ISS Commercialization Activities

Briefing to NASA Advisory Council
Commercial Space Committee

July 30, 2013

Mike Read, Manager, ISS National Lab Office
George Nelson, Manager ISS Tech Demo Office
Commercial Involvement In The ISS

• CASIS: Commercial Customers
 – Charged with bringing non-traditional users to the ISS
 – Partnerships to date or in work:
 • Merck (protein crystallization)
 • Novartis (rodents)
 • Cobra Puma (materials)
 • Baylor College of Medicine (Omics)
 • MD Anderson (stem cells)
 • Boston Museum of Science, MassChallenge, MIT
 – >$2M outside funds committed to flight opportunities
ISS as a Business Model

• ISS National Lab
 – Encouraging traditional contractors to develop needed capabilities (hardware, onboard analytics, services) using a fee-for-services approach
 • Cost share with NASA, pre-buy of services, or pure commercial funding
 • Requires sharing of risk—difficult for small businesses to accept, and out of the norm for large firms
 • Benefit is multi-level marketing of the ISS—multiple partners with “skin in the game”
ISS as a Business Model

• NanoRacks
 – Only company to own h/w & sell services on ISS
 • Internal (CubeLabs, plate reader, microscopes, centrifuge)
 • External (exposed platform, CubeSat deployer)
 – To date, delivered 91 internal payloads and deployed 1 CubeSat from ISS
 – In pipeline, 70 internal payloads, 50 CubeSats, and 2 external payloads
 – IDIQ contract for services to US Gov’t signed June 2013
 – Continues to seek out new capabilities and opportunities to expand business base
ISS as a Business Model (cont’d)

• Teledyne Brown Engineering
 – Investing ~$20M in partnership with NASA to build, operate, and market a precision external pointing platform (MUSES)
 • Bays for 4 instruments (hyper/multi-spectral, high def visible, etc.)
 • Reached agreement in principle with first external instrument provider
 • Incentive to market use of ISS
Commercial Participation in ISS
Demonstration of Technologies

• Nearly all commercial technology proposals to date have requested or
 required NASA cost sharing. NASA has enabled some of these
 proposals through milestone completion based contracts.

• Technologies therefore have been limited to those for which NASA has
 possible needs.

• Bigelow Expandable Activity Module (BEAM)
 – Largest and most visible example of this cost sharing/contract method and
 in this case, fixed cost.
 – Currently baselined to launch on SpX8 (2015) and will be installed on
 Node 3 Aft. On orbit checkout to take place NLT October 2016.

• The Sabatier system continues to provide current service on ISS and
 was a successful implementation of contract with payments tied to on-
 orbit performance milestones.
Impediments to Commercial Research/Investment on ISS

• Lack of ISS exemption for Intellectual Property rights
 – For non-NASA funded users, IP rights reservation by US Gov’t is problematic
 – Almost a deal breaker for Big Pharma

• Uncertainty as to ISS life extension
 – Hard to sell long term commitment with 2020 end of life
 • For Big Pharma, 10-15 year development cycle
 • For Big Aerospace, uncertain duration for ROI
 – Using micro-g requires different research approach, hard to convince users to change with limited life remaining
 – Catch-22: Life extension based on robust utilization: Fullest utilization based on longer life...
Impediments (cont’d)

• Time from selection to actual flight
 – Ex. rodents—first availability is after Sx6, > 18 mos
 – Not all experiments face this same challenge

• Must continue to evolve onboard capabilities
 – If similar to ground, easier to accept
 – Onboard analytics very important to speed results

• NASA requirements drive costs
 – Must continue to excise extraneous requirements