loglinear model to predict recruits per spawner as a function 
of environmental covariates using a multiplicative lognormal error in which the natural 
logarithm of the error is a normal random variable with ε ~ N(-0.5σ2, σ2). 
 

(1.2) 0log j j
j

R
X

S
        

 
   

 
In this case, the predicted value of R/S includes the bias-correction for back-
transformation from the logarithmic scale under a lognormal error term. Recruitment is 
generated by multiplying the simulated R/S value by the projected spawner abundance.  
 
The third recruitment submodel was a linear recruitment predictor with a normal error 
term similar to the first submodel. 
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The fourth recruitment submodel was a loglinear recruitment predictor with a 
multiplicative lognormal error in which the natural logarithm of the error is a normal 
random variable with ε ~ N(-0.5σ2, σ2). 
 
(1.4)   0log j j

j

R X       

  
For the two models that used an additive normal process error term (eqns 1.1 and 1.2), it 
was possible that an infeasible negative recruitment value could be simulated if the error 
variance was sufficiently large. In this case, the simulated value of recruitment was 
constrained to be positive by repeating the random sampling process until a positive 
value of R was obtained. 
 
Stock-Recruitment and Projection Data 
Stock-recruitment data Georges Bank cod and haddock were taken from the 2005 stock 
assessments (O’Brien et al. 2006, Brodziak et al. 2006). Recruitment data from the 1985-
2004 year classes were used to fit recruitment submodels for cod  (Figure 2a) and 
haddock (Figure 2b). This time period coincided with the available AVHRR sea surface 
temperature time series. Projection data were also taken from the 2005 stock assessments 
(O’Brien et al. 2006, Brodziak et al. 2006) as recommended in the 2005 Groundfish 
Assessment Review Meeting report (Mayo and Terceiro 2005); this included average 
spawning and landed weights at age, fraction mature at age, natural mortality at age, and 
fishery selectivity at age (Table 1). Projection data for the population size at age 
distributions of Georges Bank cod and haddock at the start of 2005 were the same as used 
in New England Fishery Management Council’s Groundfish Plan Development Team’s 
analyses (e.g., NEFMC 2007). 
 
Satellite Data and Environmental Covariates 
Satellite data were gathered from the NOAA Coastwatch West Coast node’s online data 
sets (http://coastwatch.pfel.noaa.gov/). Satellite data were extracted using a Matlab-based 
program (xtracto_ts_bdap, see Appendix) developed by the Southwest Fisheries Science 
Center’s Environmental Research Division (Dave Foley, SWFSC pers. comm.). This 
program allows the user to select a time series of available satellite data within a user-
specified rectangular region. The program was applied to gather satellite data from three 
rectangular regions centered on the Georges Bank in the Northwest Atlantic. These were: 
the Georges Bank superregion R1 (Figure 3, dashed blue line) with upper-left and 
bottom-right coordinates of (43˚N, -70˚W) and (40˚N, -66˚W);  the Georges Bank region 
R2 (Figure 3, dotted red line) with upper-left and bottom-right coordinates of (42˚N, -
69˚W) and (40˚N, -66˚W); and the Georges Bank central subregion R3 (Figure 3, solid 
green line) with upper-left and bottom-right coordinates of (42˚N, -68˚W) and (41˚N, -
67˚W). In this case, the primary region used for all of the recruitment analyses was R2, 
the Georges Bank region. The other regions were used to assess the spatial coherence of 
the satellite data and whether the satellite time series were correlated across spatial scales.  
 
A total of 20 time series of satellite data in the three regions were collected from the 
NOAA Coastwatch West Coast node (http://coastwatch.pfel.noaa.gov/). These included 
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two chlorophyll data sets (xtracto_ts_bdap indices 21 and 22), two primary productivity 
data sets (indices 41 and 42), one sea surface height data set (index 23), five sea surface 
temperature data sets (indices 10, 12, 15, 18, and 19), and ten wind speed or direction 
data sets (indices 25, 26, 27, 28, 30, 31, 32, 34, 35, and 36). Of these twenty data sets, 
two were selected for recruitment analyses based on the length of the available time 
series and on recent research results on the effects of environmental factors on cod and 
haddock early life history stage survival and growth.  
 
The first data set selected was the SeaWiFS primary productivity monthly composite 
index (index 42), a derived satellite data product. The primary productivity data set was 
chosen because recent research by Friedland et al. (2008) has suggested that the 
magnitude of the autumn plankton bloom may have an important influence on haddock 
recruitment success the following spring. An autumn bloom time series for 1997 to 2006 
was calculated as the three-month average of the primary productivity indices for 
September, October, and November in region R2; this variable was denoted as PP2.fall1 
where the “1” denotes that it needs to be lagged forward to be compared to a recruitment 
response variable. In this case, higher autumn bloom values would be expected to 
improve adult foraging conditions and subsequent spawning capacity in spring under the 
parental condition hypothesis suggested by Friedland et al (2008). Spring bloom time 
series were calculated for cod and haddock spawning seasons. For cod, the spring bloom 
time series was calculated as the two-month average of primary productivity indices 
during February and March in region R2; this variable was denoted as PP2.spr.fm. For 
haddock, the spring bloom time series was calculated as the three-month average of 
primary productivity indices during March, April, and May in region R2; this variable 
was denoted as PP2.spr.mm. In this case, higher spring bloom values would be expected 
to be associated with higher larval survival rates and associated with higher recruitment 
in that year under the juvenile foraging condition hypothesis, which provides an 
alternative to the parental condition hypothesis (Payne et al. In press). As a result, there 
was one autumn and two spring primary productivity indices for use as environmental 
covariates in recruitment analyses (Figure 4a). 
 
The second data set selected was the Pathfinder v5 sea surface temperature (SST) 
monthly composite index (index 19). This data set was chosen because growth rates of 
larval cod and haddock vary with temperature, there were 22 years of SST observations 
available from 1985-2006, and recent research has suggested an association between 
haddock growth increments and spring temperature experienced as young of the year 
(Brodziak and Link 2008). For cod, a spring SST time series was calculated as the 
average monthly SST indices for February and March in region R2 (ST2.fm) while for 
haddock, a spring SST series was calculated as the 4-month average SST indices for 
February through May in region 2 (ST2.mm). In this case, the hypothesis was that 
favorable temperatures for larval growth, generally on the order 6 ˚C for cod and 7 ˚C for 
haddock (Campana and Hurley 1989) would be associated with higher recruitment.  As a 
result, there were two time series of SST indices for use as environmental covariates in 
recruitment analyses (Figure 4b). 
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An additional biological covariate was collected for Georges Bank haddock; this was the 
Northeast Fisheries Science Center autumn trawl survey haddock age-0 swept-area 
numbers index divided by 1000 (NEFSC 2008b and pers. comm. Michele Traver, 
NEFSC). This young-of-the-year index was included because it is positively correlated 
with VPA estimates of haddock recruitment and provided another potential within-year 
predictor of haddock recruitment strength. 
 
Recruitment Analyses 
The goal of the recruitment analyses was to determine a set of potential short-term 
recruitment prediction models for Georges Bank cod and haddock. In this context, 
developing a prediction for either recruitment (R) or recruits per spawner (R/S) as a 
measure of recruitment response was considered because either could be used to 
determine recruitment strength. Four sets of analyses were conducted. The first was a 
cross-check to assess the degree of spatial coherence in the satellite data. If these data 
were not positively correlated then this would indicate that problems may have occurred 
with the retrieval or summarization of the available satellite data. To assess this, Pearson 
correlations were calculated for each of the five environmental covariates across the pairs 
of regional scales. 
 
The second analysis was to assess whether f R or R/S exhibited a nonlinear response to 
any of the predictors. To do this, generalized additive models (GAMs, Hastie and 
Tibshirani 1990) were used to predict recruitment, recruits per spawner, or log-
transformed recruits per spawner for cod and haddock as a smoothed function one of the 
environmental covariates. In this case, the autumn primary productivity index was 
evaluated with a one-year lag to represent the parental condition hypothesis and was also 
evaluated as a contemporaneous predictor of age-0 growth conditions in autumn. Thus, 
six potential environmental covariates were evaluated for each of six recruitment 
response variables. The results of these nonparametric analyses were used to guide 
development of parametric models for recruitment prediction. 
 
The third analysis was to investigate whether any of the environmental covariates were 
significantly correlated, and hence collinear, and also to assess whether any strong 
correlations between the environmental covariates and the recruitment response (R or 
R/S). The correlation analyses were also used to guide the development of parametric 
models for recruitment prediction, e.g., using pairs of highly correlated covariates was to 
be avoided. 
 
The fourth set of analyses was to identify and fit a set of linear regression models to 
predict recruitment response given the findings in the previous analyses. In this case, 
linear models without an intercept were considered to allow for a direct proportional 
response. 
 
Projection Analyses 
Projection analyses were conducted to test whether any of the recruitment submodels 
identified in the recruitment analyses produced more accurate predictions than the 
existing models for Georges Bank cod and haddock. The existing (status quo) recruitment 
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prediction models for cod and haddock were taken from the recommendations of the 
2005 Groundfish Assessment Review Meeting (Mayo and Terceiro 2006). For Georges 
Bank cod, the recruitment prediction model was a Beverton-Holt curve with lognormal 
error (NEFSC 2002). For Georges Bank haddock, the recruitment prediction model was a 
two-stage cumulative distribution function for observed recruitments above and below 
the productivity threshold of 75,000 mt of spawning biomass (NEFSC 2002). Thus, for 
both status quo models, predicted recruitment was dependent on spawning biomass.  
 
To compare the status quo and any new recruitment prediction models, estimates of 
recruitment for Georges Bank cod and haddock during 2005-2007 were gathered from the 
recently completed 2008 stock assessments (NEFSC 2008a, NEFSC 2008b).  Observed 
values of sea surface temperatures were not available in 2007 and SST in 2007 was 
imputed using the average sea surface temperature during 1985-2006. Observed catch 
biomasses of Georges Bank cod and haddock during 2005 to 2007 were input to the 
AGEPRO model to compute annual fishing mortality during 2005-2007 for each 
projection. For cod, the catch biomasses in 2005-2007 were 4401, 4611, and 5957 mt 
while for haddock the catch biomasses in 2005-2007 were 21814, 15989, and 16815 mt. 
All of the projections were conducted using version 3.3 of the AGEPRO model software 
which includes the four additional recruitment prediction submodels developed for this 
project. For each model scenario, a total of 100 simulations were conducted for each of 
1000 bootstrap initial population size vectors. Thus, each projection consisted of 100000 
simulated population trajectories for summary analyses. 
 
Because the 2008 stock assessments for Georges Bank cod and haddock were bench 
mark assessments, and not simple assessment updates, estimates of recruitment, 
spawning biomass, and other variables were expected to have a somewhat different scale 
than those from the 2005 assessments. In this case, comparing the projected recruitments 
during 2005-2007 with the observed values from the assessment could  be misleading. To 
address this concern, the best-fitting linear model to predict observed from the 2008 
assessment as a function of the 2005 assessment value during 1985-2004 was used to 
rescale predicted recruitments during 2005-2007 to be comparable to the values in the 
2008 assessments of cod and haddock. Differences among recruitment predictions were 
quantified using the root mean-square error of the predicted recruitments during 2005-
2007. In this way, any improvement in recruitment prediction was measured relative to 
using the status quo model. 
 
Results 
Each of the environmental covariates was highly positively correlated among the three 
regional scales (Table 2). This indicated that the satellite measurements were consistent 
across an order of magnitude of spatial extent. This also suggested that the choice of the 
spatial scale to represent the environmental covariates for Georges Bank was adequate. 
 
The GAM analyses suggested that there were a few important nonlinear responses to the 
predictors. The GAM fits using the primary productivity suggested that there might be a 
relationship between cod recruitment (P=0.05) or recruits per spawner (P=0.06) and the 
spring primary productivity during February-March index (Figure 5). Similarly, the GAM 
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fits of cod recruitment (P=0.01) and recruits per spawner (P=0.07) using sea surface 
temperature during February-May suggested that spring SST may have a curvilinear 
effect on cod recruitment response (Figure 6). Last, a GAM fit of log-transformed 
haddock recruits per spawner using the autumn primary productivity index forward-
lagged one year suggested that there might be a positive influence (P=0.11) on haddock 
R/S for high values of primary productivity (Figure 7). Thus, a total of 5 out of  36 GAM 
fits suggested a potential nonlinear effect. However, as a practical modeling tool, the 
GAM analyses were rather limited by the amount of data. 
 
Correlations among the environmental covariates were not substantial except for two 
cases. There was a significant positive correlation between spring primary productivity 
indices during February-March and during March-May (ρ=0.64, P=0.05). Similarly, there 
was a significant positive correlation between sea surface temperature indices during 
February-March and during February-May (ρ=0.66, P=0.00). As a result, these pairs of 
covariates were not used in the same model.  
 
Correlations between environmental covariates and recruitment response variables 
suggested that there were a few important associations. In particular, sea surface 
temperate during February-May was negatively associated (Figure 8) with both cod 
recruitment (ρ= -0.50, P=0.02) and recruits per spawner (ρ= -0.40, P=0.08). This 
suggested that low SST values had a positive effect on cod recruitment. Similarly, the 
forward-lagged autumn primary productivity index was positively associated (Figure 9) 
with haddock recruitment (ρ= 0.65, P=0.11) and recruits per spawner (ρ= 0.69, P=0.09). 
This suggested that high autumn primary productivity had a positive effect on haddock 
recruitment the subsequent spring. Last, there was a significant positive correlation 
between cod and haddock recruits per spawner (ρ= 0.61, P=0.00). This indicated that the 
survival ratios of these two gadids fluctuated in a similar manner during 1985-2004.  
 
Cod Recruitment Models 
A total of three models to predict Georges Bank cod recruits per spawner were identified 
as being potentially useful. The first model (MCOD,RS1) was a no-intercept model using 
spring sea surface temperature during February-May. The estimated linear model had the 
form 

(1.5) 

 

0.0463 2. .

~ 0, 0.0653

R
ST spr mm

S
where N





  
 

The fitted model was highly significant (P<0.001) and explained a substantial amount of 
variation in R/S relative to the model R/S = 0 + ε (multiple R2 = 0.61).  
 
The second model for cod R/S (MCOD,RS2) was also a no intercept model but used log-
scale R/S. In this case, the estimated model was 

(1.6) 

 

log 0.1977 2. .

~ 0.2058, 0.4117

R
ST spr mm

S

where N
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The fitted model was also highly significant (P<0.001) and explained a substantial 
amount of variation in the R/S data relative to the model log(R/S) = 0 + ε (multiple R2 = 
0.64).  
 
The third model for cod R/S (MCOD,RS3) included an intercept and was estimated to be 

(1.7) 

 

0.9988 0.0993 2. .

~ 0, 0.0489

R
ST spr mm

S
where N





   
 

This model was not significant (P=0.08) and explained a low amount of variation in the 
R/S data relative to the model R/S = μ + ε (multiple R2 = 0.16). 
 
There were three models identified as potential predictors of Georges Bank cod 
recruitment strength (R, in units of millions of age-1 fish). For each, the predictor was 
spring SST during February-May. The first model (MCOD,R1) was a linear model with no 
intercept and was estimated to be 

(1.8)  
1.5876 2. .

~ 0, 109.8

R ST spr mm

where N




  
 

The fitted model was highly significant (P<0.001) and explained a substantial amount of 
variation in R relative to the model R = 0 + ε (multiple R2 = 0.78).  
 
The second model for cod R (MCOD,R2) was a no intercept model fit to log-scale R and 
was estimated to be 

(1.9) 
 

 
log 0.3082 2. .

~ 0.4511, 0.9021

R ST spr mm

where N





  


 

The second model for cod R was highly significant (P<0.001) and explained much of the 
variation in the R data relative to the model log(R) = 0 + ε (multiple R2 = 0.84).  
 
The third model for cod R (MCOD,R3) included an intercept and was fitted to R. The 
estimated model was 

(1.10)  
46.3885 5.1749 2. .

~ 0, 72.7

R ST spr mm

where N




   
 

This model was significant (P=0.02) and explained some of the variation relative to the 
model R = μ + ε  (multiple R2 = 0.25). 
 
Haddock Recruitment Models 
One model was identified to predict Georges Bank haddock recruits per spawner 
(MHAD,RS1). This was a no-intercept linear model with sea surface temperature during 
February-May as the predictor. The estimated model had the form 

(1.11) 

 

log 0.1746 2. .

~ 1.065, 2.129

R
ST spr mm

S

where N





      
 


 

The fitted model was highly significant (P=0.002) and explained a moderate amount of 
variation in haddock R/S relative to the model log(R/S) = 0 + ε (multiple R2 = 0.41). 
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A total of five models were identified to predict Georges Bank haddock recruitment 
strength (R, in units of millions of age-1 fish). The first model (MHAD,R1) was a linear 
model with no intercept fit to log-scale R as a function of sea surface temperature during 
February-May. The fitted model was 

(1.12) 
 

 
log 0.3588 2. .

~ 1.209, 2.418

R ST spr mm

where N





  


 

The fitted model was highly significant (P<0.001) and explained a good amount of 
variation in the R data relative to the model log(R) = 0 + ε (multiple R2 = 0.72).  
 
The second model for haddock R (MHAD,R2) was a no intercept model fit to log-scale R 
using the lagged autumn primary productivity index. The estimated model was 

(1.13) 
 

 
log 0.3588 2. 1

~ 1.758, 3.516

R PP fall

where N





  


 

This model was also highly significant (P<0.001) and explained much of the variation in 
haddock R relative to the model log(R) = 0 + ε (multiple R2 = 0.78).  
 
The third model to predict haddock recruitment  (MHAD,R3) fitted log-scale recruitment 
using sea surface temperature during February-May and the haddock age-0 survey index. 
The estimated model was 

(1.14) 
 

 
log 0.3195 2. . 0.0101 0.

~ 0.594, 1.188

R ST spr mm age had

where N





    


 

This model was highly significant (P<0.001) and explained a substantial amount of the 
variation in haddock R relative to the model log(R) = 0 + ε (multiple R2 = 0.87).  
 
The fourth model to predict haddock recruitment  (MHAD,R4) also used sea surface 
temperature during February-May and the haddock age-0 survey index but was fitted to 
untransformed haddock R. The estimated model was 

(1.15)  
1.1362 2. . 1.5567 0.

~ 0,386.5

R ST spr mm age had

where N




    
 

This model was also highly significant (P<0.001) and explained much of the variation in 
haddock R relative to the model R = 0 + ε (multiple R2 = 0.99).  
 
The fifth model to predict haddock recruitment  (MHAD,R5) was a model-averaged 
combination of models MHAD,R5) and MHAD,R5). In the absence of a preference, the two 
model probabilities were set equal to 0.5. In this case, each model was randomly sampled 
with probability one-half to simulate recruitment in each year of the stochastic 
projections. 
 
Regression analyses and associated Akaike information criteria values indicated that the 
best fitting linear model relating the new 2008 VPA estimates of Georges Bank cod 
recruitment to the old estimates from the 2005 assessment was RNEW = 0.9822·ROLD 
while the best model for haddock R was RNEW = 6.076+ 0.6247·ROLD. These models were 
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used to rescale the predicted recruitment values from the projections using both the status 
quo models and newly developed recruitment models using the environmental covariates. 
 
Cod Projection Results 
Projection results for Georges Bank cod indicated that the performance of the recruitment 
models using environmental covariates was disparate (Table 3). The three recruits per 
spawner models did not perform well in comparison to the status quo model at predicting 
cod year class strength during 2005-2007. These three models had average estimation 
errors on the order of 89%, 10%, and 80% higher than the status quo model (Table 3). By 
comparison, the three recruitment strength models performed much better with average 
estimation errors of 9%, -70%, and 1% relative to the status quo Georges Bank cod 
model. The best recruitment prediction model was MCOD,R2 which used sea surface 
temperature during February-May to predict cod recruitment strength (eqn 1.9). The best 
predictor had a root mean-square prediction error that was 3-fold lower than the status 
quo model (Figure 10). 
 
Haddock Projection Results 
Projection results for Georges Bank haddock indicated that the performance of the 
recruitment models developed using environmental covariates also differed across model 
types (Table 4). The only recruits per spawner prediction model for haddock did not 
perform well in comparison to the status quo recruitment model during 2005-2007 and 
had an average estimation error that was roughly 50% greater than the status quo. In 
contrast, the five haddock recruitment strength models performed much better than the 
status quo model (Table 4). These models had average estimation errors that were 73% to 
81% lower than the status quo Georges Bank haddock model. Overall, the best-fitting 
model was MHAD,R5 which was a model-averaged combination with equal model 
probabilities of ½ of models MHAD,R1 (eqn 1.12) and MHAD,R4 (eqn 1.15). This model-
averaged combination had a root mean-square prediction error that was roughly 5-fold 
lower than the status quo model (Figure 11). 
 
Discussion 
While some of the recruitment prediction models performed poorly, several resulted in 
substantial improvements in the root mean-square error of predicted versus observed 
recruitment during 2005-2007. For cod, the best prediction model using spring sea 
surface temperature reduced the root mean-square error of predicted recruitment by about 
70%. For haddock, the five models that used combinations of sea surface temperature, 
primary productivity, and the haddock age-0 survey index variables reduced prediction 
error by 66% to 81%. In this case, the best predictive model was a model-averaged 
combination of two predictive models, one that used sea surface temperature and the 
haddock age-0 index and one that used only sea surface temperature. The haddock 
example suggests that the use of multiple predictive models may be able to improve 
predictive accuracy in some cases. This might be expected because recruitment dynamics 
are generally influenced by multiple biotic and environmental processes operating at 
differing spatial and temporal scales. Regardless, this work does illustrate the potential 
utility of considering environmental covariates in making short-term predictions of 
recruitment for setting total allowable catches. 
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The predictive models for recruits per spawner developed in this study did not perform as 
well as the predictive models for recruitment strength. This is a not a general result and it 
is likely that attempts to predict recruitment from the recruits per spawning distribution 
may work well for other stocks that are not at unusually low or high abundances. In 
particular, the Georges Bank cod stock exhibited an abrupt decline in spawning biomass 
in the 1990s (Figure 2a) but has not yet exhibited a strong compensatory response of 
increased recruits per spawner. This pattern suggests that recruits per spawner dynamics 
of cod are being influenced by factors independent of spawner abundance. In contrast, 
recruits per spawner dynamics of haddock in recent years have been influenced by the 
maturation of the exceptional 2003 year class, which has, in turn, led to historic record 
spawning biomass levels of Georges Bank haddock. The unusually high abundance of 
adult haddock has likely altered the recruits per spawner dynamics in recent years making 
predictions based on historic R/S less reliable. 
 
One positive result of this study was that off-the-shelf satellite data products can be 
readily used to investigate the influence of environmental covariates on recruitment 
dynamics. The ease of developing appropriate indices of relevant oceanographic 
conditions has been greatly facilitated by the development of online data distribution 
sites, such as the NOAA Coastwatch programs. This is a positive development for future 
research on the influence of changing climate conditions on fisheries productivity and 
stock-recruitment dynamics.  
 
Overall, the results of this project show that it may be possible to improve short-term 
predictions of recruitment for some major fishery resources using ocean remote sensing 
data. Further, the results suggest that it may be useful to consider multiple model 
inference techniques (e.g., Burnham and Anderson 2002) to better understand the factors 
affecting recruitment dynamics and to formulate better predictive models. In the future, 
this research approach may have practical application to Pacific marine fisheries where 
remotely-sensed oceanographic conditions may also be expected to influence recruitment 
strength, e.g., salmonids and tunas. Nonetheless, this is by no means a synoptic study of 
the potential factors influencing the recruitment strength of Georges Bank cod and 
haddock and further work to integrate existing research on this topic is clearly warranted. 
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Table 1. Projection data for Georges Bank cod and haddock. 
 
Georges Bank cod projection data

Age

Average 
Spawning 
W eight at 
Age(kg)

Average 
Landed 

Weight at 
Age (kg)

Fraction 
Mature at 

Age

Natura l 
Mortality 
at Age

Fishery 
Selectivity 

at Age
1 0.416 0.593 0.07 0.2 0
2 1.060 1.886 0.34 0.2 0.06
3 2.100 2.401 0.79 0.2 0.57
4 2.699 3.098 0.96 0.2 0.8
5 3.593 4.137 1 0.2 1
6 4.663 5.110 1 0.2 1
7 5.747 6.294 1 0.2 1
8 7.244 8.063 1 0.2 1
9 8.742 9.408 1 0.2 1

10+ 11.629 11.697 1 0.2 1

Georges Bank haddock projection data

Age

Average 
Spawning 
W eight at 
Age(kg)

Average 
Landed 

Weight at 
Age (kg)

Fraction 
Mature at 

Age

Natura l 
Mortality 
at Age

Fishery 
Selectivity 

at Age
1 0.186 0.258 0.01 0.20 0.01
2 0.445 0.650 0.60 0.20 0.09
3 1.056 1.232 0.95 0.20 0.21
4 1.495 1.615 1 0.20 0.62
5 1.761 1.823 1 0.20 1.00
6 2.070 2.158 1 0.20 1
7 2.455 2.572 1 0.20 1
8 2.814 2.876 1 0.20 1

9+ 3.139 3.139 1 0.20 1  
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Table 2. Pair wise correlations of environmental covariates across three regional scales 
(R1, R2, and R3) including the autumn primary productivity index (PP.fall), spring 
primary productivity indices during the cod (PP.spr.fm) and haddock (PP.spr.mm) 
spawning seasons, sea surface temperature indices during the cod (ST.spr.fm) and 
haddock (ST.spr.mm) spawning seasons. 
 

Environmental 
covariate 

Correlation 
for (R1, R2) 

Correlation 
for (R1, R3) 

Correlation 
for (R2, R3) 

PP.fall 0.91 0.86 0.97 
PP.spr.fm 0.96 0.91 0.95 
PP.spr.mm 0.95 0.86 0.87 
ST.spr.fm 0.93 0.94 0.96 
ST.spr.mm 0.72 0.74 0.84 
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Table 3.  Projection results for Georges Bank cod. 
 
Georges Bank cod out-of-sample recruitment predictions

Average Annual Recruitment Estimate by Model

Year 
Class

GB Cod 2008 
VPA 

Recrui tment 
Estimates 
(000000s) MCOD,S Q MCOD,RS 1 MCOD,RS2 MCOD,RS3 MCOD,R1 MCOD,R2 MCOD,R3

2005 6.490 9.031 10.176 8.002 10.948 13.096 7.176 13.936
2006 7.037 12.563 18.001 11.676 15.964 13.705 8.644 11.533
2007 4.875 14.799 23.597 16.746 23.283 13.379 7.835 12.774

Year 
Class Average Recrui tment Prediction Error  by Model
2005 2.541 3.686 1.512 4.458 6.606 0.686 7.446
2006 5.526 10.964 4.639 8.927 6.668 1.607 4.496
2007 9.924 18.722 11.871 18.408 8.504 2.960 7.899

Sum of Squared APE 135.481 484.315 164.719 438.412 160.403 11.816 138.050
Mean-Square Error 45.160 161.438 54.906 146.137 53.468 3.939 46.017
Root Mean-Square Error 6.720 12.706 7.410 12.089 7.312 1.985 6.784
Percent Change in RMSE 0.0% 89.1% 10.3% 79.9% 8.8% -70.5% 0.9%  
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Table 4.  Projection results for Georges Bank haddock. 
 
Georges Bank haddock out-of-sample recruitment predictions

Average Annual Recruitment Estimate by Model

Year 
Class

GB Haddock 
2008 VPA 

Recrui tment 
Estimates 
(000000s) MHAD,S Q MHA D,RS 1 MHA D,R1 MHAD,R2 MHAD,R3 MHAD,R4 MHA D,R5

2005 26.45 52.373 45.197 12.399 15.251 11.722 25.908 19.106
2006 7.421 52.556 68.483 13.850 18.389 12.206 19.370 16.655
2007 16.376 52.604 84.096 13.049 23.685 11.603 19.132 16.106

Year 
Class Average Recrui tment Prediction Error  by Model
2005 25.923 18.747 -14.051 -11.199 -14.728 -0.542 -7.344
2006 45.135 61.062 6.429 10.968 4.785 11.949 9.234
2007 36.228 67.720 -3.327 7.309 -4.773 2.756 -0.270

Sum of Squared APE 4021.682 8665.994 249.823 299.148 262.589 150.672 139.279
Mean-Square Error 1340.561 2888.665 83.274 99.716 87.530 50.224 46.426
Root Mean-Square Error 36.614 53.746 9.125 9.986 9.356 7.087 6.814
Percent Change in RMSE 0% 46.8% -75.1% -72.7% -74% -80.6% -81.4%  
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Figure 1. Northeast Fisheries Science Center commercial fishery statistical areas for 
western Georges Bank along with U.S. and Canada shared management area on eastern 
Georges Bank. Large-scale closed areas are: Closed Area I (CAI), Closed Area II (CAII), 
western Gulf of Maine Closed Area (WGOM CA) and Nantucket Lightship Closed Area 
(Nantucket Lightship CA). 
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 Figure 2. Recruitment (open circle) and recruits per spawner (solid) as a function of 
spawning biomass during 1985-2004 for Georges Bank cod (a) and haddock(b) taken 
from O’Brien et al. (2006) and Brodziak et al. (2006). 
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Figure 3. Location of three regions used to summarize satellite-derived environmental 
covariates: the Georges Bank superregion R1 (dashed blue line) with upper-left and 
bottom-right coordinates of (43˚N, -70˚W) and (40˚N, -66˚W);  the primary Georges 
Bank region R2 (dotted red line) with upper-left and bottom-right coordinates of (42˚N, -
69˚W) and (40˚N, -66˚W); and the Georges Bank central subregion R3 (solid green line) 
with upper-left and bottom-right coordinates of (42˚N, -68˚W) and (41˚N, -67˚W). 
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Figure 4. Primary productivity indices (a) and sea surface temperature indices (b) for use 
as environmental covariates in recruitment analyses for Georges Bank cod and haddock. 
 

Year

1996 1998 2000 2002 2004 2006 2008

G
eo

rg
es

 B
an

k 
pr

im
ar

y 
p

ro
d

uc
tiv

ity
 in

d
ex

0

500

1000

1500

2000

2500

3000 Autumn bloom index
Spring bloom cod index
Spring bloom haddock index

(a)

 
 

Year

1980 1985 1990 1995 2000 2005 2010

G
e

or
ge

s 
B

a
nk

 s
e

a 
su

rf
ac

e
 t

e
m

p
er

a
tu

re
 in

de
x 

(C
)

4

5

6

7

8

9

10

February-March
February-May

(b)

 
 
 
 
 
 
 



 25

Figure 5. Effect of spring primary productivity on cod recruitment (a) and recruits per 
spawning as represented by a smoothed GAM function (solid line) with approximate 95% 
confidence intervals (dashed lines). 
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Figure 6. Effect of spring sea surface temperature on cod recruitment (a) and recruits per 
spawning as represented by a smoothed GAM function (solid line) with approximate 95% 
confidence intervals (dashed lines). 
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Figure 7. Effect of autumn primary productivity on log-scale haddock recruits per 
spawner lagged one year as represented by a smoothed GAM function (solid line) with 
approximate 95% confidence intervals (dashed lines). 
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Figure 8. Correlation of Georges Bank cod recruitment (solid circle, solid line) and 
recruits per spawner (open triangle and dashed line) during 1985-2004 from O’Brien et 
al. (2006) with average sea surface temperature on Georges Bank during February-May 
taken from Pathfinder v5 composite monthly data. 
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Figure 9. Correlation of Georges Bank haddock recruitment (solid circle, solid line) and 
recruits per spawner (open triangle and dashed line) during 1985-2004 from Brodziak et 
al. (2006) with average primary productivity on Georges Bank during September-
November the previous year derived from Seawifs composite monthly data 
(http://coastwatch.pfel.noaa.gov/). 
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Figure 10. Comparison of Georges Bank observed recruitment (solid circle) during 2005-
2007 (NEFSC 2008a) and rescaled recruitment predictions from the best predictive 
model using average sea surface temperature (SST) during February-May (open circle) 
and the status quo model (solid triangle) from Mayo and Terceiro (2006) along with 80% 
confidence intervals for the SST prediction. 
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Figure 11. Comparison of Georges Bank haddock observed recruitment (solid circle) 
during 2005-2007 (NEFSC 2008a) and rescaled recruitment predictions from the best 
predictive model (open circle), a model-averaged combination of predictors using the 
haddock age-0 survey index and average sea surface temperature (SST) during February-
May, and the status quo model (solid triangle) from Mayo and Terceiro (2006) along with 
80% confidence intervals for the Age-0 index and SST-based prediction. 
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Appendix. Satellite data extraction program “xtracto_ts_bdap” developed by SWFSC’s Environmental Research Division. Basic 
requirements for running the program are a fully-licensed version of the Matlab software and a high-speed internet connection. 
 
function [extract] = xtracto_ts_bdap(xpos,ypos,tpos,dtype); 
% Example script to get the last two days of data from set 
% help can be gotten from the command "help loaddods" 
% 
% INPUTS:  xpos = longitude (in decimal degrees East, either 0-360 or -180 to 180) 
%          ypos = latitude (in decimal degrees N; -90 to 90) 
%          tpos = time (preferably in matlab [Julien] days) 
%          dtype = data ID Code (data types listed below) 
%  
% OUTPUT: 
% 
%  Extract = 4 column array 
%            column 1 = mean of data within search radius 
%            column 2 = standard deviation of data within search radius 
%            column 3 = number of points found withn search radius 
%            column 4 = actual time associated with satellite data set. 
% 
% 
% Sample Calls: 
% 
% to extract Seawifs 8-day Primary Productivity for a given box 
%   surrounding each available time point 
% [extract] = xtractomatic([xmin xmax],[ymin ymax],[tmin tmax],'41'); 
% 
%  to extract pathfinder SST 8-day mean data 
%  [extract] = xtractomatic([xmin xmax],[ymin ymax],[tmin tmax],'18',.1,.1); 
% 
% Note: xtracto_ts does not interpolate onto requested time points - it merely finds all of those 
% available within the specified bounds.  To capture the entire data set, use something like 
% [extract] = xtracto_bdap_ts([xmin xmax],[ymin ymax],[datenum(1950,1,1) datenum(2050,1,1)],'18'); 
% 
% % 
% see the following link to get data codes and full data set information 
% http://coastwatch.pfel.noaa.gov/coastwatch/CWBrowserWW360.jsp?get=griddata 
% 
% V0.1  17 Aug 2006. 
% CoastWatch/DGF 
 
% add my own path where I keep my auxiliary m-files 
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% path(path,'/home/cwatch/mfiles'); 
 
% make sure data type input is a string and not a number 
if ~isstr(dtype) 
  datatype = num2str(dtype); 
else 
  datatype = dtype; 
end 
 
switch lower(dtype) 
     % AVHRR HRPT 1.4 km nighttime SST data for West coast 
     case {'1','atsstnhday'} 
       dataset = 'TATsstdhday'; 
 
     % AVHRR HRPT 1.4 km daytime SST data for West coast 
     case {'2','atssdhday'} 
       dataset = 'TATsstnhday'; 
 
     % AVHRR HRPT 1,4 km night and day SST 1-day composite 
     case {'3','atssta1day','hrpt','avhrr hrpt'} 
       dataset = 'TATssta1day'; 
 
     % AVHRR HRPT 1.4 km night and day SST 3-day composite 
     case{'4','atssta3day'} 
       dataset = 'TATssta3day'; 
 
     % AVHRR HRPT 1.4 km night and day SST 8-day composite 
     case{'5','atssta8day'}; 
       dataset = 'TATssta8day'; 
 
     % AVHRR HRPT 1.4 km night and day SST 14-day composite 
     case{'6','atssta14day'} 
       dataset = 'TATssta14day'; 
 
     % AVHRR HRPT 1.4km night and day SST monthly composite 
     case{'7','atsstamday'} 
        dataset = 'TATsstamday'; 
 
     % AVHRR GAC SST 11km 1-day composite 
     case{'8','agssta1day'} 
       dataset = 'TAGssta1day'; 
 
     % AVHRR GAC SST 11km 3-day composite 
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     case{'9','agssta3day'} 
       dataset = 'TAGssta3day'; 
 
     % AVHRR GAC SST 11km 8-day composite 
     case{'10','agssta8day'} 
       dataset = 'TAGssta8day'; 
 
     % AVHRR GAC SST 11km 14-day composite 
     case{'11','agssta14day'} 
       dataset = 'TAGssta14day'; 
 
     % AVHRR GAC SST 11km monthly composite 
     case{'12','agsstamday'} 
       dataset = 'TAGsstamday'; 
 
     % GOES SST 5.5 km 1-day composite 
     case{'13','gassta1day','goes sst','goes','geostationary'} 
       dataset = 'TGAssta1day'; 
 
     % GOES SST 5.5 km 3-day composite 
     case{'14','gassta3day'}; 
       dataset = 'TGAssta3day'; 
 
     % GOES SST 5.5 km 8-day composite 
     case{'15','gassta8day'} 
       dataset = 'TGAssta8day'; 
 
     % GOES SST 5.5 km 14-day composite 
     case{'16','gassta14day'} 
       dataset = 'TGAssta14day'; 
 
     % Pathfinder v5 5.5km SST 1-day composite 
     case{'17','phssta1day'} 
       dataset = 'TPHssta1day'; 
 
     % Pathfinder v5 5.5km SST 8-day composite 
     case{'18','phssta8day','pathfinder','sst','avhrr','sea surface temperature'} 
      dataset = 'TPHssta8day'; 
 
     % Pathfinder v5 5.5km SST monthly composite 
     case{'19','phsstmday','monthly sst'} 
      dataset = 'TPHsstamday'; 
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     % MODIS Aqua 2.5 km chla 1-day composite 
     case{'20','mbchla1day'} 
      dataset = 'TMBchla1day'; 
 
     % MODIS Aqua 2.5 km chla 8-day composite 
     case{'21','mbchla8day','chla','chlorophyll','modis chl','modis aqua'}; 
      dataset = 'TMBchla8day'; 
 
     % MODIS Aqua 2.5 km chla 14-day composite 
     case{'22','mbchla14day'} 
      dataset = 'TMBchla14day'; 
  
     % Jason-1 25km SSH deviation, 10-day composite 
     case{'23','j1sshd10day','ssh','ssha','jason','sea surface height'} 
       dataset = 'TJ1sshd10day'; 
 
     % Quikscat 25 km zonal wind, 1-day composite 
     case{'24','qnux101day'} 
       dataset = 'TQNux101day'; 
 
     % Quikscat 25 km meridional wind, 1-day composite 
     case{'25','qnuy101day'} 
      dataset = 'TQNux101day'; 
 
     % Quikscat 25 km zonal wind, 3-day composite 
     case{'26','qnux103day','zonal wind','ux10'} 
       dataset = 'TQNux103day'; 
     case{'27','qnuy103day','meridional wind','uy10'} 
       dataset = 'TQNuy103day'; 
     case{'28','qnumod3day','wind speed','wind modulus'} 
       dataset = 'TQNumod3day'; 
     case{'29','qncurl3day','curl','wind stress curl','curl of wind stress'} 
       dataset = 'TQNcurl3day'; 
     case{'30','qnux108day'} 
       dataset = 'TQNux108day'; 
     case{'31','qnuy108day'} 
       dataset = 'TQNuy108day'; 
     case{'32','qnumod8day'} 
       dataset = 'TQNumod8day'; 
     case{'33','qncurl8day'} 
       dataset = 'TQNcurl8day'; 
     case{'34','qnux1014day'} 
       dataset = 'TQNux1014day'; 
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     case{'35','qnuy1014day'} 
       dataset = 'TQNuy1014day'; 
     case{'36','qnumod14day'} 
       dataset = 'TQNumod14day'; 
     case{'37','qncurl14day'} 
       dataset = 'TQNcurl14day'; 
     case{'38','qncurlmday'} 
       dataset = 'TQNcurlmday'; 
     case{'39','qnux10mday'} 
       dataset = 'TQNux10mday'; 
     case{'40','qnuy10mday'} 
       dataset = 'TQNux10mday'; 
  
     % Primary productivity, 8-day, seawifs chl. 
     case{'41','ppbfp18day','primary productivity','seawifs productivity'} 
       dataset = 'TPPbfp18day'; 
 
     % Primary productivity, monthly, seawifs chl 
     case{'42','Tppbfp1mday','monthly productivity'} 
       dataset = 'TPPbfp1mday'; 
 
     % GOES frontal index 14-day 
     case{'43','gatfnt14day','GOES fronts','frontal index','frontal probability'} 
      dataset = 'TGAtfnt14day'; 
 
     % GOES frontal index 14-day 
     case{'44','gatfntmday'} 
       dataset = 'TGAtfntmday'; 
 
     case{'45','qncur4day'} 
       dataset = 'TQNcurl4day'; 
     case{'46','qnux104day'} 
       dataset = 'TQNux104day'; 
     case{'47','qnuy104day'} 
       dataset = 'TQNuy104day'; 
     case{'48','tasshd1day'} 
       dataset = 'TTAsshd1day'; 
     case{'49','bassta5day'} 
       dataset = 'TBAssta5day'; 
     case{'50','mhchla8day'} 
       dataset = 'TMHchla8day'; 
     case{'51','mhk4908day'} 
       dataset = 'TMHk4908day'; 
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     case{'52','mhsstd8day'} 
       dataset = 'TMHsstd8day'; 
     case{'53','mhcflh8day'} 
       dataset = 'TMHcflh8day'; 
     case{'54','qscurl3day'}; 
       dataset = 'TQScurl3day'; 
     case{'55','qsumod3day'} 
       dataset = 'TQSumod3day'; 
      case{'56','qsux103day'}; 
       dataset = 'TQSux103day'; 
     case{'57','qsuy103day'} 
       dataset = 'TQSuy103day'; 
  end 
 
% breakup string into components 
satid = dataset(1:3); 
param = dataset(4:7); 
duration = dataset(8:end); 
 
% correct for Bob/Dave discontinuity 
if strcmp(duration,'hday') 
    duration = '1observation'; 
end 
 
if strcmp(duration,'mday') 
    duration = '1month' 
end 
 
% default URL for NMFS/SWFSC/ERD  THREDDS server 
urlbase='http://coastwatch.pfel.noaa.gov/coastwatch/CWBrowserWW360.jsp'; 
 
% get list of available time periods 
% First, make bad call to CW page, 
bobcallbad = strcat(urlbase,'?get=griddata&dataset=',strcat(satid,param),... 
     '&timeperiod=',duration,... 
     '&centeredTime=') 
string=urlread(bobcallbad); 
 
% sift through the crap for ISO dates 
stind = regexp(string,'<nobr>','start'); 
endind = regexp(string,'</nobr>','end'); 
icnt = 1; 
for i = 1:length(stind), 
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    str2 = string(stind(i):endind(i)); 
    stind2 = regexp(str2,'\d\d\d\d\-\d\d-\d\d','start'); 
    endind2 =  regexp(str2,'\d\d\d\d\-\d\d-\d\d','end'); 
    if ~isempty(stind2) 
      for j = 1:length(stind2), 
        alldates(icnt,1:10) = str2(stind2(j):endind2(j)); 
        icnt = icnt + 1; 
      end 
    end 
end 
btime = unique(alldates,'rows') 
 
% convert to matlab days 
year=str2num(btime(:,1:4)); 
month=str2num(btime(:,6:7)); 
day=str2num(btime(:,9:10)); 
sattime = datenum(year,month,day); 
 
% handle case of -180 to 180 longitude 
ind=find(xpos<0); 
xpos(ind)=xpos(ind)+360; 
 
% find all time points within tmin, tmax 
  tmin = min(tpos); 
tmax = max(tpos); 
tind = find(sattime>=tmin & sattime<=tmax); 
 
% define bounding box 
xmax = max(xpos) 
xmin = min(xpos) 
ymax = max(ypos) 
ymin = min(ypos) 
     
% loop on available time slots 
 
if ~isempty(tind) 
  for i = 1:length(tind), 
 
    % get time in year month day 
    yrstr = datestr(sattime(tind(i)),'YYYY'); 
    monstr = datestr(sattime(tind(i)),'mm'); 
    daystr = datestr(sattime(tind(i)),'dd'); 
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    % text string for data retrieval call 
    bobcall = strcat(urlbase,'?get=griddata&dataset=',strcat(satid,param),... 
     '&minlon=',num2str(xmin),'&maxlon=',num2str(xmax),... 
     '&minlat=',num2str(ymin),'&maxlat=',num2str(ymax),... 
     '&timeperiod=',duration,... 
     '&centeredTime=~',yrstr,'-',monstr,'-',daystr,... 
     '&filetype=.mat') 
 
    % extract data array and import to Matlab depending on structure 
    varname = strcat(satid(2:3),param);   
    fileout='tmp.mat'; 
    urlwrite(bobcall,fileout); 
    try 
      load('-MAT',fileout);     
      eval(strcat('sstd=',varname,';')); 
 
      mean(sstd(find(~isnan(sstd)))) 
      % get array dimensions - note that the order of data returned is not the same 
 
      extract(i,1) = mean(sstd(find(~isnan(sstd)))); 
      extract(i,2) = std(sstd(find(~isnan(sstd)))); 
      extract(i,3) = length(sstd(find(~isnan(sstd)))); 
      extract(i,4) = sattime(tind(i)); 
    catch 
      extract(i,1:4)=nan; 
      sprintf('Caught a THREDDS access error. Pausing for 2 minutes...') 
      pause(120) 
    end 
  end 
else 
  extract(1,1:4)=nan; 
  sprintf('no valid points found within target parameters'); 
end 
 
% fin 
 


