

Mathias Basner, M.D., Ph.D.

Ruben C. Gur, Ph.D.

Cognitive Performance in Spaceflight

Specific Aims

There are a number of environmental stressors unique to the spaceflight environment that may affect cognitive performance, which is crucial for mission success. Our main objective in the TWINS study is to investigate whether cognitive performance is affected by initial and prolonged exposure to the spaceflight environment and after return to Earth. We will use the *Cognition* test battery, which consists of 10 brief neuropsychological tests that were specifically designed for high performing astronauts. We will compare data within subjects, between twins, relative to astronauts flying 6-month missions, and relative to normative data gathered in astronauts on the ground. The cognitive data will be correlated with markers derived from biological samples taken before, during, and after the 12-month mission.

Data or Workflow Elements

	Test	Cognitive Domain	Brain Regions (from fMRI studies)	Avg. Time (Min)
e#V	Motor Praxis (MPT)	Sensory-motor ability	Sensorimotor Cortex	0.51
	Visual Object Learning (VOLT)	Visual object learning and memory	Medial Temporal Cortex - Hippocampus	1.69
	Fractal 2-Back (F2B)	Attention and working memory	Dorsolateral prefrontal Cortex, Cingulate, Hippocampus	1.93
	Abstract Matching Task (AMT)	Abstraction and mental flexibility	Prefrontal Cortex	2.33
1	Line Orientation (LOT)	Spatial orientation	Right Temporo-Parietal Cortex, Visual Cortex	2.07
	Emotion Recognition (ERT)	Emotion recognition	Cingulate Cortex, Amygdala, Hippocampus, Fusiform Face Area	2.03
2	Matrix Reasoning (MRT)	Abstract reasoning	Prefrontal Cortex, Parietal Cortex, Temporal Cortex	2.09
	Digit Symbol Substitution (DSST)	Complex scanning, visual tracking, attention	Temporal Cortex, Prefrontal Cortex, Motor Cortex	1.60
	Balloon Analog Risk (BART)	Risk decision making	Orbital frontal Cortex, Amygdala, Hippocampus, Anterior Cingulate Cortex	2.39
200	Psychomotor Vigilance (PVT)	Vigilant attention and psychomotor speed	Prefrontal Cortex, Motor Cortex, Visual Cortex	3.17

Implications of Your Research for Space & Earth

Space: Exploration-type missions will require humans to spend unprecedented durations in space, yet our knowledge on the effects of prolonged exposure to the spaceflight environment is very limited. After the study, we will have an initial understanding of whether and to what extend prolonged ISS missions are associated with changes in cognitive performance, and how these relate to biologic markers.

Earth: The results have direct implication for other high performing populations exposed to stressful environments for prolonged periods of time on Earth.

The Cognition Test Battery

Cognition was specifically designed for astronauts and is currently used during 6-month ISS missions and in multiple space analog environments (including Antarctica, HI-SEAS, and HERA).