National Aeronautics and Space Administration

ARRM Capture System Trade Study Summary

Jasen Raboin

Outline

- Introduction
 - Purpose and Team
 - Concepts Considered and Down Select

Light Touch Concept

- Concept of Operations
 - Graphics of Deployment, De-Tumble, Retract, Restrain
- Analysis of Salient Feature
 - Contact Dynamics of Light Touch
 De-Tumble
 - Modeling Assumptions
- Sizing Analysis
 - FEM (or hand calc) of Exoskeleton
 - Supporting Material Information
- Mass Assessment
- Launch Packaging

TALISMAN Concept

- Concept of Operations
 - Graphics of Deployment, De-Tumble, Retract, Restrain
- Analysis of Salient Feature
 - Contact Dynamics of De-Tumble
 - Tool/End Effector Versatility
- Sizing Analysis
 - FEM (or hand calc) of TALISMAN
 - Supporting Material Information
- Mass Assessment
- Launch Packaging
- Conclusion/Recommendation
 - Pro/Cons of Each Concept
 - Recommend Forward Work

Purpose

The purpose of the study is to provide an independent assessment of alternatives to the ARV capture system and recommendations on risk reduction investments leading up to the ARRM. This trade study focused on alternative capture systems to accomplish the mission, and alternatives to major sub-system functions within the reference concept.

Team Leadership (full team in backup)

Study Lead: Jasen Raboin (JSC)
Light Touch Leads: Judith Watson (LARC) & James Lewis (JSC)
TALISMAN Leads: John Dorsey (LARC) & Andre Sylvester (JSC)
Center Leads: Scott Belbin (LARC), Stan Tieman (MSFC), Doug Willard (KSC)

Challenges of Asteroid Capture

- Asteroid Redirect Retrieval Vehicle (ARRV) will operate in deep space for several years before encountering a ~1000t asteroid with an average diameter of 7-10m. The ARRV will use a sensor suite to characterize the asteroid and maneuver into a capture position by matching the asteroids translation and primary rotation.
 - The asteroid can have a 2:1 aspect ratio, resulting in a maximum dimension of ~14m
 - The mass (density) asteroid can vary from ground campaign predictions
 - Off-axis rotation and nutation movement will still be present during capture
 - Cohesion of asteroid material can vary ("rubble pile" vs. stony asteroid)
 - Surface properties will be unknown prior to launch
- An ideal capture system would be able to capture an asteroid with a range of multiple axis rotation, as well as low density and low cohesion material
- Slow spinners are more easily accommodated, but the ability to handle fast spinners expands the number of candidate asteroids
- Capture methods can not generate environments that create debris or excessive loads that may damage ARRV systems like the very large solar arrays required for electric propulsion.
- Launch vehicle and mission constraints require the capture system to be in the ~350kg range and fit within existing 5m shrouds.
- Building a capture system that can accommodate these varying design parameters is a challenge

Concepts Considered

NASA

- 7 System concepts were reviewed
- TALISMAN and Bag Remote Control Thruster Hoberman Sphere Light-Touch System - Space Port Peristaltic Concept Deployable Booms with RCS and Bag 11 Sub-system concept were reviewed - Stiffeners Deployable RCS Coat Asteroid to Preserve Volatiles Inflatable Dome Bag Ratchet Interface Lasso _ Scissors and Cables Electrostatic Gripper Pointing Solar Arrays Internal Barrier De-Spinning w/ Tether 5 Asteroid Redirect Mission • N on Review • For Public Release

Down Select

- The team evaluated the different concepts against 8 figures of merit (see backup).
- Two main concepts were selected for further study w/ possible options within each concept
 - A deployable and retractable capture bag system that utilizes a "Light Touch" approach to de-tumble the asteroid over a period of time to minimize ARV array loads and simplify autonomous operations.
 - Tendon Actuated Lightweight In-Space Manipulators (TALISMAN) based system with end effectors, used in combination with capture bags, thruster packs, and other methods to bring added versatility to achieve mission objectives.

(It was determined later that there was not enough time allotted to study the potential options within each concept)

Light Touch - Concept of Operations

1

Bristles at each node apply light drag forces over time to de-tumble the asteroid, limiting loads on ARV arrays and allowing ARV to maintain attitude for power generation and communication during capture

Air beams deploy to form a

structurally efficient, pseudo

attached enclosure bag. The

geodesic exoskeleton with

configured actuate closure during a staged inflation.

upper hemisphere is

6 <u>cable/winch</u> systems attached to the platform base retract and restrain the asteroid

Characterize
<u>Doors</u> in launch
container/platform
base provide EVA
access and rigid
work platform

Stewart platform gimbals the ARV to align SEP trust vector through asteroid CG

Rendezvous and

Enclose

Deploy lower Hemisphere

Center and match asteroid translation (no need to match spin rates)

Deploy Bristles and De-Tumble

Retract, Restrain and Adjust CG

Light Touch – Analysis of Salient Features

Contact Dynamics of Light Touch De-Tumble

- Case 1 Asteroid Solid, axisymmetric ellipsoid
 - Axes: 17.6 m, 8.8 m, 8.8 m (prolate)
 - Mass: 1,000,000 kg
 - Intial spin rate: 0.2 RPM
 - Nutation angle: 80.0 deg
 - Kinetic energy: 3,800 J
- THIS CASE + 0.8 CoF DRIVES RCS MAX THRUST
- THIS CASE DRIVES SIZE OF ENCLOSURE BAG

- Case 2 Asteroid Solid, axisymmetric ellipsoid
 - Axes: 14.0 m, 14.0 m, 7.0 m (oblate)
 - Mass: 1,000,000 kg

0.4232

- Initial spin rate: 2.0 RPM
- Nutation angle: 0.1 rad
- Kinetic energy: 425,000 J

THIS CASE + 0.2 CoF DRIVES MAX DE-TUMBLE TIME

Results from Case 1 with high CoF (0.8) show that using a bristle with stiffness equivalent to a 7m long, 7mm dia Al rod, the max torgue required to maintain attitude during de-tumble is 78 Nm. Time asteroid to de-tumble is **42 min**

LS Dyna contact dynamics model simulates ~100 bristles providing a light drag force on irregular surface

200

Results from Case 2 with low CoF (0.2) using the same bristle properties show that the time required to de-tumble the asteroid is 68 hrs, with a max torque of 47 Nm.

600

Light Touch – Sizing Analysis

Bristle reaction force analysis

Reaction loads derived from Case 1 + 0.8 CoF model show max reaction force of ~4N & moment of ~8Nm at bristle attach location, well within the capability of envisioned exoskeleton structure.

> Bristle simulated as a 7m long, 7mm dia Al rod Max force imposed on asteroid by a single bristle = \sim 4N = \sim 0.8 lbf

1 m clearance between asteroid and exoskeleton

Supporting Material Information

- Kapton/Mylar/Urethane coatings and air barriers
- Kevlar/Vectran/Dyneema fiber reinforcements

 Heritage space rated air beam designs exist that can be leveraged

• Industry designs exist to leverage structural configurations

Light Touch – Mass & Launch Packaging Assessment

System Mass

Launch Packaging

(Qty 100) 7m long of 0.2m dia bristles Packing Factor of 10 used for volume

Tendon Actuated Lightweight In-Space MANipulators (TALISMAN)

- Versatile, lightweight system that provides broad range of mission capture functionality
 - Much larger number of possible targets since large asteroid parent bodies are added to free-flying asteroids
 - Manipulator length gives spacecraft a long moment arm to maximize torque and minimize the propellant required to de-spin the asteroid
- Consists of two major subsystems
 - Set of 3 Tendon Actuated Lightweight In-Space Manipulators (TALISMAN) with End Effectors, and
 - Simple Lightweight Enclosure Bag

TALISMAN prototype lab where technology is currently being developed under the (STMD/GCD) Human Robotics Systems Project

Asteroid Redirect Mission • Mission Formulation Review • For Public Release

Tendon rotational joint detail

11

TALISMAN – Concept of Operations

- Small, Slow Spinning Rubble Pile
- Match major spin axis rate
- Deploy Enclosure Bag
- Encapsulate Asteroid

- Close Bag Opening
 - Control ARV Loads by force feedback/ stroke control in arms
 - De-tumble and Secure

RendezvousCharacterize

- Small, Slow Spinning Solid Asteroid
- Match major spin axis rate
- Deploy Arms into position
- Instantaneously match minor spin rates
- Attach arms to asteroid

Very Large, Slow Spinning Solid Asteroid

- Match major spin axis rate
- Deploy Enclosure Bag

3C

- Control ARV Loads by force feedback/ stroke control in arms
- De-tumble and Secure
- Encapsulate Asteroid in bag

- Arm Tracks Surface Boulder
- Pluck Boulder from Surface
- Place in Enclosure Bag

TALISMAN - Analysis of Salient Features

- LaRC performed analysis to determin RCS forces and torques required to remove relative motion between the spacecraft and asteroid to allow capture (15.6 N and 22.2 N thrusters)
 - For asteroid Case 1, maneuver required 90% ARV RCS Thrust capability
 - Insufficient thruster authority to match rates _ for asteroid case 2
- LaRC performed analyses to determine de-tumble forces and moments on TALISMAN
 - Grapple with 3 arms with no relative motion between asteroid and spacecraft
 - De-tumble the asteroid/spacecraft system _ with RCS
- Assumptions
 - Rigid bodies analysis with single rigid manipulator
 - Peak loads occur at initial grapple/contact _
 - Resultant loads shared equally between 3 TALISMAN

t=0.95(s)

90%

ANALYSIS RESULTS (Used For Sizing TALISMAN)	Asteroid Case 1
Maximum In-Plane Tip Force	19.4 N
Resultant	(4.4 lbf)
Maximum Out-of-plane Tip Force	35.4 N
Resultant (Resolved from tip torque)	(8.0 lbf)

-F

-F/3

2000

2000

2000

TALISMAN – Sizing Analysis for Asteroid Case 1

OVERVIEW

- L = 20m, 3x6 inch core truss. 4-links with 5 total degrees-of-freedom
- · Composite truss / spreaders with high-stiffness polymer tendons
- Analysis tool allows rapid optimization of TALISMAN for wide-variety of missions

- 5 lb minimum pretension is actively maintained in dashed cables when tip load is applied
- Member loads shown are from in-plane applied load. Out-of-plane loads are added to maximum truss load for sizing
 - Buckling drives truss and spreader sizing for this case, not strength (checks were performed using FS=2)

t _l = 0.2	204 in	\leq	Mombor	Material Properties			Case 1 19.4N I 35.4N I	Mid 200N I 200N L	High 383N I 468N I	
3 in		$\mathbf{\nabla}$	Wember	E (Msi)	P (lbs/in³)	a_max (Ksi)		Mass (Kg)		
		.84 in	Truss	10	0.06	80	11.14	27.00	40.9	
			Spreaders	10	0.06	80	0.41	0.88	1.09	
	At Hinge Joints	At Root	Tendons	20	0.06	120	0.60	6.21	11.89	
	t = 0.04 in	t = 0.04 in				TOTAL:	12.15	34.1	53.91	
ALC: N					Non	-optimi	zed –	<u></u>		

Composite Truss weighs 6.1 kg and

supports 2224 N tip load

TALISMAN - Master Equipment List and Packaging Assessment

	Case 1	. Mid	High				
Manipulator/Effector Sys Mass	129.69	309.09	9 511.85	5 kg			
Enclosure System Mass	59.15	59.15	59.15	kg			
Structure Mass	34.00	34.00	34.00	kg			
Attachments and Cabling	10.00	10.00	10.00	kg			
СВЕ	232.84	412.24	615.00	kg			
Growth Contingency Percentage	0%	0%	0%				
Growth Contingency Mass	0.00	0.00	0.00	kg			
CBE + Growth Con ngency	232.84	412.24	615.00	kg			
Mass Bogey per JPL Design	350.00) 350.00	350.00) kg			
Mass Margin	117.16	-62.24	-265.00	kg			
Non-optimized							
Sized to manipulate a 17.6 x 8.8 x 8.8 m ellipsoid asteroid							

Launch Packaging

Atlas 5 Long & Medium Shroud

Conclusion - Pro/Cons of Each Concept

Light Touch

- Pros Simple, controlled autonomous operations
 - No need to match spin rates
 - Maximize de-spin moment arm reduces prop usage
 - Maintain vehicle attitude during detumble (Power & Communication)
 - Passive load control during de-tumble
 - Potential to handle higher spin rate asteroids

TALISMAN

- Manipulators can bring added mission versatility (inspection, sampling, drilling, prying, etc.)
- Manipulators have the ability to conduct other mission objectives if asteroid is larger than predicted
- Manipulators allow control of contact forces and SC Positioning during entire capture/de spin operations
- Multiple TALISMAN provide mission and operational redundancy
- Cons Higher weight (20m capture envelope + Stewart Platform)
 - Longer duration de-spin may increase prop usage
 - Large flexible structures will have dynamic, hard to predict zero-g deployment and reactration events
- Manipulators do not work well with a rubble piles or fast spinners
- Coordinated mot ion of manipulators by autonomous control system will be a challenge
- Require additional end-effectors (and mass) for inspection, sampling, drilling, prying, etc. operations

Recommendation – Forward Work

- For a mission targeting small (<20m) asteroids that could have relatively high spin rates and/or be a rubble pile, we recommend a continued investigation into "Light Touch" approach.
 - Complex contact dynamic modeling techniques for flexible structures
 - Complete exoskeleton/bristle flexible structure model
 - Rubble pile simulation

(Analysis techniques can be applied to any concept)

- Exoskeleton and Bristle development
 - Correlate coefficient of drag and stiffness characteristics
 - Demonstrate packaging, deployment, de-tumble and retraction
- For a mission targeting high solidity asteroids with low spin rates (<0.2rpm) that could be much larger than 20m, we recommend a continued investigation into the TALISMAN approach.
 - Optimization trade on prop required vs. manipulator capability to handle secondary spin rates
 - Study end effectors and control systems that minimize contact dynamics and increase ability to handle asteroids with higher spin rates

BACK UP SLIDES

Capture System Trade Study Team

Name	Center	Name	Center	Name	Center	Name	Center
Jasen Raboin	NASA JSC	Curtis Newman	NASA JSC	Ricky Howard	NASA MSFC	Victor Stewart	NASA LARC
Dave Lowry	NASA JSC	Drew Hood	NASA JSC	Todd Macleod	NASA MSFC	Gerry Valle	NASA JSC
Alvaro Rodriguez	NASA JSC	Adam Naids	NASA JSC	Carlos-Andres Velez	NASA MSFC	Jason Weeks	NASA JSC
Steve Koontz	NASA JSC	Jesse Buffington	NASA JSC	Tom Bryan	NASA MSFC	Tom Jones	NASA LARC
Ken Wong	NASA JSC	Brian Wilcox	NASA JPL	Doug Willard	NASA KSC	Carlos Roithmayr	NASA LARC
Eli Rayos	NASA JSC	Miguel San Martin	NASA JPL	Marshal Neipert	NASA JSC	Sean Kenny	NASA LARC
Andre Sylvester	NASA JSC	Scott Belbin	NASA LARC	Andrew Brown	NASA MSFC	Suresh Joshi	NASA LARC
Zack Crues	NASA JSC	Sharon Jefferies	NASA LARC	Richard Hagen	NASA JSC		
Ken Ruta	NASA JSC	Keats Wilkie	NASA LARC	Mo Kaouk	NASA JSC		
David Shores	NASA JSC	John Dorsey	NASA LARC	Greg Lange	NASA JSC		
Jonathan Lutz	NASA JSC	Judith Watson	NASA LARC	James Lewis	NASA JSC		
Zeb Scoville	NASA JSC	Carey Buttrill	NASA LARC	Mary Jane O'rourke	NASA JSC		
Suy Le	NASA JSC	Dan Mazanek	NASA LARC	Geoff Rose	NASA LARC		
Harold Reimers	NASA JSC	Stan Tieman	NASA MFSC	Molly Selig	NASA JSC		

Figures of Merit

- FOM 1: Versatility (with regard to baseline mission, asteroid characteristics)
 - Multiple Asteroid Mission Capability (entire asteroid versus piece of asteroid)
 - Overall In-Situ Versatility
 - Adapt to Size, Shape and Spin of Asteroid (during development or in-situ)
 - Adapt to asteroid c.g. location and/or movement during capture or return
 - Ability to provide mobility on surface of asteroid
 - Crew Access/Facilitate EVAs (for science and/or system interrogation after return)
 - Ability to facilitate variety of tasks (drilling, grappling, anchoring, sample collection)
 - Ability to perform multiple capture attempts (re-settable)
- FOM 2: Versatility (with regard to broader NASA goals)
 - Scalability (including larger asteroids relevant to planetary protection)
 - Extensibility to Different Missions (In-Space Construction, Surface Operations, etc.)
 - Ability to facilitate variety of robotic tasks (drilling, sample collection)
 - Applicability to ISRU, commercial asteroid mining, etc.
- FOM 3: Controllability
 - Ability to exert capture, interaction, and de-spin loads (compliance, moment arm)
 - Ability to limit and control loads and motion imparted to spacecraft (including arrays)
 - Ability to secure asteroid to spacecraft during return
 - Contingency for release and/or recapture

- FOM 4: Predictability, Verifiability, Reliability (Overall Design Simplicity/Complexity)
 - Nondeterministic system aspects (soft-goods gathering, wrinkling, etc.)
 - Number and types of nonlinearities in system (soft goods load transfer, cables, etc.)
 - Number of Motors/Joints/Cables (total number, number of unique systems/components)
 - Deployment reliability and space-environment sensitivity
 - Feasibility of Relevant/Partial Ground Testing to (simulation inputs and verification)
 - Ability to Produce Accurate and Reliable Simulations (Including Monte Carlo Analysis)
 - Redundancy (ability to compensate if part of capture system fails, binds, etc.)
 - Number of steps in concept of operations to coordinate capture.
- FOM 5: Technology Readiness (Heritage/Maturity)
 - New technology requirements
 - System-level readiness & applicability of existing technology
 - Existence of legacy/similar/ground-based or in-space analogs
 - Readiness within desired/reasonable schedule

• FOM 6: Mass

- Capture System Mass (all structure, motors, etc)
- Mass sensitivity to changes in mission parameters
- Efficiency of Load Path/Load Transfer
- Need for Redundant Components/Systems

Figures of Merit (cont)

- FOM 7: Launch Vehicle and Spacecraft Packaging
 - System fits easily within LV shroud
 - System can be configured in various ways within LV shroud
 - System is easily integrated with SEP
- FOM 8: Preservation of Asteroid
 - Minimize changes to original asteroid surface
 - Minimize changes to original asteroid structure

Down Selected Concepts and Options

June 6th Down Selected Concepts and Options

Circumferential chinch cords winched by dual-speed winches affixed to capture bag.

- power generation in off attitude
- Pointing Solar Arrays

 - Multi axis rotary joint to allow

conditions during de-tumble

 Deployable RCS Boom for ARV

Other Options for Consideration

- Increase moment arm, reduce
 - propellant for de-tumble

