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ANALYTIC METHOD FOR RISK ANALYSIS 

1 Executive Summary 
Estimates of cost and schedule duration of a task or project are uncertain values, so we do 
not know the exact, discrete values until it is complete. Given the inherent uncertainty of 
estimates, the only way to portray them is with probability distributions of possible costs 
and schedule durations (or dates). Probabilistic cost and schedule distributions for a 
program are quantified through the means of cost and schedule uncertainty analyses. The 
most popular way these analyses are performed is though statistical simulation. Statistical 
simulation (i.e., Monte Carlo and Latin Hypercube sampling) techniques are widely used 
in cost and schedule risk analysis, but they have limitations. 

Analytic methods of cost and schedule risk analysis exist that: 1) correctly model random 
variables (RVs); 2) exactly correlate RVs and their sums, which many statistical simulation 
tools cannot; 3) have no fundamental limit to the number ofRVs or correlation coefficients 
that can be defined; 4) provide [near] instantaneous results; and 5) have the ability due to 
their mathematical form to clearly indicate uncertainty drivers and thus the risk. 

This report presents an analytic (i.e., a non-simulation based) method of quantitative cost 
and schedule risk analysis building on analytic techniques of applied probability and 
statistics. The analytic method provides near-instantaneous results with exact statistics 

such as mean and variance of total cost and total schedule duration. It capitalizes on the 
fact that the structure of estimates defines a mathematical problem to be solved through the 
use of applied probability. This report provides the mathematics required to perform the 
tasks of calculating the uncertainty of an estimate, and determining the risk from this 
uncertainty and a point estimate. 

While much of the mathematics of applied probability used in this report are publicly 
available through journal publications, the author has derived methods and formulae that 
have, to his knowledge and through his research, never been published before. Therefore, 
the report provides a very unique set of mathematics useful in the analytic assessment of 
cost and schedule uncertainty and risk. 

The report includes several quantitative examples, including two example estimates, where 
the results obtained using the analytic method compare well with those results obtained 
through statistical simulation. Given the excellent results obtained through this research, 
additional applications of the analytic method are reco=ended for use in risk analysis, 
estimating relationship development, and probabilistic cost and schedule estimating. 
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2 Introduction 
This report describes an analytic method of applied probability analysis techniques 
germane to problems encountered in cost and schedule risk estimation. By their very 
nature, estimates are uncertain projections of future events. Given that, we discuss the 
probabilistic nature of estimates and describe the mathematical problems encountered in 
cost and schedule estimating. We discuss the mathematical tools that can be used to solve 
these problems (i.e., statistical simulation and statistical analysis) and we compare the two 
approaches. The next sections of the report provide the tools required to perform statistical 
analysis. Finally, we provide two sample problems to demonstrate analytical techniques. 

2.1 Probabilistic Nature of Estimates 
Cost and schedule estimating is an integral part of the program management process. 
Organizations use these estimates for planning purposes such as cost/performance tradeoff 
studies, benefit/cost analyses, source selections, and budget planning. But estimates are 
predictions and their exact values are uncertain in nature since they have not yet become 
"fact". Since the true cost and schedule durations of a project (or task) are only known 
when it is complete, the best we can do is to rely on estimates at various stages of planning 
and completion. 

The word "estimate" itself implies uncertainty, so an estimate is not well represented by a 
single number but by a distribution of possible estimates. The distribution of possible 
estimates is defined by the estimate's probability distribution that is calculated through the 
application of probability and statistics. 

2.2 Uncertainty and Risk 
Uncertainty is a measure of the distribution of possible outcomes of a random variable, 
such as cost and schedule estimates. This distribution is called a probability distribution 
and can either be a continuous, discrete, or mixed distribution.' 

2.2.1 Probability Density and Probability Mass 
Probability distributions defined for continuous distributions are probability density 
functions (PDFs). PDFs such as the one shown in Figure 2-1 can be expressed in terms of 
a mathematical formula of fx(x), where fx(x) is the PDF defined over the range, x. 

1 A ''mixed distribution" is a combination of discrete and continuous distributions. 

12 
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Cost Estimate Probability Density 

g 
~ +---------~--------~------------
~ ! +-------~~~~===---~----------

GI 
c +-------~~------------~--------

X, Cost, BY2012$M 

Figure 2-1 Probability Density Distribution 

Probability distributions of discrete risks (which are discontinuous functions) are defined 
by probability mass functions (PMFs) such as the one shown in Figure 2-2. We will define 
the PMF as Bx(x), where Bx(x) is the function defmed over the range x. 

Cost Estimate Probability Mass 

I 
X, Cost, BY201Z$M 

Figure 2-2 Probability Mass Distribution 

2.2.2 Cumulative Probability 
The cumulative probability is the probability that a real valued random number will be less 
than some value x. In the case of discrete distributions, it is the sum of the probability­
weighted values of the PMF less than x, and in the case of continuous distributions, 

(remembering our college calculus) it is the integral of the PDF from- oo to x. 

13 
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2.2.3 Definition of Risk 
Any point estimate has some probability that it will be sufficient or be exceeded (Figure 
2-3). The probability that an estimate will be exceeded (i.e., overrun) is the risk, and the 
probability that the estimate will be sufficient (and that there is a probability of the actual 
value being lower) is the opportunity or reward. 

Cost Estimate Probability Density 
::::::;. -,-----------------

::::::h +--------/ 
0 Unfavorable 

::::~ 
0 Favorable 

.... :0: +------1 .... ~ 
:: :::i +------1 

Cl 

Point Estimate 

-~ :::: "

0 

• • -· . •• :: •• ::i .~ J~::: ,,.·;,,. .~.~:: .•.. :. ,,. t:::: t'.! .~ H .• :: H::i ,o .. ;-:::: ::i ':.~ _.;· •• :: · ... · .~ ~~:::: 

X. Coat, BY20U$M 

Figure 2-3 Risk, Reward and the Point Estimate 

Since the entire area under the PDF shown in Figure 2-3 is, by definition, equal to one, the 
sum of the probabilities of overrun (risk) and under-run (reward or opportunity) is also 
equal to one. The probability of risk occurrence is the area of the distribution to the right 
of the point estimate and the probability of reward is the area to the left. As stated earlier, 
the area of the distribution under a curve can be computed using the definite integral 
expression bounded by the lower and upper limits. Therefore, risk is the integral of the 
PDF from the point estimate, c, to infinity ( oo). 

Risk= fcoo fx(x)dx = 1- f~oofx(x)dx = 1- Fx(c). 2-1 

Reward or opportunity represents the area under the curve from -oo to c, which is 

Reward= toofx(x)dx = Fx(c). 2-2 

If we are using discrete risks defined by PMFs, then the risk equation is a summation of all 
of the probability-weighted risk consequences at all points x (i.e., costs or schedule 
durations) (Garvey P.R., 2000) greater than our point estimate, c.2 

Risk = rx>c Px(x). 2-3 

2 Garvey, P. R (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineering 
Perspective. New York, NY: Marcel Dekker. 
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The amount of risk to an estimate is defined by two things: the uncertainty of the estimate 
and the point estimate, or the bet. To illustrate the interaction of risk with uncertainty and 
the bet, consider the four examples in Figure 2-4. Figure 2-4a. is a low-uncertainty, high­
risk estimate since the area under the PDF to the right of the bet is much larger than that to 
the left. This means there is a disproportionate amount of risk compared to opportunity. 
In in Figure 2-4b, the risk is reduced by choosing a bet further to the right in the PDF. 
Note that in both ofthese cases, the potential low- and high-end outcomes remain the same 
- only the bet is changed. When the low bet is accompanied by a larger estimate 
uncertainty, as in in Figure 2-4c, the risk is reduced, but the potential impacts due to high­
end outcomes (consequences) are increased. Finally, moving the bet to the right in the 
high uncertainty case, the risk is reduced as shown in in Figure 2-4d, but the potential for 
extreme high-end outcomes remains. 

a. Low Uncenalnty, Low Bet b. Low Uncenainty, Hilh Bet 

1\ 1\ 
I \ I \ 
I \ I \ 

X X 

c. Hlth Uncertainty, Low Bet d. Hiah Uneertainty, Hiah Bet 

X X 

Figure 2-4 Relationship between Risk, Uncertainty and the Bet 

2.3 Joint Probability Distributions 
So far we have discussed the univariate3 probability distributions of single random 
variables (i.e., estimates of cost or schedule). When we are interested in the probability 
distribution of more than one random variable, we are interested in the multivariate 
probability distributions, such as the probability of achieving a particular cost and schedule 
of a yet-to-be-completed project. When the relationships between variables such as 
estimated cost and schedule must be considered, we need to form a joint probability 
distribution. An example of this is shown in Figure 2-5. 

3 Single variable 
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0.006 

:i i 0.004 

..c .. 
"' 1f 0.002 

8 a: 
0 

Figure 2-5 Joint Probability Density Function 

If we have two random variables X andY, we can define the probabilities 

P{X S x} = Fx(x) = f~ct:)Fx(z) dz 

P{Y S y} = Fy(y) = f~ooFy(z) dz 

2-4 

The joint probabilities of P{X S x, Y S y} can be expressed as the joint distribution 
function 

P{X ~ x, Y ~ y} = Fxr(x, y) = f~ct:l f~w fxy(Z, w) dzdw 2-5 

The joint PDF is defined as the partial derivative of Fxr(x, y) with respect to x andy. 

£ (x ) = azF;xy(x,y) 
1 XY • Y iJxiJy 

2.3.1 Marginal Distributions 

2-6 

The marginal distributions of a joint probability function are those distributions that are 
considered individually. Given a joint distribution of two random variables, the marginal 
distribution of one is its probability distribution averaged over the probability information 
from the other's distribution. 

2.3.2 Conditional Distributions 
A conditional distribution of a joint probability function is the distribution of one random 
variable given a specific value of the other distribution(s). 

16 
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2.4 Statistics of a Random Variable 

2.4.1 Moments 
Moments provide useful information about the characteristics of a random variable, X, 

such as the measures of central tendency, dispersion and shape. When referring to the 
moments of a distribution or a set of data, it is useful to define which of the three types of 
moments are being used: raw moments, central moments or standardized moments. 

1.4.1.1 Raw Moments 
The !(h moments about the origin are called ''raw moments" of a PDF, fx, and are defined 

as: 

{ 
f.xxkf(x) ; if X is discrete 

Ilk= f:'ooxkf(x)dx ; if X is continuous 

2-7 

The mean, ll~ , is the first raw moment of X about the origin, and it is a measurement of the 

central tendency of the data. We are more familiar with the mean being represented as, /l, 
so we will use this notation for the mean hereafter. 

1.4.1.1 Central Moments 
Central moments of a distribution are the raw moments about the mean, ll· The first 

central moment is by definition zero, but the second central moment is the variance, u 2 , 

which is a measure of dispersion about ll· Equation 2-8 provides the definition of the !(h 
central moments of discrete and continuous RVs. 

{ 
f.x(x -ll)2 f(x) ; if X is discrete 

uz = J:'
00

(X -ll)2f(x)dx ; if X is continuous 

2-8 

The variance, u 2 , is the square of the standard deviation, u. 

The first five central moments expressed in terms of the raw moments are: 

Ill= 0 
t2 I I t2 

llz = -Ill + llz = llz -Ill 
2 ,3 3 , , + , 

ll3 = Ill - ll11l2 ll3 
3 ,4 6 ,z , 4 , , , 

/l4 = - ll1 + ll1 llz - ll11l3 + /l4 
4 , 5 10 , 3 , 10 , 2 , 5 , , , 

/ls = ll1 - ll1 llz + ll1 ll3 - ll1/l4 + /ls 

2-9 
2-10 

2-11 
2-12 

2-13 

1.4.1.3 Standardized moments 
Standardized moments are the !(h central moments, Ilk• normalized by the !(h powers of the 

. . stan dard de Vlation u k c· 1.e., --;c Ilk) . 
u 

17 
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The most well-known standardized moments are skewness and kurtosis. Skewness, D, is 

the measure of asymmetry of X and is defined as the third standardized moment: 

skew(X) = i) = ,.,.3 

0'3 
2-14 

A distribution is a) symmetric if i) = 0 , b) left (i.e. negatively) skewed if D < 0 , and c) 

right (i.e., positively) skewed if iJ > 0 as shown in Figure 2-6. 

Right Skewed 

iJ >O 

Left Skewed 

tJ < 0 

Figure 2-6 Left and Right Skewed Distributions 

Kurtosis is the fourth standardized moment. Most textbooks define kurtosis of symmetric, 
unimodal distributions as a measure of peakedness of a distribution X. This is a correct 
definition, however a more descriptive definition of kurtosis exists (DeCarlo, 1997), 
(Moors, 1986), (Balanda & MacGillivray, 1988), and (Darlington, 1970).4 5 6 7 

• • • Moors 
defines kurtosis as the measure of the dispersion around the two "shoulders" of a 

distribution located at p. ± u. DeCarlo warns that the classical attribution of peakedness of 
a distribution vice its "fat-tailedness" is not a good representation of the meaning of 
kurtosis and provides examples where this is the case. 8 

kurt(X) = :: 2-15 

A more commonly used metric is the "excess kurtosis", which is lrurt(X)- 3. Since the 

kurtosis of a normal distribution is equal to three, the excess kurtosis denoted asK, is 
adjusted by 3 as in Equation 2-16. 

K = kurt(X) - 3 = 14 
- 3 

u4 
2-16 

In general, where a) K = 0 the distribution is mesolrurtic, b) K > 0 it is leptok:urtic, and c) 

K < 0 it is platykurtic. 

4 DeCarlo, L. (1997). On the meaning and use of kurtosis. Psychological Methods, 292-307. 
5 Moors, J.J.A. The meaning of kurtosis: Darlington reexamined. Amer. Statist.1986, 40, 283-284. 
6 Balanda. K.P.; MacGillivray, H.L. Kurtosis: A critical review. Amer. Statist.1988, 42, 111-119. 
7 Richard B. Darlington. Is Kurtosis Really "Peakedness?". Amer. Statist. 1970, 24, 19-22. 
8 DeCarlo, L. (1997). 
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Mesokurtic 
K= D 

Leptokurtic 
K > 0 

Platyku rtic 
K<D 

Figure l-7 Excess Kurtosis of Distributions 

2.4.1.4 Moment Summary 
The moments describing the characteristics of a random variable such as the measures of 

2central tendency, dispersion and shape (i.e., f.l, a , iJ,IC) can be derived from the raw 
moments J.Lk: of X. We will capitalize on these relationships in the analytic method 
proposed in this report. 

2.4.2 Quantile Statistics 
Quantiles are a set of divisions of data into groups containing equal numbers of 
observations. We are most familiar with percentiles, which are division of the data into 
100 groups of 1% of the cumulative area under a PDF. We will denote the percentile, q, of 
a random variable, X, as Xz=q· For example the 50th percentile of X would be 

writtenXz=O.S· 

2.4.3 Expectation Operator 
The expectation operator, E[·], of a random variable is a powerful expression. The 
expected value, or J.L, (Equation 2-17) of a random variable is perhaps the most important 
single parameter in applied probability. It is written as 

E[X] = llx, 2-17 

and is the integral 

E[X] = ~~~ xfx(x)dx, where fx(x) is the PDF of X. l-18 

The mean represents the center of gravity of the random variable. Another important 
parameter is a 2, defined by the expectation of the squared difference of the PDF and its 

19 
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mean. This quantity represents the moment of inertia of the probability masses (Papoulis, 
1965).9 

Var(X) = a 2 = E[(X- JL)2
] = J:'""CX- llYfx(x)dx 2-19 

What is most important about E[·] is its ability to determine the raw moments (Equations 
2-7 and 2-18) and central moments (Equations 2-8 and 2-19) of a random variable, and 

thus the measures of central tendency, dispersion and shape (i.e., JL, a 2, -8, K). 

2.4.4 Order Statistics 
Order statistics are those statistics that describe the numerical order in which random 
variables or samples of random variables appear. Some of the simplest order statistics are 
the minimum and maximum values defming the range of a PDF. Other, more complex 
order statistics are those which describe the maximum and minimum of a series of random 
variables. Order statistics play an especially important role in schedule risk analysis 
whereby the maximum probabilistic end dates of certain tasks define the maximum 
probable end-date of the schedule. 

2.5 Section Summary 
The mathematics of the analytic techniques used to solve estimating uncertainty problems 
require defmition of the estimating problems germane to cost and schedule estimates. In 
the next section, we discuss the mathematical problems typically found in cost and 
schedule estimating. 

9 Papoulis, A. (1965). Probability, Random Variables and Stochastic Processes. New York, NY: McGraw 
Hill. 
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3 Cost and Schedule Estimates 
Cost and schedule estimates are defined by a set of mathematical formulae that lend 
themselves to probabilistic uncertainty analysis. In this section, we will discuss the 
structures of these types of estimates and define the mathematical problem(s) to be solved 
in probabilistic uncertainty analysis. 

Book10 11 
• (1994; 2002) showed the cost and schedule estimating communities that every 

cost and schedule estimating problem should be treated as a risk analysis, not simply an 
exercise in summing most likely costs - the result of which is a number that has no 
statistical meaning without risk analysis. Furthermore, he showed estimates should be 
treated as random variables and not deterministic numbers (i.e., constants). 

3.1 Nomenclature 
To better describe the mathematical problems germane to cost and schedule estimates, we 
will define constants, variables, and random variables. 

A numerically expressed entity is called a "constant" if there is a unique specific number 
that is always its numerical value (e.g., n, 1.414, -2). A numerically expressed entity is 
called a "variable" if there are several possible specific numbers that may serve as its 
numerical value and which specific number happens to be its numerical value in any 
particular situation depends on the particular circumstances (e.g., x, y, z)12

• A variable is 
further denoted a "random variable" if the proportion of particular situations in which any 
specific number happens to be its numerical value is established by a probability 
distribution (e.g., X, Y, cost, schedule duration). 

We will use the following notation throughout this document to define variables. 
Constants will be defined using their numerical value or lowercase letter (e.g., a, b, c, d, e). 
Variables will use lowercase lettersu,v,w,x,y,andz, and random variables will use 
uppercase letters U, V, W,X, Y and Z. Random variables defmed by commonly used PDFs 
will use the following notation: 

Uniform: fx(x; L, H) = U(L, H) 3-1 
Triangular: fx(x; L, M, H) = T(L, M, H) 3-2 
Normal: fx(x; p., u) = N(p., u) 3-3 
Lognormal: fx(x; p., u) = L(p., u) 3-4 
Beta: fx(x;a,p,a,b) = B(a,p,a,b) 3-5 
Where 

10 Book, S. A., "Do Not Sum 'Most Likely' Cost Estimates", 1994 NASA Cost Estimating Symposium, 
Johnson Space Center, Houstnn, TX, 8-10 November 1994. 
11 Book, S. A., "Schedule Risk Analysis: Why It is Important and How tn Do It", Ground Systems 
Architectnres Workshop, The Aerospace Corporation, El Segundo, CA, 13-15 March 2002. 
12 Book, S. A., 1994. 
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L, M, Hare low, most likely (mode), and high shape parameters 
J.l., u are the mean and standard deviation of the distribution in unit space 
a, ~ are standard beta distribution shape parameters 
a, b are lower and upper bounds of the four-parameter beta distribution 

The properties of these distributions are provided in Appendix A - Probability 
Distributions. 

3.2 The Cost Estimating Problem 
The cost estimating problem is defined by the mathematics of the following: 1) the work 
breakdown structure (WBS), which requires multiple levels of statistical sununation; and 
2) the mathematics most applicable to the estimating approach(es) used (i.e., bottom-up, 
analogy, parametric). We will first describe the statistical techniques used to perform 
statistical sununation of a WBS structure and then discuss, in more depth, how to apply 
analytic uncertainty and risk analysis to the individual WBS elements. 

3.2.1 WBS structure 
The WBS defines the sununation hierarchy of the project. In other words, it defmes the 
mathematical problem of sununation of individual WBS elements to successively higher 
levels of the WBS up to the total project level. The statistical treatment of sununing 
correlated random variables is fairly straightforward and can be easily programmed into a 
spreadsheet or cost estimating tool (Young, 1992).13 

3.2.2 Estimating Methods 
The methods used to estimate costs at different WBS levels defme another part of the 
mathematical problem to be solved. Different estimating methods require different 
mathematical procedures, so we will examine these methods individually and note the 
important mathematical features of each. These include bottom-up, analogy approach 
relying on scaled actuals, multiple scaled actuals, and cost estimating relationships (CERs ). 

3.2.2.1 Bottom-up 
The bottom-up estimating approach relies on surmning a detailed list of the classical 
elements of cost: labor (effort), material and expenses. If a detailed, resource-loaded 
schedule is used to estimate effort, then the duration of the task, the staffing level and the 
associated labor rates can be represented by random variables. As an example, the cost of 

13 The "Formal Risk Assessment of System Cost Estimates" (FRISK) method is an analytic risk model that 

uses "Method of Moments" to calculate summary distributions. FRISK was originally developed by Phil 
Young of The Aerospace Corporation in 1992 (before Crystal Ball and @Risk became available) with 
funding from USAF SMC. A BASIC Program implementing FRISK was developed by Dr. Stephen Book 
and enjoyed many years of use. FRISK has been reprogrammed in Excel by various analysts since 2000, 
with each new version providing more advanced capability and features and ease of use. 
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the effort for a particular task is the product of the task duration, the resource loading 
profile and the associated labor rates. Each is treated as a random variable. 

W = XYZ; where 
W = effort, measured in dollars 
X= duration of the task, measured in hours 
Y = resource loading, measured in heads 
Z = the labor rate, measured in dollars per hour per head 

In this case, the first mathematical problem to be solved is the multiplication of multiple 
(and perhaps correlated) random variables. This will be discussed in Section 5. The 
second problem is the summation of the elements of cost represented by random variables 
for each WBS element, as discussed in Section 4.2.2. 

3.2.2.2 Analogy (Scaled Actuals) 
The analogy method relies on using an actual cost of a product or service to estimate the 
cost of a similar product or service. Intuitively, it is the easiest method to use when 
preparing a cost estimate. The simplest form of an analogy estimate is a direct analogy, in 
which case the estimated cost is equated to the actual cost of the similar product or service. 
Unfortunately, this simple procedure does not provide any information about the 
uncertainty of the estimate. Indeed, the analogy can be the most misleading estimating 
method from a probability perspective. 

Studies (MacKenzie & Addison, 2000) by the Space Systems Cost Analysis Group 
(SSCAG) have shown the standard deviation of the costs of similar items at the "box level" 
of the WBS to be as much as 30% to 40%.14 In the same report, the authors showed the 
data to be lognormally distributed, which provides a shape to the distribution. Given this 
information, we are able to derive a measure of the standard deviation of the "actual" cost 

based on the coefficient of variation (CV = p.fa), but we do not know at which percentile 
to place our particular analogy. Is it at the 50th percentile (median), the mode, the mean 
(expected value), or is it at some other percentile such as the 4th or the 85th, or somewhere 
else? If it is at the mean, then the PDF of the analog is easily determined. But, is this the 
right PDF to use in this situation? Figure 3-1 shows an example lognormal distribution 
based on the mean and CV = 0.3, L(100, 30). 

14 MacKenzie, D. and Addison, B., "Space System Cost Variance and Estimating Uncertainty", 70th SSCAG 
Meeting, Boeing Training Center, Tukwila, WA, October 12-13,2000. 
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Figure 3-1 PDF of Cost of Analogy at Mean 

Now consider the case where the analogy is one cost of many possible costs within an 
unknown probabilistic range. To provide a distribution about the analogous cost, we need 
to either 1) assume a percentile value for the analogy within a prescribed distribution, or 2) 
determine the (yet unknown) probabilistic range of possible values to which the analogous 
cost belongs. The first case is described by Flynn, Braxton, Garvey and Lee (2012).15 The 
second case requires the use of applied probability to determine the probability 
distribution. The derivation for this approach is provided in Appendix C - Derivations. 

3.2.2.3 Scaled Actuals (Factor) 
If a simple factor is used to scale an actual cost, then the mathematical problem is the 
multiplication of random variables, where one random variable is the scaling factor and the 
other is the PDF of the analogy, described in Section 3.2.2.2. 

3.2.2.4 Scaled Actuals (Interpolation) 
When we estimate the cost of an item through linear interpolation of two actuals using a 
cost driver (i.e., weight), the mathematical problem is a linear relationship: 

Ye = Y1 + (Xe - x1) * r2-Y1~, where 
Xz-x1 

Ye= the cost estimate (random variable) 
Xe =the cost driver of the item we are estimating (a random variable) 
Y1 , Y2 =the costs of the two actuals, (random variable) 
x11 x2 =the cost drivers of the two actuals (constant) 

3-6 

15 Flynn, B., Braxton, P., Garvey, P., & Lee, R. (2012). Enhanced Scenario-Based Method for Cost Risk 
Analysis: Theory, Application and Implementation. 2012 SCENISPA Joint Annual Conference & Training 
Workshop. Orlando, FL. 
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The plot of the discrete interpolation problem is shown in Figure 3-2. 

Discrete Variable Interpolation 

Cost Driver, x 

Figure 3-2 Discrete Variable Interpolation 

The mathematical problems to be solved in Equation 3-6 are the addition, subtraction and 
multiplication of random variables. 

Note the costs of the two actuals have a similar issue as the direct analogy method whereby 
we cannot assume the a priori standard deviations of the samples. If we cannot treat these 
samples of actual values as constants (no error) in the direct analogy case, then we 
shouldn't treat them as such in the interpolation case. 

3.2.2.5 Multiple Scaled Actuals and Cost Estimating Relationships 

Multiple scaled actuals are those actuals that are similar in nature and whose costs can be 
represented by a probability distribution or by simple moments such as p. and u. For 
example, the costs of three-meter ground station antennas could be represented by a normal 
distribution, N(p., u). Provided the antenna of interest fits into the set of three-meter 
ground station antennas represented by the PDF, we know the p., u, and confidence level of 
each estimate in the range of the PDF. 

When we are estimating costs of products or services that are based on a similar set of 
parameters, we can develop a cost estimating relationship (CER) that explains some of the 
variations in cost based on variations in one or more independent variables (i.e., cost 
drivers). Consider the generic form of a recurring CER based on unit theory shown in 
Equation 3-7. 

Y ={[a+ b ~f=F(Utc) ll7=1(x/i) ll~=l(e,/k)]}E; where 
a, b, c, d, and e are coefficients of the regression (c = ln2 (LCSc)), 
LCSc = cumulative average learning curve slope when a = 0, 
Ut = unit number i, 

3-7 
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xi = independent variable j, 
N = number of independent variables, 
sk = indicator ("dummy") variable k, 
M = number of indicator variables, and 
e = percent standard error (multiplicative). 

The independent variables, xi, can be represented by random variables Xi as can the 

multiplicative error of the estimate, e. The dependent variable, y, will also be a random 
variable, Y, defmed by the PDFs of each independent variable, the functional 
transformation of the CER form, and the PDF of the multiplicative error, e. 

The CER provides a model for constructing the PDF, so we can obtain the J.L, a, and 
confidence level of each estimate in the range of the PDF as in the case of multiple scaled 
actuals. To compute the statistics of the CER, we must first learn how to convolve and 
transform random variables. This is discussed in Sections 4 through 7. 

3.2.3 Discrete Risks 
Analysts may need to include discrete risk events form a risk register (Table 3-1) in a cost 
or schedule estimate. In the single risk case, this means there is a probability that some 
estimate of additional cost or schedule will be added. With multiple risks, the problem 
becomes combinatoric, since we must account for any combination of risks that could 
potentially occur. 

Historical cost and schedule actuals contain realized risks which may or may not have been 
mitigated or manifested themselves into cost and schedule growth from the original 
proposed estimate. By using historical actuals to form the estimating relationships, the 
resulting estimate 1) will appear more conservative than if it had been developed using 
engineering judgment or non-metric-based approaches; 2) will inherently contain schedule 
and cost risks typical of similar programs; and 3) will be more prone to double or even 
triple-counting risks when augmented with discrete cost and schedule risks from a risk 
register (Table 3-1 ). 

Table 3-1 Example Risk Register 
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To form a complete risk picture, additional cost-related risks identified by the schedule risk 
assessment (SRA) and the discrete risk analysis obtained from the risk and opportunities 

register (ROR) are included to form the risk profile of the program. In many cases, the 
historical risk inherent in the use of estimating methods developed from actual data covers 
many potential risks (Figure 3-3). In these cases, the analyst must identify unique risks 
and omit redundant risks (B and C) identified and represented in the SRA and ROR. The 
use of more robust statistical and risk analyses minimizes the unidentified and untracked 
risks (A). 

A 

from Analogous 
Programs 

Figure 3-3 Estimating Risk Venn Diagram 

3.3 The Schedule Estimating Problem 
The schedule estimating problem is defined by the method used to estimate the schedule 
duration. When scaled analogy or multiple scaled actuals or schedule estimating 
relationships (SERs) are used to estimate schedule duration, the mathematical problem to 
be solved is similar to those of cost estimating. The two fundamental differences are: 1) 
probabilistic durations are measured in workdays, and 2) when the bottom-up approach is 

used, the schedule network defines the mathematical problem to be solved. We will 
discuss the issues that arise when using workdays rather than calendar days and then 
discuss the issues arising from the arrangement of tasks in a network. 

3.3.1 Using Workdays in a Schedule 
When using workdays in a program schedule, probabilistic dates are expressed as discrete 
rather than continuous distributions. This arises from the fact that a particular task may 
finish on a particular day (or part of a work day) but not all possible values within the 

range. Consider the example of the duration of a task to be a continuous, uniform 
distribution defined as U(l,2) . The lower bound of the continuous distribution is defined 

as one day and the upper bound as two days. Assuming a continuous distribution for the 
duration of the task, the finish date of the task will be within the range of one to two days 
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later. In our example, the mean and standard deviation of the duration's continuous 
uniform U(L, H) distribution are: 

L+H 
J.lu(1,2J = -

2
- = 1.5 days 

O"u(1,2) = j1~ (H- L)2 = j
1

1

2 
(2 -1)2 = ~ = 0.2887 days 

Since schedules (and scheduling software programs) use discontinuous working days (as 
opposed to continuous calendar days) to define start and finish dates, the probabilistic 
finish date will be one or two days after the start date, not anywhere within entire range of 
the distribution. This phenomenon induces changes in the statistics of the fmish date of the 
task and the overall distribution shape and statistics of the schedule. If the duration is 
treated as a discrete uniform DU(L, H) distribution with two (n=2) discrete days duration, 
the statistics are: 

L+H 1+2 
J.lnu(1,2) = -

2
- = -

2
- = 1.5 workdays (wd) 

Unu(1,2) = 
(H-f"DU(1,2))

2 
+(L-f"DU(1,2J)2 = (2-1.5)2+(1-1.5)2 = I!= 0.5 Wd 
n 2 -.}4 

Note the mean is unchanged, but the variance increases dranlatically because the 
probability mass is equally distributed at the lower (L) and upper (H) bounds of the 
distribution. The statistics take a more severe departure when evaluating the distribution in 
calendar days where one possible finish day may occur on a Friday and another on a 
Monday, assuming Saturday and Sunday are not workdays. This translates into a 
distribution with two possible durations in calendar days with the statistics: 

L+H 1+4 
J.lnu(1,4) = -

2
- = -

2
- = 2.5 calendar days (cd) 

Unu(1,4) = 
(H-f"DU(l,2J)

2 
+(L-f"DU(1,2))2 = (4-2.5)2+(1-2.5)2 = I!= 1.5 Cd 
n 2 -.}4 

We must take great care to properly defme the appropriate units and respective shapes of 
durations or else we may be miscalculating the correct moments of the schedule durations, 
start dates and finish dates. For this reason, probabilistic workdays are defined by 
continuous distributions, and calendar days are defined by discrete distributions. 

3.3.1.1 Converting Calendar Days to Workdays 
Scheduling software makes provisions for converting from a number of calendar days to 
workdays and vice versa. A simple approximation that can be used is: 

cd = (7 /5 )wd ± E where E = 1 wd 3-8 
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This conversion provides less than 1% error for date conversions over 10 wd as shown in 
Figure 3-4. An equally useful approach when using Excel is to compute the finish date (in 
cd) using the WORKDAYO function, which calculates the finish date (in cd) using the start 
date (in cd) and duration (in wd). The duration in cd (and the appropriate conversion 
factor from wd to cd) can be calculated by subtracting the finish date (in cd) from the start 
date (in cd). 

3.3.1.2 Expressing Durations and Dates as Random Variables 
When probabilistic schedule network tools use continuous distributions to define the 
probabilistic durations of tasks, they effectively transform the continuous distributions into 
discrete distributions binned into possible working days. This discretization of continuous 
distributions scales the standard deviation of the task's duration. The conversion factor 
shown in 3-8 provides a good approximation of this scaling for standard deviations of 
durations over 25 wd as shown in Figure 3-4. 

WD to CD Approximation Error 

Figure 3-4 Workday-to-Calendar Day Approximation Error 

3.3.2 Arrangement of Tasks in a Network 
Schedule networks contain the task durations and the arrangement of those tasks with 
respect to each other. There are four possible arrangements: serial, parallel, tree and 
feedback (BookS. A., 2011).16 

16 Book, S. A., "Schedule Risk Analysis: Why It is Important and How to Do It", 2011 ISPNSCEA Joint 
Annual Conference & Training Workshop, Albuquerque NM, 7-10 June 2010. 
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3.3.2.1 Serial A"angement 
In a serial arrangement, each task is arranged as a predecessor or a successor of another. 
Figure 3-5 shows a serial arrangement of tasks represented by boxes. The number in each 
box indicates the duration (number of wd) allocated to the individual tasks. The serial 
network's critical path passes through all of the boxes, and its duration is the sum of the 
durations of the individual activities in the serial network. The critical path, in this case, 
has a total duration equal to 32 wd. 

Figure 3-5 Serial Network (BookS. A., 2011) 

3.3.2.2 Parallel A"angement 
In a parallel arrangement, two activities are "parallel" if neither is a predecessor or a 
successor of the other. The critical path passes through those boxes whose combined 
duration is the longest possible through the network, not the sum of the durations of all of 
the individual tasks in the network.17 In Figure 3-6, the series of tasks on the top (the 
critical path) is outlined in solid lines and have a total duration of 32 wd; the series of tasks 
at the bottom is outlined in dashed lines and has a total duration of 27 wd. 

Figure 3-6 Parallel Network (BookS. A., 2011) 

3.3.2.3 Tree Structure 
A tree structure is a mixture of serial and parallel activities in a schedule network. In 
Figure 3-7, the numbers in boxes indicate number of workdays allocated to the task 
represented by each box. The critical path passes through those boxes whose combined 
duration is the longest possible through the network, not the sum of the durations of all of 
the individual tasks in the network. The critical path, consisting of boxes outlined in solid 
lines, has a total duration = 25 wd. The sequences of boxes outlined in dotted black lines 
have "slack time" of3 wd, 8 wd, 21 wd, 5 wd and 1 wd, respectively. 

17 The fundamental reason why "Earned Schedule" is an incorrect approach for estimating the expected 
duration of a program with parallel paths is that the total schedule duration is not equal to the sum of the 
individual task durations. 
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Figure 3-7 Tree-Structured Network (BookS. A., 2011) 

The critical path in this case is defined by the maximum of the path durations of each 
"branch" or path in the tree structure. This is a fundamental difference between schedule­
analysis software and cost-analysis software. The work breakdown structure is a "linear" 
list, and program cost is calculated by adding together the costs of all items on that list. 
The schedule network (unless it is entirely serial) is not linear, and therefore program 
duration cannot be calculated by adding together the durations of all activities in the 
network. 

3.3.2.4 Merging Tasks 
When parallel branches or tasks in a tree structure merge, the start date of their successor 
task is driven by the maximum of the end dates of the merging predecessor tasks. The 
mathematical problem to be solved when dealing with probabilistic schedule analysis (i.e., 
probabilistic start dates, end dates and durations) where tasks merge is the calculation of 
the PDF of the maximum, maxCfx(x)), of the PDFs of merging tasks (Covert, Using 
Method of Moments in Schedule Risk Analysis, 2011). This is the source of a 
phenomenon called "merge bias" which was first discovered in the early 1960s 
(MacCrimmon & Ryavec, 1962), (Archibald & Villoria, 1967) when a statistical approach 
was applied to schedule network analysis.18 19 

• 

3.3.2.5 Feedback Loop 
A feedback loop uses a series of feedback paths to define repeated paths such as repeated 
testing due to test failures and subsequent fixes. In Figure 3-8, the numbers in boxes 
indicate the number ofwd allocated to the task represented by each box. The critical path 
passes through those boxes whose combined duration is the longest possible through the 
network. If "feedback" is not exercised, the critical path, consisting of the boxes outlined 
in solid lines, has a total duration = 19 wd. If "feedback" is exercised once, all boxes lie 
on the critical path, which then has total duration = 44 wd. 

18 MacCrimmon, K. R, & Ryavec, C. A. (1962). An Analytical Study of the Pert Assumptions. Santa 
Monica, CA: RAND. 
19 Archibald, R. D., & Villoria, R. L. (1967). Network-Based Management Systems (PERT/CPM). New 
York: John Wiley & Sons. 
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Figure 3-8 Feedback Loop (BookS. A., 2011) 

3.3.2.6 Probabilistic Branching 
The feedback loop is difficult (and sometimes impossible) to model using commercially 
available scheduling software, and is often modeled using probabilistic branching 
techniques. These techniques insert a series of tasks in a schedule network with a set of 
enabling "switches" based on the probability that these additional or repeated tasks will 
occur. In Figure 3-9 , the probabilistic switches are indicated by circles (nodes) containing 
"p", representing the probability of the path being exercised. 

........... ... ........ 
·---~ 1 14~ 3 1+-------· I L........ '----· I 

..... '£ .. '1 I 

' 3 '----· ' I .----.. I 
·---"'1 4 IE-----------' 

L ........ 

Figure 3-9 Feedback Loop with Probabilistic Decisions 

Written in a non-recursive form, the additional, repeated tasks look like those shown in 
Figure 3-9. 

' I ,....... r--- ,........ .---· 
.......... 4 1-.- 2 I--to~ 2 1--.rn\...--liJi 1 ...... 

1 ...... 1 1 ...... 1 1 ...... 1 - T L .... .! I 

~--------------------------------~ I I r--i r--i .---i r--i .---i .---i r--i I .... 3 ,.... 1 ,...,. 3 ,.... 5 ,. .. ,. 2 r-*i 2 ,...,.. 1 r"'"" •---· , ___ , , ___ , •---· •---· , ___ , •---· 

Figure 3-10 Feedback Loop with Probabilistic Branching 

Probabilistic branching requires us to know how to add probability-weighted schedule 
duration (a random variable) to a particular path's duration (another random variable) 
(Covert, Using Method of Moments in Schedule Risk Analysis, 2011). 

3.3.3 The Critical Path 
The criticality index (C/) is the probability a particular task's path will be on the critical 
path, or the probability one path will have a longer duration than the others. Where three 
parallel paths (A, B and C) with probabilistic end dates merge, there are three potential 
critical paths, each with its own Cl, defmed as: 

CIA = P(A > max(B, C)) 
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C/8 = P(B > max(A, C)) 

Clc = P(C > max(B,A)) 

Generally, we can state the Cl of path X (Cix) to be 

Clxt = P(Xt > max(Xj;~:t)) 3-9 

Using the notation for the maximum of distributions to be X, then the probability that the 
end date of path A is greater than the maximum of paths B and C, P(A> X), which is the 
same as P(X<A), and therefore P(X-A<O). We will need to know how to subtract two 
correlated random variables (the probabilistic durations of the individual paths in the 
network) to compute the CI (Covert, Using Method of Moments in Schedule Risk 
Analysis, 2011).20 

3.4 Mathematics of Estimates 
In Sections 3.2 and 3.3, we discussed mathematical problems to be solved when using a 
variety of cost and scheduling estimating methods. The mathematical operations applied 
to random variables in which we are most interested are (Figure 3-11): addition and 
subtraction, multiplication and division, correlation between random variables, minimum 
and maximum, linear and nonlinear transformations, and discrete risks and probabilistic 
branching. These operations between PDFs result in new PDFs with moments of their 
own, which we will use in the analysis. What we have not discussed yet is the subject of 
correlation of random variables, which affects all of these operations. 

Discrete R1sks 
Probabilistic Branching 

Max and Min 
Schedule Merge Points 

Transformation 

Multiplication 
Div1s1on 

Dependence 
Correlation 

Figure 3-11 Mathematics of Random Variables 

20 Covert, R. P. (2011 ). Using Method of Moments in Schedule Risk Analysis. Bethesda, MD: IPM. 
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3.4.1 Correlation between Random Variables 
When performing operations on random variables we must have knowledge of how they 
behave with respect to each other, or covary. Correlation is a statistical measure of 
association between two random variables and is specified by a correlation coefficient 
( Pi,j ). It measures how strongly the random variables are related, or change, with each 

other. If two random variables tend to move up or down together, then they are said to be 
positively correlated. If they tend to move in opposite directions, they are said to be 
negatively correlated. The most common statistic for measuring association is the Pearson 
(linear) correlation coefficient, p. Another is the Spearman (rank) correlation coefficient, 
p , 5 which is used in statistical simulation tools such as Crystal Ball and @Risk. These two 
definitions of correlation are different, and should not be confused to mean the same thing. 
Garvey (1999) pointed out that simulations relying on rank correlation do not correctly 
model the covariance of random variables.21 

Pearson product-moment linear correlation, p(X, Y), measures the extent of linearity of a 
relationship between two random variables. It plays an explicit, well-defined role in 
establishing the sigma value (as well as the range) of the total-cost distribution as 
described by Book (1994). For example: 

• p(X, Y) = ±1 if and only if (iff) X and Yare linearly related, i.e., the least-squares 
linear relationship between X and Y allows us to predict Y precisely, given X 

p 2 (X, Y) = proportion of variation in Y that can be explained on the basis of a 
least-squares linear relationship between X and Y 

p(X, Y) = 0 iff the least-squares linear relationship between X and Y provides no 
ability to predict Y, given X 

• 

• 

The second type of correlation, called Spearman rank correlation, p5 (X, Y), measures the 
extent of monotonicity of a relationship between two random variables. Since it does not 
appear explicitly in the formulae for any of the mathematical operations for which we are 
concerned, its impact on sigma is not known. 

• p5 (X, Y) = + 1 iff the largest value of X corresponds to the largest value of Y, 

the second largest, ... , etc. 

p5 (X, Y) = -1 iff the largest value of X corresponds to the smallest value of Y, 

etc. 

p5 (X, Y) = 0 iff the rank of a particular X among all X values. In this case it 
provides no ability to predict the rank of the corresponding Y among all X values 

• 

• 

21 Garvey, P. R (1999). Do Not Use Rank Correlation in Cost Risk Analysis. 32nd DOD Cost Analysis 
Symposium. 
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Linear and nmk correl.atioDS are different for different sets of pallwise data. As an 
example, Figure 3-12 sbows the linear and nmk correlation coefficients for different plots 
of x andy variables. 22 
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Figure 3-12 Linear va. Rank Correlation 

We diSCilSs these two types of correlation because: l) Pearson product-moment correlation 
is an essential element used to find the distnbutions formed by mathematical operations on 
random variables, 2) Spearman correlation is used nearly exclusively in statistical 
simulations and does not define covariance, and 3) we need to know the difference 
between them if we are interested in comparing analytical results to 1hose produced by 
statistical simulations. 

3.4.2 Calc:ulatiDg Correlation Coeflidents 
The correlation coefficient between lists of values of random variables, such as the 
multiplicative {or additive) error terms of CERs. can be calculated quite easily. PreYious 
papers by the author {2001), (2002), (2006) bave demonstrated this application. 23 24 2

• • " 

The Pearson product-moment correlation between discrete values such as pair-wise CER 
residuals is calculated using Equation 3-10. 

3-10 

21 Covat. R. P. (2011). UaiqMethodofMomentsin ScheduleRilk:Analylil. Bethesda. MD: IPM. 
2.'1 Covert, R. P. (2001). Correlation ~fficienta in the Unmanned Spac:e Vehicle Cost Model Version 7 
~CM 7) Database. 3nl1oiDI JSP.AISCEA Jntanaticmal Ccmf'emlc:e. TyBon's Comer, VA. 

Cov«t, R. P. (2002). ComparisiBl of Spuecraft Cost Model CcmeJation Coeffic:ianb. SCEA National 
Conf'ereru:e. ScoUadale, AZ. 
zs Covert, R. P. (2006). Ccmela1iona in Cost Risk ADalyals. 2006 .Amrua1 SCBA CoDCerence. Tyaona Comer, 
VA. 
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where X and Y are CER residual pairs, 
X; and Y; are individual program residual data, and 
JLx and JLy are the means of the residuals respectively. 

If the two variables exactly follow a linear relationship (with no scatter), then the 
correlation coefficient Px,Y = + 1 or -1. Similarly, if there is no correlation between X and 

Y, then the numerator should be zero, and Px,Y = 0. 

3.4.3 Correlation, Dependence and Independence 
In the process of researching the analytic method presented in this paper, we found 
correlation can be induced between two vectors of sampled, uncorrelated variables X and Y 
when one, the other, or both are transformed through a non-linear equation (i.e., a CER) 
form such as y = a)(b, or a triad type ofCER, y = a+bXc. 

Consider the two uncorrelated random variables U and V shown in Table 3-2. We will 
introduce a linear transformation, W = 2 + 3 U, and two exponential transformations, 

X = U2 and Y = V2 • A linear transformation does not change the fundamental correlation, 
as seen in the correlation coefficients Pu,w and Pv,w (Table 3-3). Small amounts of 

correlation are induced by the exponentiation of the uncorrelated random variables U and 

Vas seen inPu,Y = -0.0088, andpv,x = 0.1925. Variables correlated with their squares 

show a decrease in their correlation from 1.0 as seen in Pu.x = 0.9811 and Pv,Y = 

0.9990. 

Table 3-2 Transformed Random Variable Samples 

u v W=2+3U x=u· Y=V' 

1 4.2 4 1 17.64 

2 2.1 6 4 4.41 

3 1.8 8 9 3.24 

4 2.2 10 16 4.84 

5 4.15 12 25 17.2225 

Table 3-3 Correlations between Transformed Random Variables 

u v w X y 

u 1.0000 0.0000 1.0000 0.9811 -0.0088 

v 0.0000 1.0000 0.0000 0.1924 0.9990 

w 1.0000 0.0000 1.0000 0.9811 -0.0088 

X 0.9811 0.1924 0.9811 1.0000 0.1828 
y -0.0088 0.9990 -0.0088 0.1828 1.0000 

36 



ANALYTIC METHOD FOR RISK ANALYSIS 

This demonstration shows that while any pair of sampled vectors of random numbers may 

themselves be uncorrelated, their exponentiated values are not (i.e., Pu,v * Pu',v' ). While 

we may believe we have two sample vectors of independent random variables, we 
probably do not. True statistical independence is a high standard of independence between 
random variables and is difficult to achieve - particularly through statistical sampling. A 
less stringent type of independence is "expectation independence", in which the variables 

remain uncorrelated (i.e., Pu,v = Puk,vk = 0) for any higher order of expectation 

operations. "Uncorrelated" is the least stringent standard, and as our demonstration shows, 
correlation can be induced through exponentiation of the random variables. 

Another way RVs can be correlated is through the structure of the mathematical problem 
(i.e., the functional relationship to each other directly through one equation or indirectly 
through more than one equation), whether that structure is a cost estimate or a schedule 
network. In a cost estimate, two CERs can be correlated through sharing a co=on cost 

driver or where one CER drives another CER, such as a cost-on-cost factor. Garvel6 

(2000) provides an analytic method of determining Px,v when X and Y are random 

variables representing the estimates from errorless CERs. In a schedule network, two finish 
dates may have uncorrelated durations of their predecessor tasks, but will still be correlated 
to each other by sharing a co=on predecessor. We are interested in calculating 
functional correlation out of necessity when using analytic methods of uncertainty 
analysis. 

26 Garvey, P. R (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineering 
Perspective. New York, NY: Marcel Dekker. 
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4 Probability Tools 
When we use a cost model to perform a cost risk analysis, we need to know the uncertainty 
of the individual cost estimates, their statistical dependencies, and how to calculate their 
sums. We can employ statistical modeling techniques such as statistical simulation or 
statistical analysis to find these uncertainties and their properties. Although the goal is the 
same, these techniques differ, which we will discuss in more detail. 

4.1 Statistical Simulation 
Statistical simulation is a numerical experiment designed to provide statistical information 
about the properties of a model driven by random variables. It is often used in cost and 
schedule risk analysis to model the complex interaction of the transformations and 
summations involved with correlated random variables. 

The statistical simulation process follows these steps: 

1) Define numerical experiment (spreadsheet, schedule network, etc.) 
2) Define PDFs for each random variable 
3) Define correlation coefficients for random variables 
4) Determine the number of experimental trials 
5) For each trial: 

a. Draw correlated random variable(s) from defined PDF(s) 
1. Sample uniform distributions, U (1,0) 

n. Transform each U(l,O) to the desired PDF based on an inverse 
transformation of the cumulative density function (CDF}, 
denoted as CDF"1

• 

m. Correlate the set ofPDFs 
b. Compute the experimental result(s) 
c. Save the experimental result(s) 

6) At the end of the simulation, determine the statistics from the experimental 
results 

4.1.1 Sampling Techniques 
Statistical simulation tools use one or more of the following sampling techniques: 

• Bootstrap sampling: Re-sampling with replacement from sample data numerous 
times in order to generate an empirical distribution of a statistic 
Monte Carlo sampling: New sample points are generated without taking into 
account the previously generated sample points 
Latin Hypercube sampling: Each variable is divided into m equally probable 
divisions and sampling is done without replacement for each set of m trials 
Orthogonal sampling: This adds the requirement that the entire sample space 
must be sampled evenly 

• 

• 

• 

The most commonly-used statistical simulations use Monte Carlo or Latin Hypercube 
sampling of correlated random variables. The reasonableness of the simulation results 
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depends on the reasonableness of the user inputs, correct modeling of PDFs for all random 
variables, and the correct specification of the correlation between these PDFs (even if it is 
assumed to be 0). The accuracy of the simulation is highly dependent on the simulation's 
ability to draw uniformly-distributed random variables U(1,0) in step 5.a.i and to correlate 
them correctly in step 5 .a. iii. 

4.1.1.1 Generating PDFs from Random Number Generators 
A random number generator, such as the Excel RAND() statement, produces a uniformly­
distributed pseudo-random number between 0 and 1 (0 S U(0,1), ~ 1). We know that the 
range of the CDF, Fx(x), for any random number is the same (i.e., 0 ~ Fx(x) ~ 1). Based 
on that knowledge, the uniform draw can be transformed by the inverse of the CDF, the 
CDF-I, to get the desired probability distribution, fx(x) as shown in Figure 4-1. The Excel 
statements are fairly simple to use for this purpose, as we will demonstrate. 

We can generate different PDFs using Excel to demonstrate how statistical simulations 
generate differently-distributed random numbers. First, we will generate a pseudo-random 
number based on a uniform distribution U(0,1), then transform it into the desired PDF 
using the inverse CDF (i.e., CDF-1

) using simple Excel functions. 
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CDF(f1=l, cr=0.3) 
......-

/ 
/ 

/ 
I 

I 
I 

/ 
/ 

./" 
0.5 1 .5 l.S 0.2 0.4 0.6 0.8 

P(•) 

Note: In the graph on the left, the cumulative probability, P(x), is the vertical 
axis, and in the graph on the right, P(x) is the horizontal axis. 

Figure 4-1 Simulating a Lognormal Distribution 

In our example, 1000 uniformly-distributed numbers over the interval [0,1] were generated 
using the Excel RAND() function. Figure 4-2 shows the histogram of the 1000 uniform 
draws, which is a representation of U (0, 1). 
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Histogram of Transformed Random Numbers 
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Figure 4-2 Simulated Uniform Distribution 

The moments of the pseudo-random uniform distribution formed by the 1000 samples, the 
vector Y, can be easily calculated using the following Excel statistical functions: 

• p.=AVERAGE(Y) 

a -STDEV(Y} 

-fl=SKEW(Y) 
K-KURT(Y) 

• 
• 
• 

Note the kurtosis calculated by the Excel function is excess kurtosis. The moments of the 
uniform samples and their exact values based on the defined uniform distribution are 
shown in Table 4-1. 

Table 4-1 Moments of the Simulated Uniform Distribution 

Moment Simulated Exact 

p. 0.488 0.500 

u 0.292 0.083 

-8 0.053 0.000 

K -1.222 -1.200 

Based on the moment statistics of the uniform distribution, it is slightly biased low (based 
on the mean), somewhat unevenly distributed (based on the standard deviation), right­
skewed (based on the positive skewness), and platykurtic (based on the excess kurtosis). 

A normal distribution N(1000,300) can be generated by transforming U(0,1) using the 
inverse CDF of a normal distribution. The transform function (i.e., the inverse CDF of a 
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normal distribution) used in this example is NORM/NV (x, 11. a)/7 where x is the draw 
from U(O,l), 11 = 1000, and a= 300. Figure 4-3 shows the histogram of the normal PDF 
formed by this procedure, and Table 4-2 shows the moments of the simulated and exact 
values expected. 

Histogram of Transformed Random Numbers 
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Figure 4-3 Simulated Normal Distribution 

Table 4-2 Moments of the Simulated Normal Distribution 

Moment Simulated Exact 

11 987.7155 1000 

(] 303.4236 300 

{) 0.001349 0 

" -0.12993 0 

Likewise, a lognormal distribution L(1000,300) can be generated by transforming U(O,l) 

using the inverse CDF of a lognormal distribution. The transform function used in this 

example is LOGINV(x,P,Q).28 Before we can use the inverse lognormal transformation, 

we must find P and Q, which are the log-transformed mean and sigma of the lognormal 
4 

distribution. The log-transformed mean, P = .!.tn ( : ) 
2 2 = 6.864 7, and the log-

Jl +u 

transformed sigma, Q = ln ( 1 + ;:) = 0.2936. 

27 NORMINV() is an Excel2007 function, and NORM.INV() is an Excel2010 function. 
28 LOGINV() is an Excel2007 function and LOGNORM.INV() is an Excel2010 function. 
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Figure 4-4 shows the histogram of the lognormal PDF formed by this procedure, and Table 
4-3 provides the moments of the simulated and exact values expected. 

Histogram of Transformed Random Numbers 
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Figure 4-4 Simulated Lognormal Distribution 

Table 4-3 Moments of the Simulated Lognormal Distribution 

Moment Simulated Exact 

J.L 988.989 1000 

(j 299.102 300 
{} 0.855934 0.927 

" 1.094075 1.566 

4.1.2 Correlating Random Numbers 
Much literature in the statistics community exists regarding generating correlated random 
numbers for use in statistical simulation, but few families of joint PDFs specified in terms 
of their Pearson product-moment correlation exist. Among ones that do exist are 
correlated joint normal, joint normal-lognormal and joint lognormal distributions discussed 
in Garvey (2000).29 Other families of joint distributions are formed through the use of 
copulas - a transformation technique used to create joint probability distribution. 

4.1.3 Timing of Discovery of Correlation Methods 
The timing of the discovery of methods of generating correlated random numbers was an 
influence on which commercially-available risk analysis tools use Pearson (product 
moment) correlation vs. Spearman (rank) correlation. Commercial tools developed in the 
early-1980s (i.e., @Risk and Crystal Ball) use a method of generating rank correlated 

29 Garvey, P. R (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineering 
Perspective. New York, NY: Marcel Dekker. 
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random numbers based on a published paper (Iman & Conover, 1982)30
• In the late-1990s, 

a new algorithm (Lurie & Goldberg, 1998)31 32 
• was published that provided a method of 

generating Pearson-correlated random numbers. Many of the commercially available 
statistical simulation tools were developed before the Lurie-Goldberg paper, so they rely 

on Spearman rank correlation. However, these are limitations of using rank correlation 
when performing cost risk analysis as noted in Garvey's pape~3 (1999). Only since 1998 

have tools such as Risk+ for Microsoft Project been programmed with the method 
presented by Lurie and Goldberg. 

4.1.4 Benefits and Drawbacks of Statistical Simulation Techniques 
Statistical simulation has its benefits and drawbacks. Among its benefits are 1) its ability 
to provide the statistics of a simulated PDF formed by complex mathematical modeling of 
random variables and 2) its relative ease of use. Quite often, statistical simulation obtains 
very close results to and is easier to use than statistical analysis. However, statistical 
simulation does have its drawbacks - particularly due to its 1) inability to sample 
uniformly, 2) (in)ability to correlate two distributions exactly using Pearson product­
moment correlation coefficients, 3) difficulty of correlating large numbers of random 
variables, and 4) inability to provide reasonable results when the number of simulation 
trials is too small to account for single or combinations of low-probability events. The last 
error is further exaggerated when multiplying highly-skewed random variables (e.g., the 

product of two lognormal PDFs) and when performing discrete risk analysis. In these 
instances, high-impact, low-probability-of-occurrence events are difficult for simulations 

to adequately sample in order to produce reasonable facsimiles of the exact results. 

One way to check the reasonableness of the results of a statistical simulation is to: 1) 
"dump" a list of the results of the correlated random variables being modeled, 2) calculate 

the resulting statistics (e.g., Pearson correlation coefficient between the variables}, and 3) 
fmd the fit statistics of the distributions being modeled. By performing a dump of the 
simulated variables, an analyst will be able to ensure the simulation has created a 
reasonable facsimile of the desired input distributions and output distributions (or the 
calculation of the Pearson correlation between the correlated random variables) and that 
they are close to that specified. Any statistical simulation tool that does not provide the 
ability to examine a dump of the trials should be avoided. 

30 
Iman, R.L. and Conover, W.J., "A Distribution-free Approach to Inducing Rank Correlation among Input 

Variables," Communications in Statistics- Simulation, Computation, Vol. 11, No. 3(1982), pages 311-334. 
31 Lurie, P.M.; Goldberg, M.S., "A Method for Simulating Correlated Random Variables from Partially 
Specified Distributions," Management Science, Vol. 44, No.2, February 1998, pages 203-218. 
32 Related briefing: "Simulating Correlated Random Variables," 32nd DOD Cost Analysis Symposium, 2-5 
February 1999. 
33 Garvey, P.R., "Do Not Use Rank Correlation in Cost Risk Analysis," 32nd DOD Cost Analysis 
Symposium, 2-5 February 1999. 
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4.2 Statistical Analysis 
Unlike simulation, statistical analysis relies on the exact calculation of moments of the 
PDF. We will use moments as the basis of the analytical technique proposed in this report. 

4.2.1 Moments 
Moments are important measures of the properties of random variables, and they come in 
many varieties. The three we have discussed earlier and with which we are most concerned 
are raw moments, central moments and standardized moments. 

4.2.2 Method of Moments 
Method of Moments (MOM) is a relatively easy-to-use, analytical technique used to 
calculate the moments of probability distributions. The MOM technique relies on exact 
statistical calculations of moments to derive the statistics of probability distributions such 
as WBS element cost estimates or schedule durations. With the widespread use of 
statistical simulation tools by cost and schedule analysts, MOM has become a forgotten 
"art". One of the surviving MOM techniques is the Formal Risk Assessment of System 
Cost Estimates (FRISK) method (Young, 1992). 34 

4.2.2.1 FRISK 
FRISK is a MOM approach used to calculate the 11. and u2 of the PDF of total cost formed 
by the statistical summation ofPDFs of subordinate cost elements. 

The steps used in the FRISK method are: 

1. Define numerical experiment; in this case, the summation structure of a WBS 
2. Define triangular PDFs, T(L;, M;, H;) for each cost, X;, or random variable to be 

statistically summed, by specifying the low (L;), most likely (M;) and high 
(H;) values 

3. Calculate the IJ.i and u/ for each T(L;, M;, H;) using Equations 4-1 and 4-2 

~=~+~+~~ 
u/ = (L/ + M/ + H/ - L;M;- L;H; - M;H;)/18 

~ 
4-2 

4. Sum the n means to calculate the mean of the sum of the PDFs using Equation 
4-3 

ll.rot = ~r=1ll.; 4-3 

5. Define correlation coefficients, Pi,j• for each pair ofPDFs 

6. Calculate the total variance of the sum of the PDFs using Equation 4-4 
2 _ ~n 2 + ~ ~n-1 

Urot - L.i=1 U; L.i>j L.j=l Pi,jU;Uj 

7. Assume the PDF of the total cost is a lognormal distribution, L(P, Q) 

4-4 

34 Young, P. H. (1992). FRISK- Formal Risk Assessment of System Cost. Aerospace Design Conference. 
Irvine, CA: AIAA. 
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8. Calculate the lognormal parameters P and Q using Equations 4-5 and 4-6. 

P = !.zn (___£____) 
2 p.Z+rrZ 

4-5 

Q = ln(1 + ::) 
4-6 

9. Determine the percentile statistics L(P, Q)z using the inverse CDF tables or the 
LOG/NV function in Excel. 

The outputs from an example FRISK calculation are shown in Figure 4-5. 

Percentile ~ 

10% 517.99

20% 542.63

30% 561.12

40% sn.42

50% 593.08

60% 609.17

70% 626.86

80% 648.23

90% 679.06

Statistics :\lil..u.e 

Mean 596.40

Median 593.08

Mode 586.50

Standard Deviation 63.18
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Figure 4-5 Example FRISK Output 

FRISK is even more efficient when programmed as an Excel spreadsheet. The means and 
standard deviations of triangular distribution inputs in step 3 can be calculated using 
AVERAGE(L,M,H) and STDEVP(L,M,H)/2, respectively. When the series of means and 
variances to be statistically summed appears in contiguous cells (rows or columns), the 
following Excel functions can be used: 

1. SUM(range), where range is the series of means 
2. SQRT(MMULT(TRANSPOSE{U },MMULT(R, a))), where a is the range of the 

vector of ai in columnar form and R is the nxn correlation matrix. This function 
must be entered by pressing <CTRL> <SHIFT> <ENTER>. An example of the 
correlation matrix is shown in Figure 4-6. 
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1 0.2 0.2 0.2 0.2 0.2 0.2 
0.2 1 0.2 0.2 0.2 0.2 0.2 
0.2 0.2 1 0.2 0.2 0.2 0.2 
0.2 0.2 0.2 1 0.2 0.2 0.2 
0.2 0.2 0.2 0.2 1 0.2 0.2 
0.2 0.2 0.2 0.2 0.2 1 0.2 
0.2 0.2 0.2 0.2 0.2 0.2 1 

Figure 4-6 Example Correlation Matrix 

When all J.l.i and ui used in the statistical summation are not in contiguous cells, we can re­
create a set of contiguous cells elsewhere in the spreadsheet (or through an Excel macro) to 

allow the use of the Excel functions (I and 2) above. 

Let us perform an example FRISK rollup calculation using a set of errorless estimating 
relationships from Book (1994).35 Assume we have modeled the cost estimates of the 
WBS elements with triangular distributions as shown in Table 4-4. The parameters of the 
triangular distributions are the outputs of a CER using Low, Most Likely and High cost 
drivers. 

Table 4-4 Example FRISK Rollup Inputs (Costs in SK) 

WBS Element, i L· M· H· 
Antenna 191 380 1151 
Electronics 96 192 582 
Platform 33 76 143 
Facilities 9 18 27 
Power Distribution 77 154 465 
Computers 30 58 86 
Environmental Control 11 22 66 
Communications 58 120 182 
Software 120 230 691 
TOTAL 625 1250 3393 

Note the nai've sum of the most likely costs, Mh is $1250K. 

The first WBS element, the Antenna WBS element CER, is defmed by a triangular 
distribution, T(191,380,1151). The mean of a triangular distribution from Equation 4-1 is 

J.l.1 = (L1 + M1 + H1)/3 = 
19

1+
380

+
1151 

= $574K 
3 

4-7 

and the standard deviation of the Antenna WBS cost using Equation 4-2 is 

35 Book, S. A. (1994). Do Not Sum 'Most Likely' Cost Estimates. 1994 NASA Cost Estimating Symposium. 
Houston, TIC 
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4-8 

Repeating this procedure for all of the WBS elements in Table 4-4 allows us to calculate 
the moments (~f(x); and O"f(x)) for all WBS elements as shown in Table 4-5. The mean of 

the total is calculated using Equation 4-3. To calculate the total cost sigma, we need to 
specifY a correlation matrix. For this example, we use the matrix shown in Figure 4-6. To 
calculate the standard deviation of the total, we use the matrix form of Equation 4-4 to 
obtain the results shown in Table 4-5. 

The mean cost is $1756K, which is significantly larger than the naive sum of the most 
likely costs, which is $1250K (Book, 1994).36 

Table 4-5 Example FRISK Rollup (costs in $K) 

WBS Element, i Estimate, f(x), llf(•J• a,<•J• 
Antenna T(191,380,1151) 574 207.62 
Electronics T(96,192,582) 290 105.08 
Platform T(33,76,143) 84 22.63 
Facilities T(9,18,27) 18 3.67 
Power Distribution T(77,154,465) 232 83.86 
Computers T(30,58,86) 58 11.43 
Environmental Control T(11,22,66) 33 11.88 
Communications T(58,120,182) 120 25.31 
Software T(120,230,691) 347 123.68 

TOTAL (Not necessarily the sum) 1756 364.93 

We quantifY the percentile value of the sum of the most likely costs by forming a CDF. If 
we assume the total cost of our estimate is lognormally distributed, we can compute the 
lognormal distribution parameters (P = 7.4497 and Q = 0.2056) using Equations 4-5 and 
4-6. 

A quick calculation using the lognormal distribution functions in Excel tells us the 
percentile of the naive sum of most likely costs. The equation and results are: 

LOGNORMDIST (1250, P, Q, TRUE) =0.060553=6.0553% 

This is why we model estimates probabilistically. It would be very difficult to defend an 
estinlate at the 6th percentile and unwise to want it in the first place! 

36 Ibid. 
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Using the inverse of the lognormal distribution, we find the cost value at any probability 
level on the CDF. This is a very simple way of quickly forming CDFs such as the one 
shown in Figure 4-7. 
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Figure 4-7 FRISK Example CDF 

4.2.2.2 Enhancements to FRISK 
FRISK is an elegant way to model the simple statistical summation of a cost estimate. 
However, to be fully effective as a tool to exactly and efficiently analyze a cost estimate, 
we need to be able to accommodate 1) statistical summation of non-adjacent cells; 2) 
inputs that are non-triangularly distributed, such as normal or lognormal distributions; 3) 
modeling CER cost-driver uncertainties, 4) transformation of cost-driver PDFs by a CE~ 
5) modeling the additive or multiplicative error of the CER, and 6) multi-level summations 
as in the case of a complex WBS. Fortunately, solutions to these issues are available from 
the literature (Covert R. P., 2006).37 

4.3 MOM Operations and Analytic Method Description 
This section describes the mathematical treatment of these operations on random variables 
and provides methods of calculating the moments. 

4.3.1 Addition and Subtraction of Random Variables 
The simplest mathematical operation with which we will be concerned is the statistical 
summation and subtraction of random variables. 

As we discussed in Section 3.2.1 the WBS defines the summation of individual WBS 
elements to higher hierarchical levels. Similarly, in Section 3.3.2.1, the serial arrangement 
of schedule tasks allows us to statistically sum their durations. Both mathematical 

37 Covert, R P. (2006). Correlations in Cost Risk Analysis. 2006 Annual SCEA Conference. Tysons Comer, 
VA. 
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problems are treated with the same statistical summation technique. Let Xi be the cost (or 
duration) of an individual WBS element (or serially arranged set of schedule tasks), and Xr 
be the sum of individual WBS elements, i. Then the mean of WBS element i is the 
expected value E[·] of the random variable, Xi. 

lli = E[Xi] 4-9 

So the mean of the sum of individual WBS elements is the total mean, llr 

4-10 

More simply put, the mean of the sum is the sum of the means. 

The total variance, ur2 , of the sum of the WBS elements is the square of the standard 
deviation of the total, Ur. 

4-11 

In expectation parlance, Equations 4-12 and 4-13 are the expected values of the sum and 
difference of two random variables. 38 

E[X + Y] = E[X] + E[Y] 
E[X- Y] = E[X] - E[Y] 

4-12 
4-13 

Equations 4-14 and 4-15 are the variances of the sum and difference of two random 
variables. Less intuitive is the variance resulting from the difference of two random 
variables. Equation 4-15 is similar to Equation 4-14 except the covariance term 
2Cov(X, Y) is subtracted from the sum of the variances of X andY. 

Var[X + Y] = Var[X] + Var[Y] + 2Cov(X, Y) 
Var[X- Y] = Var[X] + Var[Y]- 2Cov(X, Y) 

4-14 
4-15 

The shape of the distribution formed by the sum and difference of lognormally distributed 
random variables is discussed in the applied statistics literature (Lo, 2012).39 It is agreed 
that the shape of the sum or difference of two correlated lognormal variables are neither 
normal nor lognormal, but an approximate shape can be derived from the parameters of the 
distributions. 

38 When calculating the criticality index (CI) of a schedule task, we must evaluate the integral of the 
difference of random variables. 
39 Lo, C. F., The Sum and Difference of Two Lognormal Random Variables (May 22, 2012). Available at 
SSRN: http://ssm.com/abstract=2064829 or http://dx.doi.org/10.2139/ssrn.2064829 

49 



ANALYTIC METHOD FOR RISK ANALYSIS 

The parameters of interest when subtracting one lognormally distributed PDF from another 
are: the correlation between the two PDFs, and their respective means and standard 
deviations (or variances). These parameters not only determine the mean and variance of 
the PDF formed by their difference but also the skewness and kurtosis of the same. To 
estimate the shape of the distribution formed by subtracting one RV from another, we use 
the results of a numerical experiment (i.e., a 100,000-trial statistical simulation). 

The numerical experiment uses four PDFs defined as lognormal distributions: A = L(1,1), 
B = L(1,0.5), C = L(2,1), and D = L(2,0.5). Table 4-6 shows the difference between 
uncorrelated pairs (i.e., p = 0 ) of A, B, C, and D. We show the mean, standard deviation, 
skewness, kurtosis and shape of the PDF -defined difference in each of the twelve cases. 

Table 4-6 Difference of Two Uncorrelated PDFs 

Case Difference p. tT {} X Fit Shape 

1 A-B 0.000 1.1159 2.613 22.771 Logistic 

2 A-C -1.000 1.4152 0.772 11.785 Student's t 
3 A-D -1.000 1.1151 2.652 22.033 Max Extreme 

4 B-A 0.000 1.1159 -2.613 22.771 Logistic 

5 B-C -1.000 1.1177 -1.022 6.381 Logistic 
6 B-D -1.000 0.7070 0.299 4.471 Logistic 
7 C-A 1.000 1.4152 -0.772 11.785 Student's t 

8 C-B 1.000 1.1177 1.022 6.381 Lognormal 
9 C-D 0.000 1.1198 1.099 6.263 Lognormal 
10 D-A 1.000 1.1151 -2.652 22.033 Weibull 

11 D-B 1.000 0.7070 -0.299 4.471 Logistic 

12 D-C 0.000 1.1198 -1.099 6.263 Weibull 

A lognormal PDF is defined by its mean and standard deviation, is right skewed, and it is 
supported over the range of real values [0, oo ]. The mean and standard deviation are 
always positive real numbers, so a lognormal PDF must have a positive mean and positive 
skewness. Only case 8 in Table 4-6 can be considered an approximation to a true 
lognormal distribution based on its mean and skewness. Case 5 produces a mirror image 
of case 8, so it is considered to be a "negative lognormal distribution". 

We can use the knowledge that if the difference of two RVs (i.e., X-Y) produces a negative 
lognormal distribution, then all of the area of the PDF ofX-Y is in the negative axis. Since 
this is true, Y-X is a lognormal distribution, and all of its area lies on the positive real axis. 

We have considered the uncorrelated case thus far, but when X and Y are highly 
correlated, the difference of two RVs (i.e., X-Y) produces a distribution that is less skewed 
and has the properties of a normal distribution. 

We use the following rules to determine the approximate shape of the resulting 
distribution: 
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1. If X has a larger variance than Y, then we expect X to dominate the variance of the 

distribution X - Y. The resulting distribution will have positive skewness. 

a. If ax > Uy, then K>O. 

b. Conversely, if ax < Uy, then K <0. 
2. If the mean of X is larger than the mean of Y, the mean of X- Y will be positive. 

a. If Jlx ;::: Jly and ax > Uy, then X - Y will be approximately lognormally 
distributed. 

b. If Jlx ::;; Jly and ax < Uy, then X- Y can be approximated by a negative­
lognormal distribution. 

3. If Jlx::;; Jly and ax> Uy, then X- Y can be approximated by a left-shifted 
lognormal distribution. 

4. If Px,Y is large (flx,y-0.7) or greater, then the distribution formed can be 

approximated by a normal distribution. 

4.3.2 Covariance of Random Variables 
When we are calculating the means and variances of CERs that rely on cost drivers that are 
random variables, we are interested in the functional transformation of the PDFs by the 
CER and the inclusion of the CER's error. To accurately calculate the moments of the 

CERs in the cost model, we must know how the CER and its error are correlated (or how 
they "covary") with each other in order to properly perform statistical summation. 

Covariance is defined in Equation 4-16. Note that it is the expected value of the product of 

the differences of the random variables and their respective means. It is also defined in 
Equation 4-17 as the expected value of the product of the random variables minus the 
product of their means. 

Cov(X, Y) = aXY = E[(X- Jlx)(Y- Jly )] 

Cov(X, Y) = E[XY] - JlxJly, and 

Cov(X,X) = Var(X) = E[X2 ]- E[X] 2 

4-16 
4-17 

The correlation coefficient Px,Y in Equation 4-18 is the product-moment correlation 

coefficient, which relates Cov(X, Y) to the product of the standard deviations of X andY. 
This is the same Pearson product-moment correlation coefficient used in FRISK's 

statistical summation. 

E[XY] = Px,Yaxay + JlxJly 4-18 

Two important theorems to remember are: 

IfX,Y are independent, then Cov(X, Y) = 0, 4-19 
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and the symmetry of covariance of Equation 4-20 requires us to only define the upper or 

lower off-diagonal elements of the correlation matrix (Figure 4-6), since Pi,j = Pi,i· 

Cov(X, Y) = Cov(Y,X) 4-20 

The bilinearity property of covariance means the following is true: 

Cov(aX + b, cY + d) = acCov(X, Y) 
Cov(X1 + X2, Y) = Cov(Xv Y) + Cov(X2, Y) and 
Cov(X, Y1 + Y2) = Cov(X, Y1) + Cov(X, Y2) 

4-21 
4-22 

4.3.3 Transformation of Random Variables 
When using linear CERs (and factors) such as y =a+ bX, !lx is shifted by the additive 
term (a) and scaled by the multiplicative term (b) (Equation 4-23), and the variance is 
scaled by the square of the multiplicative term (b) (Equation 4-24). 

E(a + bX) = a+ bE(X) = a+ bJlx 
Var(a + bX) = (b 2 )Var(X) = b2ax2 

4-23 
4-24 

When linear transformations are applied to pairs of correlated random variables, the 
covariance is unaffected by the additive terms and is scaled by the multiplicative terms 
(Equation 4-25). 

Cov(a + bX, c + dY) = (bd)Cov(X, Y) 4-25 

We can calculate the correlation coefficient between two random variables, such as two 
CERs that share a common cost driver, using Equation 4-26. 

Corr(X Y) = p = E[XYl-flxflY and 
' X,Y uxuy ' 
Cov(X,Y) 

Px,Y = uxuy 

4-26 

To do this with a pair of CERs, we will need to determine the mean and sigma values for 
both CERs and the term E[XY]. The E[XY] term is the expected value of the product of X 
andY, which is why we call Pearson correlations "product-moment" correlations. 

When nonlinear transformations are performed on random variables, as in the case where a 
CER, Y, is expressed as a function of a random variable, X: 

Y = f(}() = (a+ bXc) ; where 
a, b, and care coefficients of the CER with (Var(·) = 0), 

4-27 

The terms Jly,Uy are computed as follows: 
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JLy = ILa+bxc = E[a + bXc] = a+ bE[Xc] 

ay = .Jvar(Y) = .Jvar(a + bXc) 

4-28 
4-29 

Since the variance of a constant is 0, Var(a;) = 0, 

Uy = .Jb2Var(Xc) = b.JVar(Xc), 4-30 

If Z = xc and Var(Z) = E[Z2]- E[Z]Z then 

Var(Xc) = E[(Xc) 2]- (E[Xc])z = E[X2c]- (E[Xc])z 4-31 

The expectation E[Xk] is dependent on the shape of the probability distribution of X. In 

this case, if X is a triangular distribution, X = T(L, M, H), then 

Substituting k with c, we obtain: 

2 [ 1 {Mc+z_Lc+z E[Xc]- -- -- :::...____::...._ 
- (H-L) (M-L) c+2 

and 

2b {Mc+Z_Lc+Z Mc+l_Lc+l} 2b { nc+l_Mc+l 

/Ly =a+ (H-L)(M-L) c+2 - L c+l + (H-L)(H-M) H::....-c-+=1-
nc+Z_Mc+Z} 

c+Z 

So p.yb-a = E[Xc] and Var(Xc) can be rewritten as: 

var(xc) = E[x2c]- (llrb-ar 

2 [ 1 {M2c+Z_L2c+2 Var(X2c) - -- -- ----
- (H-L) (M-L) 2c+2 

M2c+1_Lzc+1} 1 { n2c+1_Mzc+1 
L +-- H----

zc+1 (H-M) 2c+1 

n2c+z_Mzc+2}] _ (Jlt-a)Z 
2c+2 b 

Using Equation 4-30, 

Uy = 
.----~~~-~~~~---~~~~~~~~----. 

b _2- [-1- {MZC+2-L2C+2 - L MZC+l-L2C+1} + _1_ {H ::H_zc....,+l_-..::M:...z_c+_l nZC+2-M2C+2}] - (llt-a)2 
(H-L) (M-L) 2c+2 2c+l (H-M) 2c+1 2c+2 b 

This is a rather lengthy equation, so VBA expressions are provided in Appendix D. 

From this point forward, where a VBA function exists, such as for E[Xkj, we will leave 

any expansions of equations in terms of E[Xkj. 
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We often rely on the calculation of the higher-order moments to determine probability 
distributions used in estimating relationships. The It' moment of the RV X is 

k { l:xxkPx(x) ; if X is discrete 
EX = oo 

[ ] f_ooxkfx(x)dx ;ifXiscontinuous 

4-32 

In summary, we can use the equations for expected value, variance, and covariance to find 
the moments of a distribution and the covariance (and correlation between random 
variables). Another simpler way of dealing with complex transformations of independent 
random variables is through the use of Mellin transforms (Section 6). 

4.3.4 Multiplication and Division of Random Variables 
Often, we are interested in the moments of the PDF of the product or transformation of 
multiple random variables in an equation such as a CER. Three methods of fmding the 
moments in this situation are the use of: 1) expectation operations, 2) Mellin transforms 
and 3) propagation of errors. The first method is an extension of the expectation operations 
shown in Section 4.3.2, and the last two methods are discussed in greater detail in Sections 
6 and 7. Section 5 provides a general formula for the variance of the product of two or 
more random variables. 

54 



Var[XY] = E[(XY)2]- E2 [XY] 

E[(XY)2 ] = Cov(X2 , Y2 ) + E[X2 ]E[Y2 ] 

Var[XY] = Cov(X2 , Y2 ) + E[X2 ]E[Y2 ]- (Cov(X, Y) + E[X]E[Y])2 

Var[XY] = Cov(X2 , Y2 ) + E[X2 ]E[Y2 ]- (Cov 2 (X, Y) + 2E[X]E[Y]Cov(X, Y) + 
E2 [X]E 2 [Y]) 

Var[XY] = Cov(X2 , Y2 ) + E[X2 ]E[Y2 ]- Cov 2 (X, Y)- 2E[X]E[Y]Cov(X, Y)­

E2 [X]E 2 [Y] 
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5 Product of Dependent Random Variables 
The moments of the PDF formed by the product of two dependent random variables are 
used frequently in probabilistic cost analysis. Products of random variables are found in 
probabilistic cost estimates using CERs that have correlated error terms, or when using 
cost-dependent CERs. Products of multiple random variables occur when calculating the 
correlation coefficient between different WBS elements. We first provide equations for 
the moments of the product of two jointly normal random variables, then follow with the 
case in which we have two jointly lognormal random variables. Using the methods used to 

derive these equations, we provide equations for the moments of the product of multiple 
random variables. 

5.1 Product of Two Normal Random Variables 
In the first case, we derive the moments of the product of two random variables that are 
defined using normal PDFs. If X and Y are jointly dependent random variables defined by: 

where Z, E , 1 and E2 are independent, standard normal PDFs (i.e., N(O,l)), then their 
covariances are zero. This means Cov(Z, E ) 1 = 0, Cov(Z, E ) 2 = 0, and Cov(Ev E ) 2 = 0. 
We can further state the means of X andY are E[X] = Jl.x, E[Y] = Jl.y. The variances of X 

andY are Var(X) = ax2
, Var(Y) = ay2

• Finally, we defme c = Cov(X, Y) = r 2axay. 

r 2 = Px,Y by definition. 

The expected value of the product XY is: 

E[XY] = Cov(X, Y) + E[X]E[Y] = Px,Yaxay + Jl.xJl.y using Equation 4-18. 

The variance of the product is found through some manipulation: 
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Var[XY] = Cov(X2, Y2
) + (Jlx2 + ax2)(Jly2 + ay2)- Cov2(X, Y)- 21lx/lyT2axay­

llx2/ly2 

Var[XY] = Cov(X2, y2) + llx2/ly2+1lx2ay2 + ax2/ly2 + ax2ay 2- c2- 211-x/lyC­

llx2/ly2 

Var[XY] = Cov(X2, Y2)+/lx2ay2 + ax2/ly2 + 
ax2ay 

2 
- c2 

- 2/lx/lyC 

5-1 

This is the same result obtained by (Goodman, L.A., 1960) and (Bohrnstedt & Goldberger, 
1969).40,41 

2To solve the Cov(X , Y2) term, we must expand the squares of X andY, use the definition 
of covariance provided in Equation 4-17, and insert that result into Equation 5-l. This 
derivation is provided in Appendix C - Derivations, Section 16.3.7. The resulting 

covariance term is 

This allows us to express the variance of the product of two normally distributed PDFs as: 

Var[XY] = 4/lx/lyC + 2c
2 +/lx2ay2 + ax2/ly2 + ax2ay 

2
- (c)

2
- 2/lx/lyC 

This simplifies to Equation 5-2. 

Var[XY] = 211-x/lyC + c2+1lx2ay2 + ax2/ly2 + ax2ay2 5-2 

When X andY are independent, c = 0, Equation 5-2 reduces to Equation 5-3. 

5-3 

When Y =X, c = ax2
, Equation 5-2 becomes Equation 5-4. 

5-4 

5.2 Product of Two Lognormal PDFs 
In the case where we are interested in the product of two lognormal PDFs, we cannot rely 
on the symmetric properties of the normal distribution to cancel terms and also cannot rely 

40 Goodman, L. A. (1960, Dec.). On the Exact Variance of Products. Journal of the American Statistical 
Association, 55(292), 708-713. 
41 Bohrnstedt, G. W., & Goldberger, A. S. (1969, Dec.). On the Exact Covariance of Products of Random 
Variables. Journal of the American Statistical Association, 64(328), 1439-1442. 
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on the standard normal distributions zero-mean properties to manipulate the equations. We 
must rely on the fact that the lognormal distribution is related to the exponent of an 

underlying normal distribution. 

If X1 and X2 are jointly distributed normal random variables withpx ,x , then Y1 2 1 and Y2 are 

jointly distributed lognormal random variables withpy"y , and Y1 =ex', and Y2 = ex2. If 2
X1 and X2 are defmed by N(Pv Q ), 1 and N(P , 2 Q2), then Y1 and Y2 are defined by 

L(p.y , 
1

uy,), and L(p.y , 
2

Uy ), respectively.42 The mean and variance of Y2 1 and Y2 are: 

The productZ = Y1Y2 = eX1ex2 = eX1+X2, so the distribution ofln(Z) has mean: 

Therefore, the mean and variance of Z = Y1 Y2 is: 

Jlz = e([P1 +P2l+i[Qf+2Px1.x,Q1Q2+Ql]), and 

u] = e(z[Pl+P2l+[Qf+zpx1.x2Q1Q2+Ql]) (e[Qf+2Px1.x2Q1Q2+Qll-t) 

5-5 

5-6 

Equation 5-5 is an exact solution of the variance of the product of two lognormal 
distributions. Results of the exact standard deviation using the square-root of the variance 
calculation using Equation 5-5 are compared to a 100,000-trial statistical simulation in 
Table 5-l. The simulated mean of the product is low compared to the exact result due to 

the inability to correlate the two RVs to exactly p = 0.5. The simulated standard deviation 

is slightly lower than the exact result due to uneven sampling of the lognormal PDFs. 

Table 5-1 Analytic and Simulated Results of the Product of Two Lognormal PDFs 

Analytic Simulated 

fL u PY1,Y2 fL u PYt,Yz 

yl 1.000 1.000 0.500 0.999 0.999 0.432 

Yz 1.000 1.000 0.999 0.999 

l':t Y, 1.500 4.243 1.430 3.749 

42 Lognormal Distributions: Theory and Applications 
Edwin L. Crow, Kunio Shimizu, 1988. Marcel Dekker, NY, Statistics, textbooks and monographs Series, 

vol. 88, p14-17. 
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When Y1 and Y2 are independent, py ,y = 0, so the mean and variance of Z are: 1 2 

ll.z = e([P,+P:.H[Qf+2Q,Qz+Qm, and 

uj = e(2[P,+Pzl+[Qf+QW(e[Qf+Qfl-1) 

5-7 

5-8 

To calculate the moments of the square of Y1, we can set Y1 = Y2, so Jl.y , 
1 

= Jl.y
2

PY.,y
2 

= 1. 

The resulting mean and variance of Z are: 

Jl.z = e2(P, +2Qt), and 

uj = e(2P,+4QD(e[4Qfl-1) 

5-9 

5-10 

Additionally, when Jl.y = 1, and Uy = 1 (i.e., Y1 1 1 is a unit lognormal distribution, Y1 = 

L(l,l) ), then Var[Y/] = 60. 

Since ay
1 

= jvar[Y/], ay
1 

= .,[60, or 7.7459667. 

Comparing these results to a statistical simulation, we get similar means but different 
standard deviations as shown in Table 5-2. 

Table 5-2 Analytic and Simulated Results of the Square of Two Lognormal PDFs 

Analytic Simulated 

fl. a fl. a 
Y, 1.000 1.000 1.000 1.005 
y,z 2.000 7.746 2.010 8.900 

The difference between the sigma values from the analytic (exact) answer and the 
simulated (approximate) answer is due to the simulation's sampling of the lognormal PDF. 
Since none of the error can be attributed to the correlation between random variables (i.e., 
it is a square of a single RV), it must be due to the ability of the simulation to sample the 
large tails of the lognormal PDFs. Looking at the results of the variance from 10 
simulation runs of 100,000 trials each shows the simulated variance is biased low and there 

is a large standard deviation of results of the variance ofY/. This is due to the fact that 
sampling highly skewed distributions will always be difficult for simulations, so 
simulations cannot always be trusted in these situations. It is best to check your 
simulation's results to see that the simulation has reproduced the correct Pearson 
correlation coefficient and that the means and standard deviations of the inputs and product 
are correctly computed. 
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Table 5-3 Ten Simulated Sample Runs of Variance ofLN PDF Squared 

Simulation Simulation 
Run Var(Y,') Run Var(Y,') 

1 49.894 6 63.005 
2 54.359 7 58.854 
3 47.536 8 57.698 
4 51.769 9 57.165 
5 87.246 10 49.030 

#tv.,.(Y,z) 57.656 

O'varfY, 21 11.491 

5.3 Product of Exponentiated Lognormal PDFs 
In some cases, it may become necessary to calculate the product of two lognormal PDFs 
that are exponentiated. Exponentiation of a lognormal PDF Y1 by some constant exponent, 
c, (i.e., YD is equivalent to multiplying its underlying normal distribution by c. 

If the distribution X1 has mean P1 and standard deviation Qt. then the distribution cX1 will 
have mean cP1 and standard deviation cQ . 1 If we multiply two exponentiated lognormal 
PDFs Y1 and Y2 by exponents c and d, we can compute the mean and variance of the 

resulting distribution, Z = YfYl, using the exponents of the underlying normal 
distributions ofY1 and Y , 2 which are X1 and X . 2

With the mean and variance of the underlying normal distribution, 

Pz = cPx, + dPx2 and Qi = c2 Q~, + 2Px,,x2 cdQx, Qx2 + d2 Q~2 

the correlation between the underlying normal PDFs, Px,,x , 
2

will be unaffected by the 

affine transformation43 of the underlying normal distribution. The correlation between the 
lognormal PDFs, Pv ,y , 

1 2
will also remain unchanged. The correlation between the variables 

U and V (pu,v), where U = Yf and V = Yl, will be different from that of Pv
1
,y , 

2
however. 

43 An affine transformation does not change the properties of the variable(s) undergoing the transformation. 
For example, the correlation between two RVs is unchanged when either (or both) undergo a linear 
transformation. That linear transformation is considered an affine transformation. 
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5.3.1 Correlation Between Exponentiated Lognormal PDFs 
Using the derivation above, the exponentiated lognormal RVs undergo a non-affine 
transformation, meaning their relationship to each other changes. In the case of the 

product oflognormal RVs, Z = UV = YfYd, 2 the correlationpu,v is calculated using: 

As an example, We will exponentiate two lognormal PDFs (Y1 and Y ) 2 defined by L(1,0.5) 
with correlation {Jy ,y = 0.5. We wish to fmd the correlation, Pu,v. where U = Yf, 1 2 

V = Yl, c = 0.9, and d = 1.2. First we must fmd Q1 and Q2 where: 

Next we calculate Px1,x2 using Px1,x2 = -
1
-ln [1 + py

1 
y2 (.J eQf- 1.J eQ~- 1)]. 

Q1Q2 ' 

1 
Px1,x2 = (0.4724)(0.4724) ln[1 + (0.5)(VL25 -1"1.25 -1)] = 0.5278 

Last, we have the correlation between U and V: 

.([0.9][1.2][0.5278][0.4724][0.4724])_1 

p = =04951 u,v _t 0 ([o.9][0.4724])2 -1 _t 0 ([0.4724][0.4724])2 -1 ' • 

5.4 Product of Multiple Lognormal PDFs 
In the case where cost-on-cost factors are used in a probabilistic cost estimate, the 
correlation between a WBS elen1ent that is estimated using a cost-on-cost factor and its 
base is governed by the expected value of the product of multiple random variables. 

We use the case where we have three random variables representing the multiplicative 
uncertainties of three CERs, £1 , £ 2 and t: • 3 The products used in the correlation matrix may 
include the following terms: 2 2£ £ £ , t: t: , t: t: E , 1 2 3 1 2 1 2 3 among others. 

The expectation of any combination or exponentiation of products of e , 1 e , 2 or e3 is derived 
using a set of jointly dependent lognormally distributed PDFs defined by their respective 
means and variances. In the case of the triple productZ = e1 e2e , 3 the mean of the 
underlying normal distribution formed by the triple product is: 

E[ln(Z)] = ~ P; 

and the variance is 
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Var[ln(Z)] = L Q/ + Li,.kLkPX;hQiQk, where 

Px-xk = -
1
-ln [1 + p,. ,k(.J eQf- 1.J eQ~- t)] 

l• QiQk l• 

fl.z = e(1:P;+~O:!:Q/+1:;,.k1:kPx;.xkQ;Qk), and 

aj = e(21:P;+1:Q/+1:;,.k1:kPX;.XkQ;Qk) (e1:Q/+1:;,.k1:kPX;,xkQ;Qk -1) 
5-11 

5-12 

5.5 Limitations of Statistical Simulations 
Statistical simulations, due to their inability to perfectly sample correlated random 
variables will produce some error, of course. To test these errors, we defined three 
lognormally distributed random variables Ev e2, and e3with a lognormal PDF, L(l,O.S), 
and defined their inter-element correlation, Pe;,ek = 0.5. We then calculated the 

expectations of the products discussed above using the analytic method and with a 
1 00,000-trial statistical simulation. The results are shown in Table 5-4. Over the 10 
different simulation runs, the average of the means ( 1.414) was less than that of the 
analytic (true) result (1.424). Also, the average of the variances from the 10 runs (5.776) 
was less than that of the analytic (true) result (6.000). The simulations produced a wide 
range of variances represented by the standard deviation of the simulated variance results 
(0.229). 

Table 5-4 Ten Simulated Sample Runs of Variance of Triple Product ofLN PDF 

Simulation Simulation 
Run E(Z) Var(Z) Run E(Z) Var(Z) 

1 1.409 5.435 6 1.416 6.100 
2 1.412 5.534 7 1.410 5.593 
3 1.418 5.923 8 1.411 5.573 
4 1.417 6.053 9 1.417 5.818 
5 1.415 5.880 10 1.413 5.853 

Average 1.414 I 5.776 Analytic 1.424 6.000 
Std. Dev. o.oo3 I 0.229 
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6 Mellin Transforms 
A Mellin transform is a type of integral transform that allows us to find the moments of 
user-specified random variables or functions of random variables, such as CERs. This is 

particularly useful in uncertainty analysis because we often need to find the moments of I) 
the product of two or more independent random variables, and 2) transformations of 
random variables (e.g., exponentiation). 

As with anything that looks "too good to be true", there are restrictions on its use. We will 

first define Mellin transforms, show how to use them and provide an example. The Mellin 
Transform44 45 

• of a functionf(X), where X is a positive random variable, is defmed as: 

Mx(s) = M[f(X); s] = f 5 1"' X - f(x)dx,x 
0

> 0, where 

Mx(s) is the Mellin transform of f(X), and 
s is the order of the transform 

6-1 

As with the Fourier and Laplace transforms, there is a one-to-one correspondence between 

Mx(s) andf(X). When f(X) is a PDF, we can see the relationship between the Mellin 

transform of a PDF and the moments about the origin 1.l as: 

6-2 

6.1 Mellin Transform Properties 
Mellin transforms allow us to calculate moments of results of operations on independent 
random variables. Table 6-1 shows the Mellin transforms of simple operations on single 

independent random variables. 

Table 6-1 Operation Properties of Mellin Transform on a PDF 

Property PDF RV Mellin Transform 
a. Standard f(x) X .Mx(S) 

b. Scaling [(ax) X aC s).Mx(S) 

b. Linear af(x) X a.M.(s) 

d. Translation x"f(x) X .Mx(a + s) 

e. Exponentiation f(x") X aHl.Mx(sfa) 

Table 6-2 shows the Mellin transforms of more complex operations on single and multiple 
independent random variables. 

44 Giffm, W.C., Transform Techniques for Probability Modeling, Academic Press, 1975. 
45 Springer, M.D., The Algebra of Random Variables, John Wiley and Sons, 1979. 
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Table 6-2 Mellin Transform of Products and Quotients of Random Variables 

Random Variable PDF Given M7(s) = 

a. Z=X f(x) Mx(s) 
b. Z=Jt f(x) Mx(bs- b + 1) 

c:. Z=IIX f(x) Mx(2 -s) 
d. Z=XY f(x),g(y) Mx(s)My(s) 

e. Z=XIY f(x),g(y) Mx(s)My(2 - s) 
f. Z=altY' f(x),g(y) aCs-l).My(bs- b + 1)Mv(cs- c + 1) 

6.2 Mellin Transform of the Uniform Distribution 
The uniform distribution, U(L, H), has a PDF defined by: 

f(x) = 1/(H- L); L S x S H, 6-3 

and a Mellin transform defined by 

(H8 -L8 ) 

M[f(x); s] = s(H-L) 
6-4 

6.3 Mellin Transform of the Triangular Distribution 
The triangular distribution, T(L, M, H), has a PDF defined by: 

{ 

2(x-L) 

f(x) = (H-L)(M-L) 
2(H-x) 

(H-L)(H-M) 

;O<L<xSM 

;MSxSH 

6-5 

and a Mellin transform defined by 

2 {H(H 8 -M8
) L(M8 -L8

)} 

M[f(x); s] = [(H-L)s(s+l)] (H-M) (M-L) 
6-6 

6.4 Mellin Transform Example 
In this example, we will apply Mellin transforms to a multivariate CER46 with error: 

Y = aX1bX/ E, where 
Y is cost, a random variable (RV) 
a, b, and care constants, a = 0.1, b = 0.95, and c = 0.60 
X1 is a cost driver that is a RV, X1 = T(9,10,15) 
X2 is a cost driver that is a RV, X2 = T(30,40,60) 

6-7 

.,. The CER's cost drivers and inputs are uncorrelated (allPi.i = 0). 
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E is the percent standard error of the CER, a RV, E = N(1,0.3) 

This CER has two cost drivers that are random variables (X1 andX ) 2 and a CER standard 
percent error, E. We will split the problem into pieces; one piece will be the term f(x) = 

aX b 1 X2 c, and the other will be the error term, E. 

Remember, when s = 2, we are calculating the first moment (mean) and when s = 3 we 
are calculating the second raw moment (i.e., about the origin) and have to correct for the 
mean to get the second moment about the mean. 

To solve this problem, we will follow these steps: 

1. Find the appropriate Mellin transforms of a PDF (Equation 6-6) 

2. Calculate the Mellin transforms for each operation as shown in Table 6-1 and 

Table 6-2. 

3. Determine the mean and sigma values from the Mellin transform 

In the first step, we need to find the Mellin transform of f(x) and E for orders s = 2 and 
s = 3, then apply the rule from multiplying RVs f(x) and E. 

Let us begin with defining M[f(x); s] for X , 1 which is a triangular distribution, so: 

2 {H(H•-M•) 
M[X1 ;s] = M[T(L,M,H);s] = [( ) C )J C ) H-L s s+1 H-M 

L(M•-L•)} 
(M-L) 

We must now findM[f(x); 2]andM[f(x); 3], where f(x) = aXlX/. From Table 6-2, 

M[f(x); s] = aC•-1)Mx1 (bs- b + 1)Mx
2
(cs- c + 1), where b=0.95 and c=0.6 

M[f(x); s] = aCs-1)Mx1 (0.95s- 0.95 + 1)Mx
2 
(0.6s- 0.6 + 1) 

M[f(x); s]= aC•-1)Mx
1 

(0.95s + 0.05)Mx
2
(0.6s + 0.4) 

( ) ( ) 
2 (H-M) 

{ 

H(H(1.95)_M(1.95)) } 

For s = 2, Mx1 0.95s + 0.05 = Mx1 1.95 = [( )( )( )] ( c195J c195J) H-L 1.95 2.95 L M · -L · 

(M-L) 

M[X ·1.95] = 2 {15(151.95_101.95) 9(101.95_91.95)} = 10.035 
1 • [(15-9)(1.95)(2.95)] (15-10) (10-9) 

Using the same formula, for orders = 2.95, 

M[X ; 1 2.95] = M[T(9,10,15); 2.95] = 101.911. 

Since Mx
2 

(0.6s + 0.4), we have to findM[X ; 2 1.6], and M[X ; 2 2.2]. X2 is a PDF defined 
by a triangular distribution, T(30,40,60), so 

M[X ; 2 1.6] = M[T(30,40,60); 1.6] = 9.572, andM[X ; 2 2.2] = M[T(30,40,60); 2.2] = 
92.312. 
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Now we can multiply the terms to findM[{(x); 2]andM[f(x); 3] 

M[{(x); 2] = aC1)Mx
1 

(1.05)Mx
2
(1.6) = (0.1)(10.035 )(101.911) = 9.606, and 

M[{(x); 3] = aC2)Mx
1 

(3)Mx
2
(3) = (0.01)(9.572)(92.312) = 94.076. 

The mean and sigma of f(x) are: 

J.l.t(x) = M[f(x); 2] = 9.606, 

Var(f(x)) = M[{(x); 3]- (M[f(x); 2])2 = 94.076- (9.606)2 = 1.8089, and 

Ut(x) = jvar(f(x)) = ·h8089 = 1.345. 

Finally, we have to calculate the Mellin transformation of E to complete our example 
problem. Unfortunately, the Mellin transform for a normal distribution is not defmed over 

the entire range, only from 0 to +oo (i.e., non-negative values), so we must find a way to 

overcome this linlitation. But fortunately, we already know the mean and sigma of E and 
can "back out" M(e; 2) andM(e; 3). 

We already know the mean and sigma of E by its definition as the multiplicative standard 
error, N(1,0.3). Given this information, 

M(e; 2) = J.l.e = 1.0, and 
M[e; 3] = Var(e) + (M[e, 2])2 = u/ + J.i./ = (12

) + (0.32
) = 1.09. 

From Table 6-2,M[Ye;s] = M[Y;s]M[e;s], so: 

M[Y; 2] = M[f(x); 2]M[e; 2] = (9.606)(1) = 9.606, and 
M[Y; 3] = M[{(x); 3]M[e; 3] = (94.076)(1.09) = 102.543. 

The exact mean and sigma values are: 

J.I.(YE) = M[Y; 2] = 9.606, 

u(Ye) = jM[Y; 3]- (M[Y, 2])2 = v'102.543- (9.606)2 = ../10.276 = 3.206. 

The mean and standard deviation from a I 00,000-trial statistical simulation using the 
parameters specified in Equation 6-7 result in: 

fl(Ye) = 9.60, and 6'(Ye) = 3.19 

Since the Mellin transform method provides the exact value, the differences are due to 
simulation errors. Indeed, a dump of the trial values for X1 , X2 , and E followed by a 
calculation of their inter-element correlations reveals that p * I (i.e., the correlation matrix 
does not equal the identity matrix) as shown in Table 6-3. This means some of the error in 
the simulation is due to its inability to sample (un)correlated random variables. 
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Table 6-3 Correlation Coefficients from 100,000-Trial Statistical Simulation 

E x, Xz 

E 1.0000 -0.0031 -0.0111 
x, -0.0031 1.0000 -0.0038 
x, -0.0111 -0.0038 1.0000 
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7 Propagation of Errors 
Cost analysts often need to find the moments of the product of two uncorrelated random 
independent variables such as a CER and its percent error. 47 For example, 

Y = f(x)e; where 

x is a random variable describing the input (e.g., weight) 
f(x) is an estimating relationship with x as an independent variable 
e is a random variable describing the estimating error 

The "Propagation of Errors" method allows us to calculate the mean and sigma values of 
the product of two uncorrelated random variables A and B. 48 Proof of this is provided in 
Appendix C -Derivations. 

JI.AB = JI.AJI.B 
0" AB = ..j'"'(JI._A_O"_B""<")-:;-2 -:-+--:(;-U-AJI.-B-;:)-;;-2--:+-(70"-A-0" B--;):-:;-2 

7-1 
7-2 

For our example problem, we will break the CER and its error into two parts, A and B, 
where A = f(x) and B = e. In this case, 

JI.AB = Jl.t(x)JI.e 

O"AB = (JI.t(x)O"e)
2 
+ ( O"f(x)JI.e)

2 
+ ( O"f(x)O"e)

2 

7-3 
7-4 

Since the multiplicative error has a mean, Jl.e = 1, and the standard deviation of the error is 
predefmed, the equation reduces to 

7-5 
7-6 

Previously, we showed how to statistically sum random variables using FRISK. Now we 
will show how to perform other operations such as multiplying random variables. This 
type of operation is particularly necessary when we need to calculate the uncertainty of 
CERs that have multiplicative standard errors. The propagation of errors allows us to do 
this in a clean, straightforward manner. 

47 The random variables representing a CER and its multiplicative error should be uncorrelated. 
48 

Engineering Statistics Handbook, National Institute of Standards, Section 2.5.5 
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7.1 Propagation of Errors Example 
For our example, we will estimate the !J., u and 70th percentile of total cost using the three 

point estimates (originally from the FRISK example from Book (1994) in Table 4-5) and 
estimating errors in Table 7-1. In this example, estimates are random variables defined by 
triangular distributions, and CER errors are either normal or lognormal random variables 

with lle, = 1. 

Table 7-1 Propagation of Errors Example 

WBS Element, i Estimate, f(x) 1 CER Error, e1 

Antenna T(191,380,1151) N(1,0.20) 

Electronics T(96,192,582) L(1,0.31) 

Platform T(33,76,143) L(1,0.40) 

Facilities T(9,18,27) N(l,0.20) 

Power Distribution T(77,154,465) N(1,0.35) 

Computers T(30,58,86) N(1,0.30) 

Environmental Control T(11,22,66) L(1,0.30) 

Communications T(58,120,182) N(l,0.30) 

Software T(120,230,691) L(1,0.30) 

To demonstrate this method, we will perform an example calculation using the first WBS 
element. The Antenna WBS element CER is defined by a triangular distribution, 
T(191,380,1151). Using the calculations from our FRISK example in Table 4-5, 

llt(x)
1 

= 574, and urcxh = 207.62 . The Antenna CER has a standard error, e1 defined by 

a normal distribution, N(1,0.20), so !J.e
1 

= 1, and u,
1 

= 0.2. Using the propagation of 

errors equations (7-5 and 7 -6), 

!LAB = llt(xhlle1 = (574)(1) = 574 

UAB = Ut(x)e
1 

= .J[(574)(0.2))2 + [( 207.62)(1))2 + [( 207.62)(0.2))2 = 

.J[114.8J2 + [2o7.62J2 + [41.521 2 = v13179.o4 + 43106.06 + 1724.24 = 24o.s5 

This result is shown in Table 7-2. Completing these operations for all nine WBS elements 

results in the other figures provided in this table. Note, the mean does not change between 

llt(x)t and llt(x)ep but the standard deviation Ut(x)•t is greater than Ut(x)t due to the effects 

of the estimating error, u,,. Now that we have nine WBS elements expressed as random 

variables with means and sigmas defined, we can use the FRISK method to statistically 

sum them. Remember from Table 4-5, ILTotal = :Er=lllt(x), = 1756. We will assume a 

single value for the inter-element correlations, p = 0.2 , to calculate the total cost sigma, 
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Table 7-2 Propagation of Errors Example Solution 

WBS Element, i llr(x)1 af(x)1 a"' llr(x)o1 af(x)"' 

Antenna 574 207.62 0.20 574 240.85 

Electronics 290 105.08 0.31 290 142.07 

Platform 84 22.63 0.40 84 41.51 

Facilities 18 3.67 0.20 18 5.20 

Power Distribution 232 83.86 0.35 232 120.37 

Computers 58 11.43 0.30 58 21.10 

Environmental Control 33 11.88 0.30 33 15.87 

Communications 120 25.31 0.30 120 44.66 

Software 347 123.68 0.30 347 165.86 

TOTAL (not necessarily the sum) 1756 364.93 1756 476.34 
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8 Functional Correlation between WBS Elements 
In Section 3.4.2 we stated that correlation can be induced by the functional relationships 
among random variables in an estimating model such as a schedule network or a series of 
cost estimating relationships. By definition, when an estimating relationship such as 

Y = a~/X2cecontains a random variable, its probability distribution (Y, a dependent 
random variable) is dependent on the probability distributions of its inputs, X;, (the 
independent random variables) and the estimating error, E. If the dependent variable (Y) is 

a positive function49 of the independent variables (i.e., Y = aX1 bX2ce), then the 

independent and dependent variables will be positively correlated (i.e., 0 < PY.Xt :::; 1). 

Likewise, if Y is a negative function of an independent variable, they will be negatively 
correlated (i.e., -1 :::; py .X; < 0). This type of correlation is called "functional correlation" 

(Coleman & Gupta, 1994). There are many types of functional correlations, and if we are 
to use MOM techniques to estimate the probabilistic costs of multiple WBS elements 
(Table 8-1 ), it requires we have knowledge of these correlations. In this example, which 
pertains to the first three CERs in Table 8-1, we are interested in the correlation between Y 

and its independent variables, PY.X;· 

Table 8-1 Functional Correlation Example Cost Model 

i WBS Element, i CER, i Drivers x, e, 
1 Systems Engineerin~ 

Program Management 
Integration and Test 

Y1 = 0.498X1 °"9 e1 PMP 

-LfJ~~;) 
L(l,0.49) 

Prime Mission Product 
(PMP) 

El~z Yi Sum of Hardware and 
Software costs 

0 

2 Antenna Yz = 34.36Xza o.sXzb o.aEz Aperture Diameter (m), 
Frequency (GHz) 

T(2,3,4) 
T(16,17,18) 

L(l,0.30) 

3 Electronics Y3 = 30.06X3 °·8e3 Frequency (GHz) T(16,17,18) L(l,0.40) 

4 Platform Y4 = 26.91X4a o.sx4b o.as£4 Aperture Diameter (m), 
Number of Axes 

T(2,3,4) 
Constant= 2 

L(l,0.38) 

5 Facilities Ys = 1.64X5°"8E5 Area (m') T(18,20,22) L(l,0.25) 

6 Power Distribution Y6 = 0.32X6 °·9e6 Electrical Power (W) T(1200,1425,1875) L(l,0.18) 

7 Computers Y7 = o.ssx,0·87 e7 MFLOPS T(180,200,220) L(1,0.31) 

8 Environmental Control Y8 = 1.94X8 °·4e8 Heat Load (W) T(1100,1200,1300) L(l,0.21) 

9 Communications Yg = 5.62Xg 0 9
' Eg Data Rate (MBPS) T(25,30,35) L(l,0.28) 

10 Software Y1o = 21.38Xto1
' Eto eKSLOC T(80,90,130) L(l,0.32) 

Also, if two CERs are dependent on the same random variable, X, (such as CERs 2 and 3), 
then those CERs will be functionally correlated to each other. Also, the common driver 

49 A positive function is one where Y iocreases with X. 
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will be correlated to those CERs. We will need to know these correlations, particularly 
since these variables are to be statistically summed. 

Another case that is easy to envision is where one CER is a function using the sum of 
multiple WBS elements as its cost driver (i.e., CER 1 in Table 8-1).50 We often refer to 
these types of CERs as "cost-on-cost" functions since the cost of one WBS element is a 
function of the cost of other WBS elements (for example, a CER that estimates program 
management costs and is dependent on the sum of hardware and software prime mission 
product (PMP) costs). In this case, we will be interested in the correlation between the 
cost-on-cost CER and each of the individual PMP costs. 

These correlations are further complicated when correlated uncertainty terms are used in a 
set of CERs (e.g., Y2 = f ). 2 (X)e2 and Y3 = f3 (X)e3 This is a very complex type of 

functional correlation since there are two dependencies involved. 

Each of these cases involves a calculation of the correlation between different types of 
relationships between random variables. We require a more formalized approach to 
identifying types of functional correlations that exist in the WBS structure, or for that 
matter a schedule network, and how directly the random variables are related to each other. 
No less important is the "order", or how closely related two functionally correlated random 
variables are to each other. In a first order relationship, Y is clearly identified as a 
function of X, such as in a CER. In a second order relationship, Y may be a function of 
g(X) (i.e., the sum of multiple random variables), one of which may be X. The third type 
of relationship is one in which two variables are correlated through functional relationships 
of other variables that are correlated. Table 8-2 provides a framework for identifying the 
type and order of functional correlations based on the mathematical solution to 
calculating p. 

Table 8-2 Formalized Types and Orders of Functional Correlations 

Orderl Order2 
Type I PxY where Y = f(X) PxY where Y = f(JJ(X)) 
Type II where PY1,Y2 

y2 =[,(X) 
Y,_ = il(X)and PY,,Y, where Y1 = 

Y, =·{,(a,(}()) 
[1 (g1 (X)) and 

Type Ill PY,,Y, where Y1 = !l(X1)El, 
Y2 = f,(X2)E2, 

and Pe,,e, * 0 or Px,,x, * 0 

PY,,Y, where Y1 = [1 (JJ1 (X1 )El), 

Y2 = f2CJJ2(X2)E2), 
and p,1,,2 * 0, or Px1,x2 * 0 

With the aid of this formalized framework for segregating the types of functional 
correlations existing in an estimate, we can employ an organized method to fmd the 

5° CER I in the example model shown in Table 8-1. 
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equations for the functional correlation for each type and order described above. The 
method of calculating first order correlation coefficients contains the following steps: 

1) Equate the correlation between two random variables in terms of Equation 4-26. 
2) Determine the components of Equation 4-26. 

a. Find the means of the two RVs 
b. Find the variances of the two RVs 
c. Find the product of the two RVs 
d. Find the expectation of 2c 

3) Rewrite Equation 4-26 in terms of the components found in Steps 2a through 2d. 

Second order correlation coefficients require an intermediate step whereby g (X) must be 

calculated, followed by the calculations of Px,g(X) and PY,g(X) for Type I correlations, 

{Jy ,g(X) 1 and py ,g(X) 2 for Type II correlations, and py ,g(X)e1 1 and {Jy ,g(X)ez 2 for Type ill 

correlations. 

8.1 Type 1-1 Functional Correlation 
In cost analysis applications, we are often faced with the problem of computing the Type 1-
1 functional correlation between a CER and one of its drivers. We discussed this case 
when introducing functional correlation, so we will provide a method of calculating Px ,y, 

1

where Y = aX1bX cE. 2

Following the process described above Step 1: p = E[X1 Y]-E[x1 ]E[Y] 
' X1,Y .jvar(X1).jVar(Y) 

Step 2a: E[X ] 1 = llx , which is known since X1 1 is a user-defmed distribution 

E[Y] = E[f(X1,X }] 2 = llt• which can be found through expectation methods or through 

the use of Mellin transforms 

Step 2b: Var(X } 1 is known since X 1 is a user-defined distribution 

Var(Y) = (iLtUe)
2 + ( Ut )

2 + ( uruet ; where 

Ue is known by definition 

llt was found in Step 2a 

u can be found through expectation methods or through the use of Mellin transforms 1 

Step 2c: X1Y = (X1}(aX1bX/e) = aX1 b+1X2 cE 

Step 2d: E[X1Y] = E[aX1b+lX/e] 

Since a is a constant and the terms X1 b+l, X c 2 and E are independent, then 
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The It' moment of a RV of a known distribution type (i.e., E[X"] where X is a uniform, 

triangular, normal or lognormal distribution) can be calculated using Mellin transforms or 

through expectation operations found in Appendix B - Expectation Operations. 

Step 3: Combining the terms from steps I through 2d we have 

8-1 

Equation 8-1 shows that as the magnitude of u.increases, the magnitude of PxvY decreases. 

8.1.1 Type 1·1 Functional Correlation Example 
For this example, we will use CER 6 from Table 8-1 to calculate the Type 1-1 functional 

correlation between Y6 and its driver, X • 6 The CER Y6 is defined as 

Y6 = 0.32X6°"9 E6 

. th d "b d b S l F o II oWing e process escn e a ove, tep : 
E[X6Y6]-E[X6]E[Y6] 

Px6 y,6 = .J C l.J C ) 
I Var x6 Var y6 

Step 2a: E[X6] = Jlx , which is found using Equation 4-1. 
6

SinceX6 is defined by the triangular PDF, T(1200,1425,1875), 

E[Y6] can be found through expectation methods or through the use of Mellin transforms. 

In this example, we will use expectation methods to compute E[Y6]. 

Since X6 is a triangular PDF, we must find the expectation of a triangular PDF raised to a 

power, which is 

Substituting the parameters L, M, Hand k using our example, E[X6 °·
9

] = 721.626 

So E[Y6] = (0.32)(721.626) = 230.920. 
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Step 2b: Var(X6) is calculated using the square of one half of the population standard 
deviation of the distributions parameters. This equates to 

Var(X6) = (STDEVP(12020,1425,1875)r = 19687.5, so ax. = vf19687.5 = 140.31 

The variance ofY is calculated using the propagation of errors method, since the CER, fy , 
6

and its error are independent RVs. 

a,
6 

= 0.18 {Table 8-1), and f1.ty
6 

= 230.920 (found in Step 2a) 

a1Y can be found through expectation methods or through the use of Mellin transforms. In 
6 

this case, we will use the equation for the transformation of a triangular PDF from Section 
4.3 .3 to compute this value. 

ar = Yo 

b ---- -L +-- H----
2 [ 1 {M2c+2-L2c+2 M2c+1-L2c+l} 1 { H2c+l-M2c+1 

(H-L) (M-L) 2c+2 2c+1 (H-M) 2c+1 

By substituting the coefficient b = 0.32 and the triangular distribution parameters, L, M 
and H into this equation, we get aty = 19.428. 

6 

ay
6 

= .J [(230.920)(0.18)]2 + [19.428]2 + [(19.428)(0.18)]2 = 46.015 

In Step 2c we calculate the product X6Y6 through expansion. 

In Step 2d we calculate the expectation of this product. 

E[X6Y6] = E[0.32X/·9 E6 j = 0.32E[X6
1

'
9]E[E6] 

SinceE[E6] = fl.e
6 

= 1, thenE[X6Y6 ] = 0.32E[Xl9 j. 

Using the equation for the Jih moment of a triangular distribution, we can compute E [X6 Y ] 6

E[X6Y6 ] = (0.32)(1090957.67) = 349106.45 

Furthermore, the product E[X6]E[Y6] = (1500)(230.920) = 346380.516. 
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Step 3: Combining the terms from Steps 1 through 2d, we have: 

= E[X6Y6]-E[X6]E[Y6] = 349106.45-346380.516 = Q.4222 Px.,Y. ax
6
ay

6 
(140.31)(19.428) 

8.2 Type 1-2 Functional Correlation 
In this case, we wish to find the functional correlation Px,Y between two random variables 

X; andY where Y = f(D(X;))Ey. We will assume f(W) is a CER, specifically a cost-on­

cost function of the summation, W = g(X;E;) = :Ef=1 X;, of WBS elements where X; is 

one of the summands. In this type of functional correlation, we assume W and Ey are 
independent random variables. 

Y =(a+ bWc)Ey, and W = g(X) = :E~1 X; 

Following Step 1 of the process described above, we can express the correlation as: 

I![X ;Y]-I![X ;]I![Y] I![X tf{g{X ;))]-I![X ;]1![/{g{X ;))] 

Px,Y = ,jvar(X;),jvar(Y) = ,jvar(X;),jvar(J(g(X;))) 

In Step 2a, we must fmd the means of X; andY. 

E[X;] = llx,• which is known since X; is a WBS element summand and can be calculated 

using either expectation methods or through Mellin transforms. 

This expression can be rewritten as: 

E[Y] = aE[E] + bE[(Lf=1 X;)cEy]E[Ey] =a+ bE[(Lf=1 X;)C], since E[Ey] = 1 

E[(Lf=1 X;)C] can be found for a lognormal PDF since E[Xk] = e(kP+iQ
2

k
2
) 

In Step 2b, we find the variances of X; andY. 

Var(X;) is assumed to be known, and Var(Y) is calculated using the propagation of errors 

method. 

In Step 2c, we fmd the productX;Y through expansion. 

We must move X;into the summation, :Ef=1 X; E;, which results in: 
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Now we have separable terms from which to compute the expectation. 

In Step 2d, the expectation is E[X;Y] = aX;Ev +bey (~f=1 x,[1+~J)"_ In the next step, we 

face a conundrum. We already assume that Ey and Ware independent RVs as a condition 
of the regression of the CER, f(W). We may also assume X; contains some multiplicative 
error, E;, so that that error must be independent of f(W)and Ey. In practice, however, this 
case is not always true, since sample correlations do exist between E; and Ey. We must 
assume that independence overrides this situation and that X;, Ey and E; are all independent 
RVs. Given this, the expectation can be reduced to: 

E[X;Y] = aJJ.x, +bE [(~~1 x,[1+~J)"], which is solvable knowing (~~1 x,[1+~]) is 

lognorrnally distributed and that E[Xk] = e(kP+iQ•k•). 

Since E[X;] = fl.x,• and E[Y] = a+ bE[~f=1 X;)C], the product of the expectations of X; 

andY is E[X;]E[Y] = P.x,Ca + bE[~f=1 X;)C]) = ap.x, + bp.x,E[~f=1 X;)C] 

The term E[X;Y]- E[X;]E[Y] is reduced to 

E[X;Y]- E[X;]E[Y] = aJJ.x, +bE [ (~f=1 x,[l+~l)"]- ap.x,- bp.x,E[~f=1 X;)c] 

In step 3, we find the functional correlation Px,v by combining terms into the expression 
found in Step 1. 

_ +[(1:f=1 x,Hl)"]-~'x,E[(1:f=1 x;)j} 
Px,Y - ,jvar(Xt)../Var(Y) 

8.2.1 Type 1-2 Functional Correlation Example 
In this example, we show how to find the functional correlation between CERs 1 and 
2, Pv , 

1
,y

2
in our example model. CER 1 is a cost-on-cost function of the summation of 

WBS elements 2 through 10 (i.e., W = ~t~2 Y;) , where the cost of WBS element 2 (i.e., 
Y ) 2 is one of the summands. The CERs are: 
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Y1 = (0.49BQ;t~2 Y;)0·9)e1, and Yz = (34.36X2a o.s X2b 0'8)e2, where 

e1 and e2are multiplicative errors of the CERs defmed by L(l,0.45) and L(l,0.3), 

respectively. 

In this type of functional correlation, we assume W (the sum of Y;) and e1 are independent 

lognormal RVs. Following Step 1 of the process described above, we can express the 
correlation between CERs 1 and 2 as: 

E[Y1Y2]-E[Y1]E[Y2J 
PY1.Y2 = ,jv ar(Y1),jv ar(Y2) 

Substituting the functional forms of CERs 1 and 2 into these terms results in: 

8.2.1.1 Means ofCo"elated Random Variables 
In Step 2a, we fmd E[Y1 ] and E[Y2 ], which are the means ofWBS elements 1 and 2. 

E[Y2] = Jl.y , which is calculated using expectation methods, is 
2

From the previous example, we calculated E[Y ] 2 using the product of kth expectation of 

the triangularly distributed independent variables X b· 2aandX2 The result is repeated here. 

E[Y2] = (34.36)(1.728)(9.646) = 572.706 

Using this method for the remaining CERs in WBS elements 3 to 10 by substituting their 
respective PDFs and CER coefficients, we can calculate their means. We sum the means 
ofCERs 2 through 10 to get the mean of their sum, since E[I; Y;] = ~E[Y;]. These results 
are shown in Table 8-3. 

Table 8-3 Means ofCERs ofWBS Elements 2 through 10 

CER1 b, l'xta P.x,. P.v, 
2 34.360 1.728 9.646 572.706 
3 30.060 9.646 - 289.953 
4 26.910 1.728 1.803 83.816 
5 1.640 10.984 - 18.014 
6 0.320 721.626 - 230.920 
7 0.580 100.428 - 58.248 
8 1.940 17.046 - 33.068 
9 5.620 21.346 - 119.965 
10 1.380 251.536 - 347.120 

SUM - - - 1753.813 
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The mean ofCER 1 is defined as E[Y ] 1 = E[(b(Lt~2 Y;)C)Ey,j = bE[(wc)Ey,j, where W is 

the RV of the sum ofWBS elements 2 through 10. 

This expression can be rewritten as E[Y ] 1 = bE[Wc]E[Ey,j = bE[Wc], since E[Ey ] 
1

= 1. 

We can also assume that the sum, W, represents a lognormal distribution with the 
parameters Pw and Qw that define W's underlying normal distribution. Pw and Qw are 
dependent on both the mean and variance ofW (i.e., Jlw and uw2 ). 

~Q 2 c2
The term E[Wc] can be found for a lognormal PDF since E[Wc] = e ( cP ) 

w 2 w , but Pw 

and Qw are functions of Jlw and lTw. We must complete Step 2b in order to compute the 
values of the following: uy , for each 1 Y;; Jlw and uw; Pw and Qw; E[Wc] and awe; and, 

finally E [Y ] 1 and Uy • 
1

8.2.1.2 Standard Deviations ofCo"elated Random Variables 
Each uy, for CERs 2 through 10 is calculated using the propagation of errors method. They 

are reported as uy, in Table 8-4. 

Table 8-4 Means and Standard Deviations of CERs of WBS Elements 2 through 10 

CERI b; llx .. 

""·· 
llv1 a., a, .. axlb a rex,) av, 

2 34.360 1.728 9.646 572.706 0.3 0.1186 0.1853 40.8333 177.0219 

3 30.060 9.646 - 289.953 0.4 0.1853 - 5.5711 116.1364 

4 26.910 1.728 1.803 83.816 0.38 0.1186 0.0001 5.7539 32.4396 

5 1.640 10.984 - 18.014 0.25 0.3589 - 0.5885 4.5442 

6 0.320 721.626 - 230.920 0.18 60.7123 - 19.4279 46.0150 

7 0.580 100.428 - 58.248 0.31 3.5677 - 2.0692 18.1865 

8 1.940 17.046 - 33.068 0.21 0.2321 - 0.4503 6.9596 

9 5.620 21.346 - 119.965 0.28 1.3077 - 7.3494 34.4464 

10 1.380 251.536 - 347.120 0.32 32.7041 - 45.1317 120.7638 

w - - - 1753.813 - - - - 331.911 

We find llw in Table 8-3. The standard deviation ofW is found through linear algebra using 

the relationship uw = .J uyT pyuy. In this relationship, Uy is the vector of uy,for 2 :::; i :::; 

10, uyT is the transpose of that vector, and py is the functional correlation between CERs 

ofWBS elements 2 through 10. The matrix py is a 9x9 element sub-matrix of the entire 
lOxlO functional correlation matrix. In this case, we need the lower 9 rows and columns 
to calculate the first row and first column of the full 1 Ox 10 matrix. 

In our example, all elements of py are Type III -1 or Type II -1 functional correlations, for 
which we provide examples in other parts of this section. 
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1 0.1969 0.2309 0.1924 0.1753 0.1927 0.1937 0.1893 0.1785 

0.1969 1 0.1961 0.1979 0.1804 0.1983 0.1993 0.1948 0.1837 

0.2309 0.1961 1 0.1946 0.1774 0.1950 0.1959 0.1915 0.1806 

0.1924 0.1979 0.1946 1 0.1790 0.1968 0.1978 0.1933 0.1823 

py = 0.1753 0.1804 0.1774 0.1790 1 0.1794 0.1803 0.1762 0.1662 

0.1927 0.1983 0.1950 0.1968 0.1794 1 0.1981 0.1936 0.1827 

0.1937 0.1993 0.1959 0.1978 0.1803 0.1981 1 0.1946 0.1836 

0.1893 0.1948 0.1915 0.1933 0.1762 0.1936 0.1946 1 0.1794 

0.1785 0.1837 0.1806 0.1823 0.1662 0.1827 0.1836 0.1794 1 

Knowing the values of the lx9 vector ay and the 9x9 matrix py , the standard deviation of 

W is calculated through the linear algebraic relationship aw = .J ayT pyay = 331.911. 

Using Jl.w = 1753.813 and aw = 331.911, we can calculate Pw and Qw, where: 

1 ( /lw
4 

) Pw = -ln 2 2 = 7.452, and Qw = 
2 llw +ow ( aw') ln 1 + llw2 = 0.188. 

Now that the parameters of the underlying normal distribution of W are known, we can 
calculate values of E[Wc] and subsequently E[Y1] and O"y • 

1

First, E[Wc] = e(cP+iQ2c2) = e(co.9)(7.452l+i(co.9)(o.laa))') = 829.654, and since E[Yl] = 

bE[Wc], then 

E[Y1] = Jl.v, = Jl.tx, = (0.498)(829.654) = 413.168. 

We can express Y1 as Y1 = (b(Lt~z Y;)C)Ey
1 

= (bWc)Ey
1 

= fw
1

Ey • 
1

Since we need to find 

O"y , and it is formed by the product of fw, and its multiplicative error, we must first find 1

a w, then account for the multiplicative error. Since W is exponentiated by the 1
coefficient, c, we must calculate the standard deviation of fw, using W's underlying 

normal distribution ( defmed by Pw and Qw ), then find the log transformation of the scaled 
normal distribution. From this process, we obtain: 

afw, = b e(2cPw+i[cQwl')(e[<Qw]' -1) = (0.498) eC2(0.9)(7.452)+(D.S)[(0.9)(0.1BB)]2)(e[(0.9)(0.1BB)] 2 -1), so 

Utw, = 69.756. 

Using the propagation of errors method, we can compute O"y1 knowing lltw,• Utw,• and ae,· 
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P. = !.ln ( llYz • ) = !.ln ( (572.706)' ) = 6 305 
Zz 2 1Jy,'+uy2 2 2 (572.706)2+(177.022)2 · ' 

ln (1 + (177.022)•) = 0.302 
(572.706)2 ' 

P. = !.ln ( IJY, • ) = ! ln ( (289.953)• ) = 5 595 
Z3 2 1Jy3 

2+oy,' 2 (289.953)2+(116.136)2 • ' 

ANALYTIC METHOD FOR RISK ANALYSIS 

8.2.1.3 Expectation of Product ofCo"elated Random Variables 
Our work is not complete since we still need to calculate the numerator of the correlation 
equation in Step 1. 

In Step 2c, we fmd the product Y1Y2 to be Y1Y2 = Y2 (bQ;t~2 Yj)C)e1. 

In Step 2d, the expectation of the product Y1 Y2 is E[Y1 Y2] = E [b (~t~2 Y;Y2~t e1 ], which 

reduces to E[Y1Y2] = bE[e1JE [ (~t~2 YiY2~)1 

Since E[e ] 1 = 1, we can further reduce this to E[Y Y ] 1 2 = bE [ (~t~2 Y;Y2~) c] = bE[Vc]. 

This is solvable knowing the following: the means and variances of the products, V; = 
1 

Y;Y2c, are calculable; the products can be summed to form the random variable, V, where 

V = ~ V;; and the term Vis lognorrnally distributed, so E[Vc] = e 
1 2 •) ( cPu+2Quc . 

1 

We start with calculating the moments of the product Y;Y2c. As an example, we will set 
1 

i = 3 and find the mean and variance ofV3 = Y3Y2c. Using the method described in 
Section 5.3, we defme the lognormal RVs, Y2 and Y , 3 using the normally distributed RVs, 
Z2 andZ • 3

Using Equations 4-5 and 4-6 with values for fly , Uy , fly , and Uy from Table 8-4, we 2 2 3 3 

obtain: 
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Qz, = ln ( 1 + :: :) = ln ( 1 + ~~~::~::~:) = 0.386, and the correlation between this 

pair of normal RVs is calculated as: 

pz z = 1 ln[1 + (0.1961)(.JeC0.302)' -1.JeC0.3B6)' -1)] = 0.2067 
2• 3 (0.302 )(0.386) 

c 
1 

So the new distribution formed by the product Y3 Y2 has an underlying normal 

distribution, u3, where: 
1 1 

Pu, = Pz, +- Pz, = 5.595 +-6.305 = 12.601, and 
c 0.9 

Q'tJ = Q:, + 2pz,.z, !Qz,Qz, + 1
2 Q:, = (0.386)2 + 2(0.2067)2..(0.386)(0.302) + (0·302)

2 

= 
3 c c 0.9 0.9 

0.315 

Then, the mean and variance of V3 are found by transforming U3 back to a lognormal 
distribution, v3. 

uv, = e(2Pu,+~~.) (eQ~, -1) = e(2(12.601)+(o.s)(o.31s))(e"·'15 -1) = 1.953£ + 05. 

We need to repeat this procedure for all V;, so after computing the remaining Vi terms, we 
obtain the results in Table 8-5. 

Since V is to be exponentiated, we will need to find both its mean ( J.l.v) and standard 
deviation ( uv) in order to perform the exponentiation. The mean of V, J.l.v, is the sum of 
the elements J.l.vp which is 2145735.39. 

Table 8-5 Calculation of Vi Distribution Parameters 

i Jlv, D"y, Pz, Qz. Pz2.z1 Pu, Qu, Jlv, av, 

2 572.706 177.022 6.305 0.302 1.0000 13.310 0.638 739228.715 4.730E+05 
3 289.953 116.136 5.595 0.386 0.2067 12.601 0.561 347348.652 1.953E+05 
4 83.816 32.440 4.359 0.374 0.2414 11.364 0.559 100760.716 5.647E+04 
5 18.014 4.544 2.860 0.248 0.1984 9.866 0.455 21360.402 9.737E+03 
6 230.920 46.015 5.423 0.197 0.1802 12.428 0.419 272559.191 1.142E+05 
7 58.248 18.186 4.018 0.305 0.2000 11.023 0.497 69341.165 3.448E+04 
8 33.068 6.960 3.477 0.208 0.1991 10.482 0.429 39108.488 1.678E+04 
9 119.965 34.446 4.748 0.281 0.1959 11.753 0.478 142530.987 6.827E+04 

10 347.120 120.764 5.793 0.338 0.1863 12.798 0.519 413497.078 2.149E+05 

l: 1753.813 331.911 - - - - - 2145735.39 -
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The standard deviation of V, lTv, is calculated through the linear algebraic relationship, 

lTv = .J uvT pyCTy. To find this quantity, we need to know the values of the 9x9 correlation 

matrix py, whose elements are Pv·v· = Py.v1/cy.v1fc. 
I• } 1~2 I }~2 

This correlation matrix is formed 

by computing the individual 9x9 elements as follows: 

Fortunately, we have already calculated the values of llvtand CTyt (thus ttv and uv as well) 1 1

in Table 8-5, but we need to know E [lilJY2~] in order to find Pvtvz'l<,y y 1fc and complete 
1 2

the calculation of lTv= .JuvT pyCTy. 

The term E [lilJY2~] is calculated through the triple product of lognormal RVs with one 

RV (Y ) 2 raised to a power- a task that is non-trivial but essential. Fortunately, we can 

solve this problem using our knowledge of the expectations of products oflognormal RVs. 
The triple product is formed by Sllmming the parameters P and Q of the underlying normal 

2 

distributions of Y;, lf, and Y2<, then transforming this sum back to a lognormal distribution 
2 

representing Y; lj Y2 <. 

2 

We represent the variable of the triple product of Y;, lf, and Y2< as a lognormal 

distribution, T2,;,j, with the underlying normal distribution S2,i,j such that Tz,i,j = es2.t.i. 

5 .. and 2 
· 2 i 1 is defined by mean Ps variance Qs .. which are: 

' ' 2 ,l,J 2 ,I.,) 

2 
Ps

2 
•• = Pz. + Pz. +-Pz

2
, and 

,t,J t Jc 

For one of the elements where i = 3 and j = 4, Ps ,,,< 
2

= Pz, Pz
4 

Pz
2

+ +; , which becomes 

••• 
+ 2 

Ps,.. = 5.595 4.359 + -6.305 = 23.965. 
0.9 

The correlation coefficient of the normal distributions Z3 and Z4 is a transformation of 

PY,,v , which has already been calculated. 
4
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Pz,,z4 = 
1 

In [1 + {Jy3,y4 (.J eQ1, - 1j eQi. - 1 )] = ( )
1
( ) In [1 + 

Qz3Qz4 0.386 0.374 

(0.1961)(v' eC0·386)
2

- 1v' eC0·374)
2

- 1)] = 0.2078 

We obtain Pz2,z3 and Pz2.z4 similarly. 

Pz2,z3 = 
1 

In [1 + PY2,y3 ( v' eQ12 - 1j eQi, - 1 )] = ( )
1
( ) In [1 + 

Qz2 Qz3 0.302 0.386 

(0.1969)(v' eC0·302)
2

- 1v' eC0·386)
2

- 1)] = 0.2067 

Pz2,z4 = 
1 

In [1 + PY2,y4 ( v' eQ12 - 1j eQi. - 1 )] = ( )
1
( ) In [1 + 

Qz2Qz4 0.302 0.374 

(0.2309)(v' eC0·302)
2

- 1v' eC0·374)
2

- 1)] = 0.2414 

Using the values of Qz , 2 Qz,, Qz , 4 Pz,.z , 4 Pz2,z3 and Pz2,z4 we can get the parameters of 

s2,3,4· 

Q 2-
Sz,3,4 -

Qz, 
2 + Qz4 

2 + (~ Qz2 r + 2 {Pz,,z4 Qz, Qz4 + Pz,,z2 Qz, (~ Qz2 ) + Pz4 ,z2 Qz. (~ Oz2)} 

Qs2,3,4 
2 = (0.386) 2 + (0.374) 2 + ec0~39°2)r + 2 { (0.2078)(0.386)(0.374) + 

(0.2067)(0.386) ( 2
(
0

"
302

)) + (0.2414)(0.374) ( 2
(
0

"
302

))} = 1.027 
0.9 0.9 

The mean ofT · · 2 (also known as 
,l,J 

E [r,r;y:2~j) is "r .. = e(Ps2-"i+iQs2.t/). 
l 1 ' I"" 2,,,) 

So in the case where i = 3 and 1· = 4 
' 

flr = e(Ps2,,,.+iQs2,M 
2

) = e(23.965+(o.s)(1.027)) 
2,3,4 ' 

which is E[T2,3,4 ] = flr2,,,4 = 42744227758. 

, , 
Now we can calculate

av

E[Y3Y4Yz~]-"v3"v4 
 Py y 1/c Y, y 1/c = , 

3 2 • 4 2 uv3 4 

which IS 

- 42744227758-(347348.652)(100760.716) - 0 5989 
Pv v 1/C v v 1/C - - , , 

'3'2 •'4'2 (1.953E+05)(5.647E+04) 

This process must be repeated for all i, j to compute Pv as: 
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1 0.7036 0.7264 0.8180 0.8609 0.7682 0.8543 0.7877 0.7351 

0.7036 1 0.5989 0.6578 0.6761 0.6292 0.6779 0.6394 0.6039 

0.7264 0.5989 1 0.6704 0.6909 0.6401 0.6919 0.6510 0.6141 

0.8180 0.6578 0.6704 1 0.7702 0.7067 0.7695 0.7203 0.6776 

py = 0.8609 0.6761 0.6909 0.7702 1 0.7297 0.7992 0.7450 0.6993 

0.7682 0.6292 0.6401 0.7067 0.7297 1 0.7302 0.6858 0.6462 

0.8543 0.6779 0.6919 0.7695 0.7992 0.7302 1 0.7450 0.6999 

0.7877 0.6394 0.6510 0.7203 0.7450 0.6858 0.7450 1 0.6577 

0.7351 0.6039 0.6141 0.6776 0.6993 0.6462 0.6999 0.6577 1 

Performing the calculation, uv = .J uvT PvUv = 1137353.64.  

Since we know Jl.v and O"y, we can calculate the parameters of the underlying normal 
distribution Pu and Qu so we can calculate E[Y Y ]. 1 2

bE[Y1Y2J =bE [(~t~2 Y;Y))c] = bE[Vc] = be(cPu+~Qu•c•) = 

(0.498)e(co.9)(14.46)+~(co.9)(o.49a))2) = 245930 

8.2.1.4 Computing the Type 1-2 Functional Correlation 
In step 3, we find the functional correlation Pv

1
,v

2 
by combining terms into the expression 

found in Step 1. 

= E[Y1Y2]-E[Y1]E[Y2] = 245930-(413.17)(572.71) = 
0

_
2614 PY,.v. ,jvar(Y1 ),jvar(Y2 ) (201.05)(177.02) 

8.3 Type 11-1 Functional Correlation 
In this case, we have two CERs Y1 and Y2 expressed as functions of the same random 
variable, X. 

Yj = fi.(X)Ei = (ai + biXci)Ei; where 
a;, b;, and c; are coefficients of the CERs with (Var(·) = 0), 
E; are multiplicative errors of the CERs with Jl.ei = 1, and a 
given value of u,i 
Pti.<i = 0, since CERs and their errors are assumed to be 
independent. 

8-2 

We can find the Type II-I functional correlation between these CERs since they share a 
common variable, X. The correlation between these two CERs is Pv

1
,v , 

2
and based from 

Step 1. 

8-3 
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Clearly, we will need to find the formulae for Cov(Y , 1 Y ) 2 and Var(Y;) to find {Jy ,y . 1 2 

Using Equation 7-6 from the propagation of errors method, the standard deviation of 

Y; is uy1 = .Jvar(Y;), where (Y;) = (llt1u.f + (ll.1utf + (ut1u.f. 

If Y1 and Y2 are CERs with multiplicative errors, then ll•; = 1 and we know u. from the 1 

percent standard error of the CER. Var(Y;) reduces to: 

8-4 

The terms llt;,Ut; are computed from Equations 4-28 and 4-29 as follows: 

llt1 = a; + b;E[xcq 

Ut; = b/Var(XCi) = bi.JVar(XCi) 

Var(Y;) = u.
1
2 (a;2 + 2biE[xc;] + b/E[xcqz + 

b/Var(Xci)) + b/Var(Xci) 

8-5 
8-6 

8-7 

Using the results from Section 4.3.3 and assuming X is a triangular distribution, X = 

T(L, M, H), then: 

We need to calculate /.ly and Uy . 1 1

The standard deviation of Y; is calculated using the propagation of errors method: 

The Type ll-1 correlation between the CERs is: 
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Using Step 2c, 

Multiplication of terms produces: 

Calculating the expectation of the terms in Step 2d: 

Separating constant scaling terms: 

Expectations with the product [e1 e ] 2 appear consistently, so we will defme the product as 
w, such that 

E[e1e2J = E[w] = J.Le1 J.Le2 + Pe1e2 Ue1 Ue2 = 1 + Pe1e2 Ue1 Ue2 , which is a constant defined by 

the CER. 

E[Y1Y2] = a1a2E[w] + a1 b2E[w] E[xcz] + a2b1 E[w] E[xcq + b1 b2E[w] E[xc1+c2 ] 

E[Y1Y2] = E[w](a1a2 + a1 b2 E[xcz] + a2b1 E[xcq + b1 b2 E[xc1+c2 ]) 

And we know E[w] = ( 1 + Pe1 ,e2 Ue1 Ue2 ) and 

k 2 {Mk+2_Lk+2 
E[x ] = (H-L)(M-L) k+2 

We can solve E[xc1], E[xcz], and E[xc1+cz] using formulas for E[xk] and substituting k 

for cv c , 2 c1 +c • 2 Formulas for E[Xk] for different distribution types are located in 

Appendix A- Probability Distributions. 

So if X is defined by a triangular distribution, then we have the following for Step 3: 
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- ( l+Pet,ezUel Uez)(ataz+atbz E[xCz]+azbt E[xCt ]+btbz E[xCt +czl)-p.fl Jlfz 

- Tif,t{ju/i 2+uei 2/lfi 2+u /i 2uei 2) 

Of course, not every function will have the form, Y; = fi(x)Ei = (ai + bixci)Ej, so we will 
consider three simplified cases. 

Case 1: ifc1 = 1,andc2 = 1 thenfi = (Uj +bix)Ei 

Special Case 3: if a1 = 0, and a 2 = 0; and a,
1 

= 0 and a,
2 

= 0; then Yi 
is the case from Garvey (2000). 51 

= b·xc; which 
I ' 

8.3.1 Common Predecessor Functional Correlation 
In the case of a schedule network with parallel tasks, we are faced with the situation 
whereby we must compute the functional correlation between two tasks T1 and T2 that 
have the same predecessor, P, that has a finish date F P· Assume the durations of Tl and 
T2 (D1 and Dz, respectively) are correlated by p01,v • 

2
The start dates of T1 and T2 are F 1 

and F2 respectively. The finish dates ofTl and T2 are F1 = Fp + D1 and F2 = Fp + D2 • 

The resulting standard deviations of the fmish dates are aF1 = F / + D/ and aF2 = j 
jFpz +Dzz. 

Using Step 1, the correlation between F 1 and F 2 is expressed mathematically as: 

Step 2a: if J1.F1 = Jl.Fp + J1.v1 and J1.F2 = Jl.Fp + J1.v2 , then 

51 Garvey, P. R (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineering 
Perspective. New York, NY: Marcel Dekker. 
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Step 2b: the standard deviations of F 1 and F 2 are 

Step 2c: The first expectation term requires expansion of the product F1 F , 2 which is 

Step 2d: then the product moment is 

Since E[Fp 2 ] = JlFp 
2 + uFp 

2
, 

Step 3: the correlation between the two finish dates is then 

PFvFz 

JlFp 
2 + UpP 

2 + JlFpJlD2 + JlFpJlD1 + Jln1JlD2 + PDvDzuD1 Un2 - JlFp 
2 

- JlFpJlD2 - JlFpJlD1 - Jln1JlDz 
=~~--~----~~--~~--~~~--~~~~--~----~~--~~~--~~ 

Through cancellation of terms, we arrive at Equation 8-8 - a useful relationship in schedule 
uncertainty analysis. 

8-8 

8.3.2 Type 11-1 Functional Correlation Example 
For this example we will calculate the functional correlation between two CERs (Y2 

and Y3 ) that share a co=on cost driver (X = X2b = X3 ), which is defined as the frequency 
of operation. The CERs are defmed as: 

They share the random variable, X, where X= T(16,17,18); and the CER uncertainties are 
u,

2 
= 0.3, u,, = 0.4, and p, ,,

1 2 
= 0.2. The other driver of CER Y2 is X2a, which is 

defined by a triangular distribution T(2,3,4). 

When statistically summing these CERs in a WBS we need to find the functional 
correlation, PY ,y • 

2 3 

In the first step of the calculation process, we define the correlation between the CERs as 
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In Step 2a, we fmd the means of Y2and Y • 3

E[Y2] = 34.36E[X2a 0"
5]E[X2b 

0
"
8 ]E[e2], and [Y3] = 30.06E[X3 °"8]E[e3] 

Since E[e2] = 1 and E[e3] = 1, 

E[Yz] = 34.36E[X2a 0"
5]E[X2b 

0
"
8
], and E[Y3] = 30.06E[X3 °·8 ] 

Using the relationship for the expectation of a triangular PDF raised to a power, k, and 
substituting the parameters of the triangular PDF, we get 

E[X2a 0"
5

] = 1.728, E[X2b 
0

"
8

] = 9.646, and through similarity E[X3 °"8
] = 9.646 

The means of Y2 and Y3 are, therefore, 

E[Y ] 2 = (34.36)(1.728)(9.646) = 572.706, and 

E[Y ] 3 = (30.06)(9.646) = 289.953. 

In Step 2b, we find the standard deviations of Y2 and Y . 3 Using the relationship for the 
variance of a triangular PDF raised to a power, k, and substituting the parameters of the 
triangular PDF, we get 

Var(X 0 5 0 8 8
· ) · ) ) 2a = 0.01407, Var(Xzb = 0.03435, and Var(X3 °· = 0.03435. 

We need to combine the independent variables in CER Y2 to fmd Var{tx ). 
2

Var{tx2 ) = 

(34.36) 2 [E2 [X2b 
0

·
8]Var(X2a 0·

5
) + E2 [X2a 0·

5]Var(X2b 
0

·
8

) + Var(X2a 0·
5)Var(X2b 

0
·
8
)] 

This results in Var(fx ) 
2

= 1667.360. Combining Var(fx ) 
2

with the variance of the error 

term using the propagation of errors method results in: 

Var(Y2 ) = [Var(fx
2

) + E2 {tx
2
)Var(e2 ) + Var{tx

2
)Var(e2 )] = 31336.746 

Similarly, 

Uy2 = vf31336.746 = 177.0219 and Uy
3 

= vf13487.670 = 116.136 

In Step 2c, we fmd the product Y2 Y , 3 which is 

89 
© 2012 Covarus, LLC. All rights reserved. 



ANALYTIC METHOD FOR RISK ANALYSIS 

Y2Y3 = (34.36X2a 0'5X2b 0'8e2)(30.06X3 °'8e3) = (34.36)(30.06)(X2a 0'5)(X2b 1'6)(e2e3) 

Y2Y3 = 1032.862(X2a 0'5)(X2b 1·6)(e2e3) 

E[X2b 1'6] = 93.076 

Following Step 2d, the expectation of this product is 

Using inputs and previously calculated values, this becomes 

E[Y2Y ] 3 = (1032.862)(1.728)(93.076)(1 + (0.2)(0.3)(0.4)) = 170106.250 

The product E[Y2 ]E[Y ] 3 is 

E[Y2 ]E[Y ] 3 = (572.706)(289.953) = 166058.082 

Combining these values into {Jy,.y results in 
2 

= E[Y2 Y3]-E[Y2]E[Y3 ] = 170106.250 -166058.082 = 4048.168 = O 
1969 PYvYz oy

2
oy

3 
(177.022)(116.136) 19959.751 · 

8.3.3 Type 11-1 Functional Correlation between Multivariate Functions 
What is the correlation between two CERs that have two RVs and share one RV in 

co=on? 

Y1 = f1(v,w)E; = (~ + b1xc1Wd1)E1 , and Y2 = f2(u,w)E; = (a2 + b2xczud2 )E2 ; 

where 

a1, b1, and c1 are coefficients of the CERs with (Var(') = 0), 

E; are multiplicative errors of the CERs with J.l.., = 1, and 

Pt;.•; = 0, since CERs and their errors are assumed to be independent. 

Y1Y2 = [(a1 + b1xc1 Wd1 )e1][(a2 + b2xczudz)e2] = (e1a1 + e1b1xc1 Wd1 )(e2a2 + 
e2b2xczudz) 

E[Y1Y2 ] = a1a2E[e1e1] + E[e1e1]a1b2E[xczudz] + E[e1e1 ]a2b1E[xc1 wd'] + 
E[ e1 e1]b1 b2E [ xc1 wd1 xczudz] 

90 
© 2012 Covarus, LLC. All rights reserved. 



ANALYTIC METHOD FOR RISK ANALYSIS 

E[Y1Y2 ] = 
E[cu]{a1a2 + a1b2E[xcz]E[udz] + a2b1E[xcl]E[wdl] + b1b2E[xc1+cz]E[wd1]£[udz]} 

ur, = b1v'E[x2c1]E[w2d1]- (E[xc1]E[wd1])2 

Var(uczwdz) = E[x2czu2dz]- (E[xczudz])2 = E[x2cz]£[u2dz]- (E[xc•]E[udz])2 

Utz = b2v' E[x2Cz]E[u2dz]- (E[xcz]E[udz ])2 

PY,.Y2 = 
( l+p•1 .• 2a.1 a.2)(a1a2+a1b2E[x<z]E[udz]+a2b1E[x<1]E[wd1]+b1b2E[x<1 +<z]E[wdl]E[udz ]}- llt1 1ltz 

n~=1(Ju /i 2+uei 2J.Lfi 2+u /i 2uei 2) 

If u and w are constants; and if u = 1 and w = 1, then 

8.4 Type 11-2 Functional Correlation 
This type of functional correlation occurs when two nested functions share one or more 
RVs in common. This occurs in a resource-loaded schedule where costs are derived from 
particular task durations. 

Consider a simple case of the cost of a project with three WBS elements where the total 

cost is the value X rot· 

© 2012 Covarus, LLC. All rights reserved. 

Xrot = X1 + X2 + X4 , where X; is the cost ofWBS element i. 
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Now consider the schedule duration of the project, D, where its total duration is 

Drat= D1 + D3 + D4 , where D; is the cost of task i. 

We also know that the costs of WBS elements 1, 2, and 4 are their respective durations 

multiplied by a rate, r;, where X; = D;r;. 

Following Step 1 of the functional correlation calculation process, the correlation between 

total cost and total schedule duration can be expressed as: 

In Steps 2a and 2b we calculate E[Xrotl, [Drotl, Uxrot' and uDrot" 

In Step 2c the product XrotDrot is 

In Step 2d, we calculate 

E[XrotDrotl = J.lx1J.lD1 + J.lx1J.ID3 + J.lx1J.lD4 + J.lx2J.lD1 + J.lx2J.ID3 + J.lx2J.ID4 + J.lx4J.lD1 + 
J.lx4J.ln3 + J.lx4J.ln4 

and 

E[XrotlE[Drotl = E[X1D1 ] + E[X1D3] + E[X1D4 ] + E[X2D1 ] + E[X2 D3] + E[X2D4 ] + 
E[X4 D1 ] + E[X4 D3] + E[X4 D4 ] 

By inspection we see the only remaining terms in E[XrotDrotl - E[XrotlE[Drotl will be 

the sum of all pairs of Px.,viux;uvr Let us assume for simplicity that Px;.vi = 1 fori = j 

and Px;.vi = 0 fori* j. This reduces the numerator of the correlation expression in Step 

Ito 

Dividing by the product UxrotuDrot we have 
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Since Xi = Diri> we can reduce this correlation to a combination of rates and task durations 

We see from this example that if schedule durations in the critical path are uncorrelated, 
they drop from the numerator of the expression of total cost and schedule correlation and it 
becomes a sum of covariance terms. 

8.5 Type 111-1 Functional Correlation 
Type ill functional correlation exists between pairs of random variables such as two CERs 
Y1 and Y2 that share a partially-dependent random variable such as their multiplicative 
errors. In this case we wish to find 

The formula used to determine the correlation coefficient from Step lis 

E[Y1 Y2] - E[Y1]E[Y2] 

PxY = --'i;o?=~~2~~ 
' ,)var(Y1),/Var(Y2) 

E[(a1 + b1X1c1 )E1(a2 + b2X2c2)E2]- E[(a1 + b1X1c1)E1]E[(a2 + b2X/2)E2] 
= 

,/Var((a1 + b1X1 c1 )E1),/Var((az + bzX/2 )Ez) 

E[(a1 + b1X/1 )E1(a2 + bzX/2 )E2]- E[(a1 + b1X1c1 )E1]E[(a2 + b2X/2 )E2] 
= 

b1 b2,/Var((X1 c1 )E1),/Var((X2 c2 )E2) 

Using Step 2a, from Equation 8-5, E[Y;] = a; + biE[xcq 

Step 2b, from Equation 8-6 shows, ay, = bi,/Var(X{1Ei). Since X{1 and Ei are 

uncorrelated, we use the propagation of errors method, which results in: 

Expanding the product of the variables (Y1 Y2) in Step 2c results in: 

Taking the expectation of the product in Step 2d, 

E[Y1Y2] = 

a1a2E[E1E2] + ~b2E[E1E2]E[X/2] + a2b1E[E1E2]E[X1c1 ] + b1b2E[E1E2]E[X1c1 ]E[X/2 ] 
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This results in the expectation term 

E[Y1Y2 ] = a1a2(1 + Pe1,e2 Ue1 Ue2 ) + a1b2(1 + Pe1,e2 Ue1 Ue2 )E[X2 c2
] + a2b1(1 + 

Peve2 Ue1 Ue2 )E[Xlc1
] + blbz{l + Peve2 Ue1 Ue2 )E[X1c1 ]E[X/2

] 

E[Yl]E[Yz] = (Ut + b1E[X1c1])(a2 + b2E[X2c2]) 

E[Y1]E[Y2J = a1a2 + a1b2E[X/2 J + a2b1E[X1c1
] + b1b2E[X1c1]E[X/2

] 

Calculating the numerator of the correlation equation: 

E[Y1Y2]- E[Y2]E[Y2] 

= a1a2 (1 + Pe1,e2 Ue1 Ue2 ) + a1b2(1 + Pe1,e2 Ue1 Ue2 )E[X2 c2
] 

+ a2b1(1 + Pe
1
,e

2
Ue

1
Ue

2
)E[X1c1

] + b1b2(1 + Pe
1
,e

2
Ue

1
Ue

2
)E[X1c1 ]E[X2c2

] 

- (a1a2 + a1b2E[X/2 ] + a2b1E[X1c1 ] + b1b2E[X1c1 ]E[X2c2 ]) 

Cancelling terms: 

E[Y1Y2] - E[Y2]E[Yz] 

= a1a2(1-+Pe1,e2 Ue1 Ue2 ) + a1b2{±+Pe1,e2 Ue1 Ue2 )E[X/2
] 

+ a2b1(±+Pe1,e2 Ue1Ue2 )E[X1c1] + b1b2(±+Pe1,e2 Ue1Ue2 )E[X1 c1 ]E[X2 c2
] 

- (a;a,. I a;~;hzE[X/7] I a,.-%E~X/if] I -%hzE~X/if]E~X/7]) 

E[Y1Y2]- E[Y2]E[Y2] 

= a1a2(Pel,ezUe1Uez) + a1b2(Pel,ezUe1Uez)E[X2cz] 

+ a2b1(Pe1,e2 Ue1 Ue2 )E[X1 c1
] + b1b2(Pe1,e2 Ue1 Ue2 )E[X1 c1 ]E[X2 c2

] 

E[Y1Y2]- E[Y2]E[Y2] 

= (Pe
1
,e

2
Ue

1
Ue

2
)(a1a2 + a1b2 E[X2c2 ] + a2b1E[X1c1

] 

+ b1 b2E[X1 c1]E[X2 Cz]) 

Finally, using Step 3 we arrive at: 

(Peve
2
)(a1a2 + a1b2E[X/2 ] + a2b1E[X1c1 ] + b1b2E[X1c1]E[X/2 ]) 

Px,Y = II bi.J[E2(X;ci)Var(e;)] + [Var(X;ci)] + [Var(X{i)Var(e;)] 
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(Pe1,e2)(bl b2Jlx1Jlx2) 
Px Y = ;:::;-:-r.=.;::;:;:::=<=:=:=~~~~~~~=;:::;:===:;:::::;;:::;:===;~"' ' TI b;v'[E2 (X;)Var(E;)] + [Var(X;)] + [Var(X;)Var(E;)] 

8.6 Type 111-2 Functional Correlation 
Type III-2 functional correlation exists between pairs ofRVs that are related to each other 
through different functions of their dependent variables. One example of Type III-2 
correlation is the correlation between two sununary-level (parent) WBS elements that have 
correlated lower-level WBS elements (i.e., their children). The WBS shown in Table 8-6 
has costs that are correlated with p (a correlation matrix). 

Table 8-6 Example WBS 

WBS J1 u 
1. 37.000 10.325 
1.1 10.000 4.000 
1.2 12.000 5.000 
1.3 15.000 6.000 
2. 36.000 10.555 
2.1 18.000 7.000 
2.2 6.000 3.000 
2.3 12.000 5.000 

The matrix, p, representing the correlation between each of the lower-level WBS elements 
is shown below. 

1 0.2 0.2 0.2 0.2 0.2 
0.2 1 0.2 0.2 0.2 0.2 
0.2 0.2 1 0.2 0.2 0.2 p= 
0.2 0.2 0.2 1 0.2 0.2 
0.2 0.2 0.2 0.2 1 0.2 
0.2 0.2 0.2 0.2 0.2 1 

Using the values of a; of the lower-level WBS elements shown in Table 8-6, we are able to 
compute the standard deviations of sununary-level WBS elements a1 , a2 , and arot· The 
correlation matrix above can be partitioned into four sub-matrices, or partitions. The 
matrix shown in Figure 8-1 shows the partitions used to calculate a1 (upper left) and a2 

(lower right). The remaining two partitions represent the correlation between WBS 
elements that are children of different parent WBS elements. 
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p ~j 1.1 

1.1 1 

1.2 

0.2 

1.3 

0.2 

2.1 

0.2 

2.2 

0.2 

2.3 

0.2 

1.2 0.2 1 0.2 0.2 0.2 0.2 

1.3 0.2 

2.1 0.2 

0.2 

0.2 

1 

0.2 

0.2 

1 

0.2 

0.2 

0.2 

0.2 

2.2 0.2 0.2 0.2 0.2 1 0.2 

2.3 0.2 0.2 0.2 0.2 0.2 1 

Figure 8-1 Partitioned Correlation Matrix 

The correlation coefficient between WBS elements 1 and 2 can be represented by p1,2• 

This value is related to the lower left and upper right correlation coefficients in the 
partitioned correlation matrix. 

R · tha emem b enng t 2 ~n 2 2 ~n ~n-1  UTot = ~i=l ui + .t....Jc=j+l.t....j=l Pj,JcUjUk, we can express . 
UTot m two 

ways. The first uses the variances and covariance of the summary elements, 

uTot2 = u1
2 + u2

2 + 2p1,2u1u2, and the second uses the variances and covariances of the 
lower-level WBS elements, 

Since both equal uTot• we can say 

By solving for p ,1 2u1 u , 2 we get the correlation between WBS elements 1 and 2: 

8.6.1 Type 111-2 Functional Correlation Example 
For our example, we will continue the calculation with values from Table 8-6. 

If we calculate UTot using lower-level WBS elements we have UTol = 160 (or UTot = 
17.550). 

Finding the terms for the formula used to calculate the correlation coefficient between 
WBS elements 1 and 2, we have: 

( a1.1z+ .. +az.3z)-( alz+O"zz) = (160-218) = -29 
2 2 ' 
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= (74)+(-29) = 45 = 0.4129 
P1,2 (10.325)(10.555) 108.974 

Urot2 = (10.325) 2 + (10.555) 2 + 2(0.4129)(10.325)(10.555) = 160, or Urot = 17.550. 

8. 7 Section Summary 
Knowing how to compute functional correlations allows us to use MOM summation in a WBS 
structure and to solve many of the problems germane to probabilistic schedule network analysis. 
The functional correlation between elements of cost and schedule models allows the analyst to 
determine their influence on the total variance of an estimate and to construct joint probability 
density functions of pairs of modeled variables such as cost and schedule. 
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9 Discrete Risks 
Analysts may need to include the probabilistic impacts of unique, independent, and 

discrete risk events in an estimate developed with a particular method (e.g., parametrically, 

with a CER) that does not account for their impacts in their underlying assumptions. We 

will define a set of individual risks, R , 1 as independent events with respect to (WRT) each 

other. We will also assume each R1 has a probability of occurrence of P1 and an associated 

impact of D 52 
• 1 These unique, independent risks are denoted as R1 (P , 1 D ). 1

The PMF for each R1 is: 

{ 
p. 

fR,(x) = 1 ~ P; 
;x = D1 
; otherwise 

9-1 

The PMF fR,(x) has two possible values: one in which the risk occurs with probability, P;, 

and one where no risk occurs with probability 1 - P1. This discrete risk has two possible 

states, or a set of potential outcomes. The problem becomes more interesting (and 

practical) when we are dealing with more than one risk. If we have n possible risks, 

where n ;::: 1, we will have k risk states (possible outcomes) as defined by the binomial 

coefficient 53
, 5 : 1 0 S i S k, where: 

9-2 

When we add a single discrete risk (R ) 1 to the estimate (C), a new type of distribution 

called a mixed distribution54 is formed from the continuous distribution of C and the 

discrete distribution of R1 (Evans & Rosenthal, 20 I 0). 55 The mixed distribution will have 

mean JlM and standard deviation aM. The statistics of the mixed distribution are not well 

publicized in the cost analysis literature, so we will first introduce the formulae for JlM and 

aM for the simple single-risk case, then the more difficult multiple-risk case, and finally the 

general formulae that treat the impacts of a discrete risk as random variables. 

9.1.1 Single Discrete Risk Case 
In this case, we have one discrete risk (R ) 1 and therefore two possible states defined by k, 
where k = 21 = 2. These states are: (1) 50 = R , 1 where R1does not occur, and (2) 51 = 
R , 1 where R1does occur. This situation is depicted in the Venn diagram in Figure 9-1. 

52 
The impact, Di> may be either a discrete or a random variable (with parameters l!o, aod cr0 ,). When D, is a 

raodom variable, tbe discrete risk R, is actually a mixed distribution. 
53 By ao "outcome," we meao a combination oftbe n possible risks composed of !bose !bat actually occur. 
54 The mixed distribution is also called a "mixture distribution". 
55 Evaos, M. J., & Rosentbal, J. S. (2010). Probability aod Statistics: The Science of Uncertainty, 2nd Ed. 
New York, NY: W. H. Freeman aod Co. 
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Figure 9-1 Venn Diagram Representation of Single-Risk State 

If we use the same continuous distribution (C), and apply the discrete risk (R1 ) with 
probability of occurrence P1 and cost impact D1 , then this results in a multimodal, mixed 
probability distribution. This multimodal probability distribution will have k = 2 
localized peaks or modes, defined by the number of possible states with the height of each 
mode defined by the probability of occurrence of the two states, 50 and 51 (Figure 9-2). 

0 
X 

Figure 9-2 Probability Distribution of a Single Discrete Risk 

When P1 = 0.5, the probability of 50 , P(S0 ) , is equal to the probability of 51 , P(S1 ) . 

Since 50 and 51 have equal probabilities of occurrence, we expect the heights of the modes 
of the bimodal distribution to be equal, as shown in Figure 9-3, and the mean of the mixed 
distribution to be halfway between the two modes of the distribution. 
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p(x) 

Figure 9-3 Normal Probability Distribution, C0 Rh with R1 (0. 5~ D1) + 

When P1 < 0.5 , the probability of S , 0 P(S ), 0 is greater than the probability of Sb P(S ). 1

Since S0 has a greater probability of occurrence than S , 1 we expect the height of the mode 
formed by S0 to be greater than the mode formed by S1 as shown in Figure 9-4. 
Additionally, the mean of the mixed distribution will be smaller than in the case of Figure 
9-3. 

p(x) 

Figure 9-4 Normal Probability Distribution, C0+Db with Low P1 

It is convenient to provide the information about the possible states, their probabilistic 
meaning, impact, and probabilities of occurrence in a state table such as the one shown in 
Table 9-1. 

Table 9-1 Single Discrete Risk State Table 

State,s, Defioition Risk Impact, Dst Probability, P(S;) 

So= Rl No risks occur 0 [1- P(R1 )] 

So =R1 R1 occurs D1 P(R1) 

9.1.2 Mean of Mixed Disbibution 
The JI.M and u M of the mixed distributions will be weighted by the probabilities of 
occurrence of the two states, P(S ) 0 and P(S ). JI.M 1 is calculated using Equation 9-3. 

ILM = L~=o P(St)J.l.si = L~=o P(St)(J.l.c + Dsi) 

© 2012 Covarus, LLC. All rights reserved. 
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Equation 9-3 reduces to Equation 9-4 for any number of risks (n; 1 ~ n). This derivation 
is found in Appendix C -Derivations. 

Using Equation 9-3 for the single risk case, where there are two states, we can 
equate P(S } 0 = 1- P(S }. 1 Using Equation 9-3, P(S } 0 = P , 1 and P(S ) , 1 = 1- P1 so the 

mean of the mixed distribution formed by a single risk is ILM = P(S0 )JLs
0 
+ P(S1}JLs

1 
= 

(1- P1)(JLc) + P1 CJLc + D ) 1 = Jlc + P1D . 1 This is the same result obtained using 
Equation 9-4. 

By rearranging terms, the mean of the continuous distribution (C) is shifted in the mixed 

distribution formed by the single risk case by JlM - Jlc = P 1 D . 1 Likewise Equation 9-4 can 

be easily manipulated to provide the mean shift (liJL) in Equation 9-5. 

9-5 

9.1.3 Standard Deviation of Mixed Distribution 
The standard deviation of the mixed distribution formed by n discrete risks and k states is 
the square root of the variance of the continuous distribution and the probability-weighted 

56 variances of the discrete risk states about JlM : 

uM = jcuc)2 + Lf:l P(S;)[Ds,- (JLM- JLc)]
2

, so 

O'M = jcuc)2 + Lf:l P(S;}[Ds,- liJLr, where 

Ds, = the impact of a particular state S; 

9-6 

Expanding the summations in Equation 9-6 and using the relationship derived in Equation 
9-5, we can derive a relationship for the standard deviation of the mixed distribution 

formed by C and a single discrete risk, R . 1

lip.= 'f.j=1(I'jDi) = P1D1 

uM = (uc)2 + P(So)[Ds
0 

-lip.)' + P(S,)[Ds
1 

-lip.)' 

Using the expressions for P(S ), 0 P(S }, 1 D , 50 and D51 from Table 9-1, we obtain 

56 This comes from the analogy of the variance of a distribution to the moment of inertia of an object with 
respect to an axis through the center of mass (the parallel axis theorem) from Ref 4: Helstrom, C.W., 
Probability and Stochastic Processes for Engineers, 2nd Ed, Macmillan, New York, 1991. p.ll3 
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CJM = .J (CJc) 2 + (1- P1)[0- 011]2 + (P1)[D1- 011]2 

CJM = .j(CJc)2 + (1- P1)[-P1D1]2 + (P1)[D1- P1D1]2 

CJM = (CJc) 2 + (1- P1)[P/D/] + (P1)[D/- 2P1D/ + P/D/] 

CJM = (CJc) 2 + [P/D/]- P1[P/D/] + [P1D/]- 2[P/D/] + Pt(P/D/] 

CJM = j (CJc) 2 + [P1D12] - [P/ D/] 

This simplifies to Equation 9-7. 

9-7 

9.1.4 Multiple Risks Case 
In the case where we have multiple risks, Ri , we have k possible states as defmed by 
Equation 9-2. In the case where we have n = 3 risks, there will be k = 23 = 8 possible 
events as depicted in the Venn diagram (Rubenstein, 1986) in Figure 9-5.57 

Figure 9-5 Venn Diagram Representation of Three-Risk State 

Using the state table approach for then = 3 risk case, we can list the k = 8 possible states, 
their probabilistic meanings, impacts, and probabilities of occurrence as shown in Table 
9-2. 

57 Rubenstein, M. F. (1986). Tools for Thinking and Problem Solving. Englewood Cliffs, NJ: Prentice-Hall. 
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Table 9-2 Multiple Discrete Risk State Table 

State, 51 Definition Risk Impacts, D 51 Probability, P(S1) 

S0 = R1 n R2 n R3 No risks occur 0 [1- P1][1- P2][1- P3] 
S1 = R1 n R2 n R3 Only R1 occurs D1 Ptl1 - P2][1 - P3 ] 

S2 = R1 n R2 n R3 Only R2 occurs Dz [1- P1JPz[l- P3] 
S3 = R1 n R2 n R3 R1 and R2occur D1 +D2 P1P2[1- P3 ] 

S4 = R1 n Rz n R3 Only R3 occurs D3 [1 - P1] [1 - P2 ]P3 
S5 = R1 n R2 n R3 R1 and R3 occur D1 +D3 Pt[1- P2]P3 
S6 = R1 n R2 n R3 R2 and R3 occur D2 +D3 [1- P1JPzP3 
S7 = Rt n Rz n R3 All risks occur Dt +D2 +D3 PtP2P.'I 

When the three discrete risks are combined probabilistically with the estimate (C), the 
result is a multimodal distribution with modes defined by the k- 1 = 7 scaled copies of 
the continuous distribution (C). The scaling of each of these copies is weighted by that 
particular state's P(SJ. 

9.1.5 Multiple Discrete Risks Example 
In the case where n = 3, one possible distribution formed by the k = 8 states where 
risks R1 , R2 , or R3 are present is shown in Figure 9-6. The continuous distribution C is 
defined by a normal distribution, N(1,0.2), and the three discrete risks are defmed by 
Ri(Pi,Di): R1 (0.4,1), R2 (0.3, 2), and R3 (0.2, 3). 

PDFs of Continuous (C) and Mixed (M) Distribution 

0.000 

., 
•• 
I I 

: ' 

2.000 

--- C - M 

4.000 6.000 

X 

8.000 10.000 12.000 

Figure 9-6 PDFs of Continuous (C) and Mixed Distributions 

The mean of the mixed distribution is calculated from Equation 9-4 as 

flM = flc + l.j=1(~Dj) = 1 + [(0.4)(1) + (0.3)(2) + (0.2)(3)] = 1 + [0.4 + 0.6 + 
0.6] = 2.6. 
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The mean shift, OJl, which is required to calculate uM is calculated using Equation 9-5 as 

OJl = JlM - Jlc = 2.6 - 1.0 = 1.6. 

The calculation of the standard deviation using Equation 9-6 requires calculation of the 
probability-weighted distribution of the means of the distributions formed by the k states, 

P(S;)[Ds,- OJL( These calculations are shown in Table 9-3. 

Table 9-3 Three Discrete Risk Example Calculations 

s, Ds, (Ds,- 6p.)
2 

P(S1) P(S1)(Ds,- 6p.)
2 

So 0 c -1.6)2 = 2.56 [0.6][0. 7][0.8] = 0.336 (2.56)(0.336) = 0.8602 

sl 1 c -0,6)2 = 0.36 [0.4][0.7][0.8] = 0.224 (0.36)(0.224) = 0.0806 

S2 2 (0.4)2 = 0.16 [0.6][0.3][0.8] = 0.144 (0.16)(0.144) = 0.0230 
s. 3 (1.4)2 = 1.96 ro.4H0.3H0.8l = o.o96 (1.96)(0.096) = 0.1882 

s. 3 (1.4)2 = 1.96 [0.6][0. 7][0.2] = 0.084 (1.96)(0.084) = 0.1646 
s, 4 (2.4)2 = 5.76 ro.4H0.7H0.2l = o.o56 (5.76)(0.056) = 0.3226 
s. 5 (3.4)2 - 11.56 [0.6][0.3][0.2] - 0.036 (11.56)(0.036) - 0.4162 
s7 6 (4.4)2 = 19.36 [0.4][0.3][0.2] = 0.024 (19.36)(0.024) = 0.4646 

L P(S1)(Ds,- 6p.)
2 = 2.52 

Finally, we can calculate uMusing Equation 9-6 as 

The method of preparing state tables to perform the uM calculations becomes cumbersome 
when the number of discrete risks grows large, so we will develop formulae and introduce 
a software routine to ease the computational burden. 

9.1.6 Binary State Representation 
Since the number of expected states for these binomial events given n discrete risks is 
always 2n, we can determine which risks occur in each state through binary representation 

of the state number S0 to Sc n_ ). 2 1 Conveniently, the binary representation of k = 2n states 

has n binary digits, or bits, corresponding to the number of risks. Since n binary digits 

represent 2n unique combinations, we can uniquely determine which risks occur in any 

state S0 to Sc2n_ ). 1 This is a fundamental application of the number of states of n binary 

switches, which is the foundation of Boolean addressing in computers (Kal, 2002).58 

58 Kal, S. (2002). Basic Electronics: Devices, Circuits and IT Fundamentals. New Delhi, India: Prentice Hall. 
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We will first define the rightmost digit as the first digit which indicates whether R1 occurs 
in this state (1) or does not occur in this state (0). The digit to the left of the first digit is 

the second digit which indicates whether R 2 occurs or not, and the leftmost digit as the 

third, and so on. As an example, we will assume we have three risks (n = 3) and examine 

the third possible state, S . 3 The state index, 3, is represented by the binary number (011). 
Since each of the binary digits represents whether a risk, R;, occurs in S3 we can 

determine: 1) digit one =1, so R1 occurs in S ; 3 2) digit two= 1, so R2 occurs in S ; 3 and 3) 
digit three= 0, so R3does not occur in S . 3 

9.1. 6.1 Bit Detection 
The calculation of P(S;) in Table 9-2 benefits greatly from this method of bit 

detection. 9 5 We will define the bit indicator function Yi,i to represent the binary value 

of bit j of integer i. Using the example for S3 above, we can detect the bits 

representing the risks Rv R2and R3 and determine which of the risks j occurs in S • 3 

First, set i = 3 then Y3,1 = 1, Y3,2 = 1, and Y3,3 = 0. 

We can express P(S;) in terms ofr;,i as 

9-8 

Similarly, we can use Yi,j to determine the impact of state i, D5ias 

9-9 

Equations 9-8 and 9-9 greatly simplify the problem of calculating P(S;), D5i' and aM. 

9.1.7 Adding Discrete Risks with Impacts that are Random Variables 
Until now, we have discussed the situation of discrete risks having discrete impact. Since 
the risk impacts are also estimates (and contain some uncertainty), we can modify 
Equations 9-4 and 9-6 to accommodate risk impacts that are random variables. 

Replacing the discrete value for Di in Equation 9-4 with the mean of J.l.n i' we re-define 

J.I.M to be 

9-10 

This rentains relatively unchanged as does Equation 9-5, which now intuitively becomes 

9-11 

59 The number of risks we can detect will be limited by the largest integer we are able to compute and find 
the binary equivalent. 
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The calculation of u M becomes more complicated by the fact that the impacts of the 
discrete risks are random variables. Remembering the equation for the variance of the sum 
of distributions in Equation 4-4, we must treat the variance of the sum of the continuous 
distribution ( C ) and the risk impacts ( Di) at any particular state in the same fashion. 

Using linear algebra (Covert, 2006), we can rewrite Equation 4-4 in matrix form as 

ur2 = uT pu, where 
u is a column vector of standard deviations with 
dimension lxM, and 
p is the correlation matrix with dimension MxM. 

9-12 

We will use this convenient expression for calculating the impacts of the variances of 
each Di on Um • To begin, for each state Si , we must compose a (partitioned) vector of 

standard deviations ( ui) of dimension lxM. Since we will be calculating the variance of 
the statistical sum of C and n risks, the number of rows will be M = n + 1. The top row 

element is uc, and the remaining n rows are the products of uDiYi,j representing the binary 

detection multiplied by the standard deviation of the risk impact as shown in Equation 
9-13. 

_ [(JD~~i,ll 
fTt- : 

(JDnYi,n 

9-13 

Next, we must compose the correlation matrix ( p ) of dimension MxM 

~ 
1 Pc,D1 

p = Pc:D' ~ 

C~n PD~,Dn 

··· Pc.Dn 
··· PDvDn 

1 

9-14 

Using the form of Equation 9-12, we calculate the probability-weighted variance 2 uDs; for 

each state as shown in Equation 9-15. 

9-15 

Finally, uM is computed by taking the square root of the two components that determine 
the variance of the mixed distribution: 1) the variance of the sum of the probability­
weighted variances (Equation 9-15), and 2) the probability-weighted distribution of the 
means of the distributions formed by the k states Equations 9-6 and 9-11. 
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aM= ~~=01 
P(S,) (avsY + {P(S,) [vs,- ~J=l (1JilvJn 

aM= ~~=01 P(s;){(avsY + [Ds1 -ollt} 

9-16 

Equation 9-16 reduces to Equation 9-6 when all a0 , = 0 and llv i = Dj. 

9.1.8 Discrete Risk Numerical Example 
As a demonstration, we will use the multiple discrete risks example shown previously, 
except each D; will be defmed by a normal distribution N[Jt, a] with the parameters shown 
in Table 9-4, and ( C ) defined as a "risk" with 100% probability of occurrence. We will 
use a constant value of p = 0.2 between all random variables. 

Table 9-4 Three Discrete Risk Example Inputs 

ll tT p. 

c 1.0 0.2 1.0 
R, 1.0 0.2 0.4 
Rz 2.0 0.3 0.3 
R, 3.0 0.6 0.2 

Using the example inputs, we can easily calculate llM using Equation 9-10 as follows: 

/lM = 1.0 + (0.4)(1.0) + (0.3)(2.0) + (0.2)(3.0) = 2.6 

Next, we calculate o ll using Equation 9-11 

Oil = ~J=l (1JilvJ = (0.4)(1.0) + (0.3)(2.0) + (0.2)(3.0) = 1.6 

Finally, we combine the terms in Equation 9-16 

To check this result, a 100,000-trial statistical simulation using Crystal Ball ® using the 
same inputs for the example shown above provided the following results: 

Exact (Eq. 4-48 & 4-54) Simulated 
JlM = 2.6000 flM = 2.6004 
tTM = 1.6460 fJM = 1.6495 

© 2012 Covarus, LLC. All rights reserved. 
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The difference between the simulated results and the calculated results is due to the 
statistical simulation's inability to exactly sample perfectly-distributed correlated random 
variables. We can extract the 100,000 samples and determine 1) the correlation of the 
samples used in the simulation, and 2) the frequency of Si. Using this information, we can 
re-calculate Jl.M and aM to see the effect of sampling error from the simulation. 

Table 9-5 shows the Pearson correlation of the statistical samples. Note the correlation 
coefficients between different Ri (shaded on left) were defined to be p = 0.2 but are 
slightly different in the simulation samples. Also, the different independent risk 
probabilities Pi (shaded on right) were specified to be uncorrelated probabilities of 
occurrence, but do not have p = 0.0. Additionally, there is spurious correlation between 
the PDF of the risks ( C and Ri) and the probabilities of occurrence of the risks (in italics). 

Table 9-5 Correlation of Samples from Statistical Simulation 

c Rt Rz R3 Pt Pz p3 
c 1.0000 0.2015 0.2048 0.2002 -0.0007 0.0008 -0.0015 

Rt 1.0000 0.2111 0.2074 0.0005 0.0011 0.0039 

Rz 1.0000 0.2077 -0.0038 0.0030 0.0055 

R3 1.0000 0.0011 0.0024 -0.0002 

Pt 1.0000 0.0020 0.0026 

Pz 1.0000 0.0017 
p3 1.0000 

Since the risks can no longer be assumed to be independent, we can extract the state 
probabilities P(Si) , which are provided in Table 9-6. 

Table 9-6 State probabilities P(St) from Statistical Simulation 

si P(Si) 
0 0.33706 
1 0.22326 
2 0.14345 
3 0.09623 
4 0.0834 
5 0.05628 
6 0.03609 
7 0.02423 

We can substitute the sampled values from the simulation ( p from Table 9-5 and 
P(Si) from Table 9-6) into Equations 9-10 and 9-16. This results in calculations for the 
mean and standard deviation of the mixed distribution much closer to the simulated values. 
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Exact Simulated Exact Using p and 
(Eq. 4-48 & 4-54) P(S;) from Simulation 

/lM = 2.6000 fi.M = 2.6004 /lM = 2.6000 
(JM = 1.6460 fiM = 1.6495 (JM = 1.6489 

The evidence that the statistical simulation cannot exactly sample perfectly-distributed 
correlated random variables shows the equations developed in this report are more reliable 
calculators of discrete risk than are simulated results. 
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10 Maximum and Minimum of Random Variables 
The maximum duration of the paths of a schedule network define its critical path, and in a 
probabilistic schedule, the distributions of the probabilistic critical paths define the 
probabilistic schedule duration. If the tasks in a schedule network are defined by 
probability distributions (i.e., PDFs or PMFs), we may need to find the moments and the 
distribution of the maximum of two or more probability distributions where these tasks 
merge. If the finish date of a schedule is defined by the latest end date of three tasks, A, B, 

and C, which is defined bymax(A,B,C). This is equivalent to max(max(A,B),C) 
and max( A, max(B, C), which is an important consideration because it allows us to deal 
with the problem of finding the moments of the maximum of distributions in pairs. 

The random variable representing the maximum of two correlated distributions X1 and X2 

can be defined as the function V = max{XvX }. 2 To find the PDF ofV, we must first find 
its CDF and differentiate to fmd the PDF. In the independent case, 

Fv(v) = Fx1 (v)Fx2 (v). 10-1 

To find the PDF we take the derivative WRT. v: 

fv(v) = fxl (v)Fx2(v) + Fxl (v)fx2(v). 10-2 

The correlated case is much harder to solve. Fortunately, IEEE Transactions on Very 
Large Scale Integration (VLSI) Systems (Nadarajah & Kotz, 2008) provides a method of 
calculating the first two moments of the max and min of two correlated Gaussian 
distributions.60 61 

• 

The PDF ofX=max(X~oXz) isf(x) = fi(x) + fi(x), where 10-3 

il(x)= 

fz(x) = 

Where ((!() and tfJ() are the PDF and the CDF of the standard normal distribution, 

respectively. 

60 Nadarajah, S., & Kotz, S. (2008, Feb.). Exact Distribution of the Max/Min of Two Gaussian Random 
Variables. IEEE Transactions on VLSI Systems, 16(2), 210-212. 
61 The integrated circuit industry has a deep interest in scheduling methods and routines which stems from 
the need to calculate signal transit and arrival times at nodes in integrated circuit paths. 
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The first two moments of X = max(Xv X ) 2 are 

E[X] = J.!l<P (~'1;1'2) + J.Lz<P (~'2;1'1) + fhp (~'1;1'2) 

E[X2
] = (at + J.LD<P (~'1 ;1'2) + (af + J.LD<P e2;f.L1

) + 
(J.tl + J.Lz)fhp (1'1 ;1'2) 

9 = jat +at- 2P1,2a1a2 

where p1,2 =Pearson correlation between tasks X1 and X2 , and 
a 2 = E[(X- J.t)2] = E[X2]- J.!2 

10-4 

10-5 

10-6 

10-7 

The moments of the maximum and minimum of two joint lognormal distributions have 
been published (Lien, 2005) and are useful when dealing with maximums of sums of 
random variables that exhibit lognormal behavior.62 The first two raw moments of the 
bivariate lognormal distribution are provided in 10-8 and 10-9. 

E[X] = 

J.!l<IJ [(P1-P2J+(~12-PQ1Q2)] + J.Lz<IJ [(P2-P1J+(~22-pQ1Q2)] 

E[X2
] =(at+ J.LD<P (¥)+(at+ J.LD<P e2;p1

) 

9 = .J Qf + Q~ - 2pQ1 Q2 where the correlation between 
their underlying normal distributions is 

p = Q
1

1
Q

2
ln [ 1 + p1,2 (j[eQ~- 1][eQl -1])], and 

p1,2 = Pearson correlation between lognormal distributions of 
tasks X1 and X2 
P1 , P2 , Q1 ,and Q2 are parameters of the lognormal distribution 
defined in Equations 4-5 and 4-6. 

10-8 

10-9 

10-10 

While these are useful expressions for calculating the moments of Gaussian distributions 
that are either user-defined or formed through the statistical summation of PDFs of serial 
tasks, they do not provide a solution to the problem of finding moments of the maximum 
of two non-Gaussian distributions (e.g., uniform or triangular). Fortunately, the moments 

of distributions in which we are interested represent the finish dates of tasks, and since 
these are often based on sums of durations of several tasks, we can assume the sum to be 

62 Lien, D. (2005). On the Minimum and Maximum of Bivariate Lognormal Random Variables. Extremes, 8, 
79-83. 
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Gaussian. For completeness, we do need a method of working with the order statistics of 
non-Gaussian PDFs. 

10.1.1 Maximum and Minimum of Correlated Non-Gaussian PDFs 
The applied probability and statistics literature provides little insight into fmding either the 
maximum or minimum of correlated non-Gaussian distributions. So, when we are dealing 
with correlated non-Gaussian distributions, the task is more difficult. For instance, when 
we are interested in the PDF of the maximum (or minimum) of two uniform distributions 
we have to go back to the fundamentals and derive a solution. Figure 10-1 provides 

examples of pairs of uniform distributions U1 (L11 H ) 1 and U2 (L2,H ) 2 that represent cases 

in which the maximum of these two distributions will be different. 

I Base Distribution, U{L1,H1) 

I 1 I L~ Hi 2nd Disbibulion, U(L2,H2); H2 ~ L1 
max{U1,U2) = U(L1,H1) 

L2 H2 

2 
2nd Disbibulion, U(L2,H2); L1 ~ H2 ~ Hl, L2 < Ll 

rnax{Ul,U2) = {f(Ll,H2,p12); U(H2,Hl))} 

L2 H2 

I i i I 
2nd Disbibulion, U(L2,H2); H1 < H2, L2 < L1 

3 max(Ul, U2) = (f{Ll, H2,p12); U(H2, Hl)} 

L2 H2 

!I 4 I! 
2nd Disbibution, U{L2, H2) ; L1 :s; H2 :s; Hl, 
Ll :s; L2 S Hl, rnax{Ul, U2) = f(Li,Hi,p12) 

L2 H2 

' ' 
2nd Disbibulion, U(L2,H2); H1 S H2, L1 ~ L2 S H1, 

' !5 max(Ul, U2) = (f{Hl, H2, r12); U(H1, H2)} 

L2 H2 

I 6 
2nd Disbibulion, U(L2,H2); Hl ~ L2 

rnax{Ul, U2) = U(L2,H2) 

Figure 10-1 Pairs of Uniform Distributions with Varying Ranges 

To find the PDF of the maximum of two distributions, we first must defme a random 

variable, V = max{X ,X }, whereX = U(L H ), ). 1 2 1 11 1 andX1 = U(L2,H2 We find the PDF 

ofV by first fmding its CDF, Fv(v). 

Fv(v) = P{V < v) = P{X1 ~ v, X2 ~ v} 10-11 

In the independent case, Fv(v) = Fx(v)Fy(v). Now take the derivative with respect to v 
to get 

fv(v) = fx(v)Fy(v) + fy(v)Fx(v) 10-12 

The If moments are: 

10-13 
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From which we can find the mean, 

Jl = E[fv(v)] 10-14 

and standard deviation of the resulting distribution. 

10-15 

The distributions of the maximums of the pairs of uniform distributions defined in Figure 
10-1 are shown in Figure 10-2. 

U1 &U2 I I 
L1 H1 

1 
! 

L2 H2 

I 2 i I : 

max(U1,U2) :-------: 

L.2 !H2 

I i i 3 
L2 

il li 
H2 

4 

p till 
! I is r zn 

L.2 H2 

I 6 I 
L.2 H2 L.2 H2 

·ra 

Figure 10-2 Maximum of Pairs of Uniform Distributions with Varying Ranges 

In the correlated case, the Farlie-Gumbel-Morgenstem (FGM) family of bivariate distributions 
may provide a solution. The formula for the joint CDF is 

W(x, y) = F(x)G(y){1 + a[1- F(x)][l- G(y)]}, where the 
marginal PDFs H(x, oo) = F(x) and G(oo,y) = G(y) 

10-16 

Unfortunately it can only model a limited range of Pearson correlations63
; - i < p < i . 

When Px,Y = 1, the two distributions covary in the same direction with respect to (wrt) their 

means. When Px,Y = -1, they covary in opposite directions wrt their means. When Px,Y * 
0, and - 1 < Px,Y < 1 the results are rather interesting. 

63 Schucany, W.R., Parr, W. C., and Boyer, J.E., (1978). Correlation Structure in Farlie-Gumbel-Morgenstern 
Distributions. Biometrika, 65(3), 650-653. 
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We will show some statistical simulation results to illustrate the effects of correlation on the 

maximum of two uniform distributions in the following figures. We assume U1 [1,5], U2 [1,3], 

and p = { -1.0, -0.9, -0.5, 0, 0.5,0.9,1.0}. 

... lOO.OOOT!Ws 100.000~ 

Max(U1(1 ,5).U2(1,3));r ; -1 Statiltie Fcr6e&St values 
Trials lOO,IXXI 

3.000 Bose Case 3.00 

2,700 
.,..., 3.33 
Modi~ 3.00 

2.<00 -2 ,100 "T1 Standard~Mvirion G.70 

1.800 ~ Vari;,nce G.G3 
c ,...,.., GS931 

1,500 3 
Kurtosis 2.00 

1,2001.2 Coeff. ciVanablltty 02380 
900 Minimum 233 0.01 +------i 

"" -- .... 
"" 

MeanStd.&ror GOO 

120 1.60 2 00 2.60 

~ 3.00 

-

Figure 10-3 Max ofUt and Uz where p = -1.0 

-... 100.000~ 

Max(U1(1,5),U2(1,3));r ; .{)_9 Sbtisttc Forec.ntva!UM 

Trials 100,to:) 
.... c... 3.00 .,..., 3.32 
Modi~ 300 -2,100 ., Standard~ 0.81 

1,800.2 Van¥a G .. 
c ,...,.., 0.5149 

1,500 g 
Kurtosis 2.01 

1,2001.2 Coeff ofVartablllty 02453 
900 Minimum 1.49 

"" """""" • . 00 

"" 
MQI!Std.&ror GOO 

Figure 10-4 Max ofUt and Uz where p = -0.9 

lOO.OOOT!Wt Solt\lt>w 100.000~ 

Max(U1(1,5),U2(1,3));r ; .{)_5 Sbtistie for~tvi!IIUM 

Tri i!ls 100.000 

2 ,100 .... c... 3.00 

'·"" 
.,..., 3.25 
Modi~ 3.00 

2 .100 -
1,800 i ~dOevirion G .. 

Var1ance G. SO 
1,500 ~ Ske-..,ness 0.2744 

t.200 ~ Ka.tosis 2 ... 
Coeff of Vaoabltty 02751 

900 MiniMum 106 

"" M""""" • . 00 

"" 
Me¥1~ &ror GOO 

Figure 10-5 Max ofU1 and U2 where p = -0.5 
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IOO.OOOTrWa 
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I CO. lXXI 
3.00 
3.17 
3.00 
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Figure 10-6 Max ofUt and U2 where p = 0.0 
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""""' 3.00 
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eooj 
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Figure 10-7Max ofUt and U2 where p = 0.5 
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Figure 10-8 Max ofUt and Uz where p = 0.9 
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IOO.OOOTrWa 

Max(U1(1,5),U2(1,3});r : 1 

• 3.00 CMainty: 49.901 % ~ WWy 

100.000~ 

100.IXXI 
3.00 
3.00 
3.00 

-· 
115 
1.33 

9_3284E.o6 
180 

0.3&49 
Minimum 1.00 

~ 5.00 
~Std. Error 0.00 

Figure 10-9 Max ofUt and U2 where p = 1.0 

The PDF of the maximum of the two distributions modeled by a FGM, where p = aj3, 
and -1 =::;;a=::;; 1) is: 

max(U1 , U2) = h(u) = (1 + a)[F(u)g(u) + f(u)G(u)] + alf(u)G(u)[2F(u)G(u)-
2F(u)- G(u)] + F(u)g(u)[2F(u)G(u)- 2G(u)- F(u)]} 

A plot of this function is shown in Figure 10-10. 
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Figure 10-10 Max ofUt and U2 using FGM Copula 

Further work needs to be done to increase the effective use of FGM copulas to find the 
maximum of two correlated, non-Gaussian distributions. 
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11 Example Problems 
To demonstrate the techniques presented in previous sections, we will perform analytic 
uncertainty and risk assessments on a parametric estimating model and a resource-loaded 
schedule model - both resulting in a joint PDF of cost and schedule. Each example will 

model the cost risk, the schedule risk and the joint cost and schedule risk. 

11.1 Parametric Estimate Example Problem 
The model chosen for the parametric example is an estimate of the cost and schedule used 
to explain functional correlation in Section 8. The schedule duration is estimated using a 
series of fictitious schedule estimating relationships (SERs ). The joint probability 
distribution of cost and schedule is formed using the marginal distributions of cost and 
schedule. We will demonstrate the formation of these three distributions and compare their 
statistics with those generated from a 1 00,000-trial statistical simulation. 

11.1.1 Cost Distribution 
To calculate the marginal distribution of the cost of the system, we follow the FRISK 
method described in Section 4.2.2. In the first step of the FRISK method, we defme the 
mathematical problem to be solved - which is defining the WBS of the system and the 

CERs. We will reuse the WBS and CERs defined in Section 8 and repeat them in Table 
11-1. In the second step of the FRISK method, we define the probability distributions of 
the inputs (also shown in Table 11-1), and their correlations. 

Table 11-1 Levell WBS Elements for Parametric Example 

WBS 
Element, i 

CER,i Drivers x, e, 

1 Systems Engineerin~ 
Program Management 
Integration and Test 

°·9Y1 = 0.498X1 e1 PMP _ L (Lf~21Lt . ) 
../uT pu 

l{1,0.49) 

(SEI1PM) 

Prime Mission Product 
{PMP) 

1:~~2 Yi Sum of Hardware and 
Software costs 

0 

2 Antenna Y2 = 034.36X2a ·
5X2b 

0 8
· £2 Aperture Diameter (m), 

Frequency (GHz) 
1(2,3,4) 
1(16,17,18) 

l{1,0.30) 

3 Electronics Y3 = 30.06X3 °·8e3 Frequency (GHz) 1(16,17,18) l(1,0.40) 

4 Platform Y4 = 26.91X4a o.sx4b o.as£4 Aperture Diameter (m), 1{2,3,4) l{1,0.38) 
Number of Axes Constant= 2 

5 Facilities Y5 = 1.64X5°·8£ 5 Area (m') 1{18,20,22) l{l,0.25) 

6 Power Distribution Y6 = 0.32X6 °'9 £6 Electrical Power (W) 1(1200,1425,1875) l(l,0.18) 

7 Computers Y7 = °·87 0.58X7 E7 MFLOPS 1(180,200,220) l(l,0.31) 

8 Environmental Control Y8 - 1.94X8 °·4e8 Heat Load (W) 1{1100,1200,1300) l{l,0.21) 

9 Communications r9 = S.62X9 o.9 •9 Data Rate (MBPS) 1(25,30,35) l{l,0.28) 

10 Software Yto = 1.38Xtot.2Eto Effective Source Lines 1{80,90,130) l{l,0.32) 
of Code, eKSLOC 
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There are no correlations between different technical parameters used as inputs to the 
CERs in this example, and there are no correlations between the error of CER 1 and any 
errors of the other CERs, but the correlations between the errors of CERs 2 through 10 are 
set to 0.2 (p£t,Ej=0.2; Vi ~ 2). The correlation matrix of the errors is shown in Figure 11-1. 
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Figure 11-1 Correlations between Errors ofCERs 1 through 10 

There is a mix of different types and orders of functional correlation in this example 
problem as shown in Figure 11-2. CER 1 is functionally correlated to the other CERs 
through its use ofPMP as its cost driver (a Type I-2 correlation). CERs 2 and 3 and CERs 
2 and 4 are correlated through the reuse of a cost driver (a Type II-1 correlation). The 
remaining CER pairs are correlated to each other through their correlated multiplicative 
errors (a Type III-1 correlation). 

1 2 3 4 5 6 7 8 9 10 Pvi.vi 
1 1.0000 2 2 2 2 2 2 2 2 2 
2 1-2 1.0000 11-1 11-1 111-1 111-1 111-1 111-1 111-1 111-1 
3 1-2 11-1 1.0000 111-1 111-1 111-1 111-1 111-1 111-1 111-1 
4 1-2 11-1 111-1 1.0000 111-1 111-1 111-1 111-1 111-1 111-1 

5 1-2 111-1 111-1 111-1 1.0000 111-1 111-1 111-1 111-1 111-1 

6 1-2 111-1 111-1 111-1 111-1 1.0000 111-1 111-1 111-1 111-1 

7 1-2 111-1 111-1 111-1 111-1 111-1 1.0000 111-1 111-1 111-1 
8 1-2 111-1 111-1 111-1 111-1 111-1 111-1 1.0000 111-1 111-1 
9 1-2 111-1 111-1 111-1 111-1 111-1 111-1 111-1 1.0000 111-1 

10 1-2 111-1 111-1 111-1 111-1 111-1 111-1 111-1 111-1 1.0000 

Figure 11-2 Types of Functional Correlation in Example Problem 

11.1.2 Probability Distributions 
The third step of the FRISK method is the calculation of the means and variances of the 
WBS element costs. The first WBS element, SEITPM, is a cost-on-cost CER of the PMP 
(i.e., the sum of the individual estimates of WBS elements 2 through 1 0). The remaining 
WBS elements are estimated using non-cost-driven CERs. Because the first WBS element 
relies on the cost estimates of the other WBS elements, we must first calculate the means 
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and variances of the costs ofWBS elements 2 through 10 (i.e., PMP cost) then use those 
results to calculate the mean and variance of the first WBS element. 

The moments of the estimates from non-cost-driven CERs are calculated using the 
propagation of errors method demonstrated in Section 7. As an example, WBS element 6 

is estimated using the following CER from Section 8: 

E[X6 ] = l!x , 6 which is found using Equation 4-1. 

Since X6 is defined by the triangular PDF, T(1200,1425,1875), 

ILx. = 1200+1:25+1875 = 1500 

E[Y ] 6 can be found by using expectation methods or Mellin transforms. In this example, 

we will use expectation methods to compute E[Y ]. 6

Since X6 is a triangular PDF, we must find the expectation of a triangular PDF raised to a 

power, which is: 

k 2 {Mk+2-Lk+2 
E[X 1 = (H-L)(M-L) k+2 

Substituting the parameters L, M, H and k using our example, E[X6°·9] = 721.626, so 

E[Y6] = (0.32)(721.626) = 230.920. 

Var(X6) is calculated using the square of one half of the population standard deviation of 

the distributions parameters. This equates to: 

Var(X6) = (STDEVP(120:,1425,1875)r = 19687.5, so ax. = vf19687.5 = 140.31 

The variance ofY is calculated using the propagation of errors method, since the CER, fy , 
6

and its error are independent RVs. 

a,
6 

= 0.18 (from Table 11-1), and iJ.ty = 230.920 (found using functional correlation 
6 

Step 2a) 

aty is found using the equation for the transformation of a triangular PDF from Section 
6

4.3.3. 
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Cit = Yo 

b ---- -L +-- H----
2 [ 1 {M2c+2-L2c+2 M2c+1-L2c+1} 1 { H2c+1-M2c+1 

(H-L) (M-L) 2c+2 2c+l (H-M) 2c+l 

By substituting the coefficient b = 0.32 and the triangular distribution parameters, L, M 

and H into this equation we get Uty = 19.428. 
6 

Uy
6 

= .J [(230.920)(0.18))2 + [19.428)2 + [(19.428)(0.18))2 = 46.015 

The remaining moments of the cost estimates of the non-cost-driven CERs in the example 
problem are computed in a similar manner and are shown in Table 11-2. The means and 
standard deviations of the analytic results match closely with the results obtained using the 
1 00,000-trial statistical simulation. The results of the analytic method and the statistical 
simulation are a close match. 

Table 11-2 Moments ofWBS Elements with Non-Cost-Driven CERs 

WBS 
# 

Analytic Simulation 

11 a 11 a 
2 572.706 177.022 572.676 176.900 
3 289.953 116.136 289.962 116.172 
4 83.829 32.484 83.824 32.463 
5 18.014 4.544 18.014 4.543 
6 230.920 46.015 230.911 45.977 
7 58.248 18.186 58.244 18.172 
8 33.068 6.960 33.068 6.959 
9 119.965 34.446 119.962 34.420 
10 347.121 120.764 347.121 120.787 

The PMP cost is the sum ofWBS elements 2 through 10, so its mean is J.I.PMP = L~o J.l.i and 
its standard deviation is calculated through the linear algebraic relationship, uPMP = 

.J crT per. J.i.PMP is simple to compute and is J.i.PMP = L~0 J.l.i = 1753.825. The calculation of 
uPMP requires we know the correlation between pairs ofCERs from 2 through 10, p, which 
is the functional correlation sub-matrix between the elements ofPMP. 

Functional Correlation Matrix 
The functional correlation matrix shown in Figure 11-2 contains a combination of Type I-
2, II-I and III-1 functional correlations. We use the examples provided in Section 8 of this 
report to develop these correlations, which are shown in Figure 11-3. 
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1 2 3 4 5 6 7 8 9 10 Pv~Yi 

1 1.0000 0 261 021 QO 0 . .J.454 0 Sf 0 ;26 0.12' 3 0. 184 0 13~13 02005 

2 0.2614 1.0000 0.1969 0.2306 0.1924 0.1753 0.1927 0.1937 0.1893 0.1785 

3 0.2098 0.1969 1.0000 0.1959 0.1979 0.1804 0.1983 0.1993 0.1948 0.1837 

4 0.1454 0.2306 0.1959 1.0000 0.1944 o.1n2 0.1947 0.1957 0.1912 0.1804 

5 0.1156 0.1924 0.1979 0.1944 1.0000 0.1790 0.1968 0.1978 0.1933 0.1823 

6 0.1426 0.1753 0.1804 o.1n2 0.1790 1.0000 0.1794 0.1803 0.1762 0.1662 

7 0.1273 0.1927 0.1983 0.1947 0.1968 0.1794 1.0000 0.1981 0.1936 0.1827 

8 0.1184 0.1937 0.1993 0.1957 0.1978 0.1803 0.1981 1.0000 0.1946 0.1836 

9 0.1393 0.1893 0.1948 0.1912 0.1933 0.1762 0.1936 0.1946 1.0000 0.1794 
10 0.2085 0.1785 0.1837 0.1804 0.1823 0.1662 0.1827 0.1836 0.1794 1.0000 

Figure 11-3 Functional Correlation Matrix for Example Problem 

Using the functional correlation sub-matrix (i.e., the lower-right 9x9 elements of the matrix 
shown in Figure 11-3) and the sigmas of WBS elements 2 through 10, we can compute 

aPMP = .JuTpu = 331.917. Now that we know the moments ofPMP and the functional 
correlation sub-matrix, we can calculate the moments of the first WBS element, JJ.y

1 
and 

Uy • 
1

The results of this example calculation are shown in Section 8 and are repeated in 

Table 11-3. The results of the analytic method and the statistical simulation are a close 
match. 

Table 11-3 Moments of WBS Elements 

WBS 
Analytic Simulation 

# IJ. a IJ. a 
1 413.170 201.048 413.090 200.916 
2 572.706 177.022 572.676 176.900 

3 289.953 116.136 289.962 116.172 

4 83.829 32.484 83.824 32.463 
5 18.014 4.544 18.014 4.543 

6 230.920 46.015 230.911 45.977 
7 58.248 18.186 58.244 18.172 

8 33.068 6.960 33.068 6.959 

9 119.965 34.446 119.962 34.420 
10 347.121 120.764 347.121 120.787 

Now that the necessary calculations to compute the moments of the total program cost are 
completed, the total cost mean, JJ.y, and the total cost sigma, ay can be calculated. 

JJ.y = Lf0 JJ.i and Uy = .JuT pu, where u is the vector of the sigmas of all of the WBS 
elements (Table x-3), andp is the full functional correlation matrix shown in Figure 11-3. 
The results of these calculations are shown in Table 11-4 along with the total mean and 
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standard deviation obtained using the 1 00,000-trial statistical simulation. Again, the 
results are a close match. 

Table 11-4 Moments of Total Program Cost 

Analytic Simulation 
(J 11 I (J 11 I 

Total 2166.99s 1 443.915 2166.873 1 443.511 

The total program cost is represented as a lognormal distribution and its parameters Py and 

Qy are calculated using Equations 4-5 and 4-6. The results are: 

Py = 7.452, and Qy = 0.188. 

Using these values, we can compute the percentiles of total cost, which are presented in 
Table 11-5. 

Table 11-5 Table Percentiles of Total Cost 

Percentile Total Cost, Y 
10% 1637.140582 
20% 1789.878287 
30% 1908.780462 
40% 2016.616222 
50% 2122.909227 
60% 2234.804788 
70% 2361.059157 
80% 2517.905056 
90% 2752.814045 

The plot of the CDF of total cost is shown in Figure 11-4. Note that the original point 
estimate calculated using the modes of the triangular inputs shown in Table 11-1 is at the 
48th percentile. 
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Figure 11-4 CDF of Total Cost, Y 

11.1.2.1 Contribution to Variance 
The contribution to the variance (CTV) shows which WBS elements most strongly 
influence the variance of total cost. The CTV of any WBS element, i, can be calculated 
using row i of the functional correlation matrix as follows: 

CT~ = Ut (pta)juy 2
, where 

Ut =the standard deviation ofWBS element i 
Pi= row i of the full functional correlation matrix (a vector) 
a= the vector of standard deviations of the WBS elements 

2 Uy = total cost variance 

The CTV of each of the WBS elements is shown in Figure 11-5. 

WBS C1V 

1 SEITPM 32%

2 Antenna 27%

3 Electronics 14%

4 Platform 3%

5 Facilities 0%
6 Power Distribution 4%

7 Computers 1%

8 Environmental Control 0%
9 Communications 3%

10 Software 15%

Sum 1.0000
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"' Environmental Control 
Communications ~ 

Software 

0.0% 10.0% 20.0% 30.0% 40.0% 

Figure 11-5 WBS Element Contribution to Variance 

11.1.3 Schedule Probability Distribution 
The program schedule is calculated using a fictitious schedule estimating relationship 
(SER) defined as the number of months from the authority-to-proceed (ATP) to the end of 
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installation and checkout, D = 0.21Xv 1 2
' Ev. The SER is similar to the Software CER and 

reuses its driver (effective source lines of code). The multiplicative error of the SER. Ev, is 
defined by the lognormal distribution L(1,0.45). Since the SER in this example problem 
is similar to the CER of WBS element 10 (Software cost), we substitute the coefficients 

and multiplicative error distribution to directly calculate the moments of the resulting 
schedule distribution, which are: 

/lD = 52.823, and UD = 24.935. 

This distribution is assumed to be lognormal and has parameters Pv = 3.866 and QD = 

0.449. A plot of the CDF of schedule duration is shown in Figure 11-6. 
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Figure 11-6 Schedule Duration CDF 

11.1.4 Forming the Joint Distribution 
The joint distribution of cost and schedule duration is formed using the marginal cost and 
schedule duration distributions in a bivariate lognormal distribution. This joint PDF is 
defined in Garvey (2000) as:64 

BtL ( (P1, P2), ( Q1, Q2 , P:t,z)) = fx,,x, (x1, x2) = ~ e -(jw} ; where 
21rQ1Q2 1-Pt,zXtXz 

W = ~ [(ln(xt)-Pt)
2 

_ 2p
12 

(ln(xt)-P1 ) (ln(x2)-P2) + (ln(x2)-Pz)2
], 

1-Pt,z Ql • Qt Qz Qz 

P12 = -
1
-ln [1 + Px x .J eQt

2 
- 1.J eQz

2
- 1j, and 

• QlQz 1• z 

Px
1
,x

2
is the correlation coefficient between RVs X1 and X2 • 

64 Garvey, P. R (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineeering 
Perspective. New York, NY: Marcel Dekker. 
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The correlation between cost and schedule is a Type II-2 functional correlation since cost 
(Y) and schedule duration (D) are nested functions of a common input, the effective source 
lines of code. 

The Type II-2 functional correlation between cost and schedule duration is defined as: 

E[YD]-ILYILD 
PY,D = ayao . 

The moments ofY and D have been previously calculated, however E[YD] must be found. 
By expanding the product, Y D, we get: 

A fuller expansion of these terms is necessary to calculate the expectation. Substituting the 
equations ofCERs 1 and 10 and setting X0 = X , 10 we get: 

Through distribution of the SER, we get: 

YD = (0.49B[Lt~2 Y;] 0·9e1)(0.21X0 1·2 e0 ) + (1.38X 1 2
·10 e10)(0.21X 2

1.10 e ) 0 + 
2 

a:£=2 Y;)( 0.21X10 1. Eo) 

Combining constants and similar variables results in: 

Moving X 1 2 
·0 into the sununation, we get a sum with three major terms: 

11.1.4.1 Expectation ofYD 
The expectation ofYD is: 

From the first term, we can break up the X10 component and eliminate E[e1]E[e ], 0 since 
they are uncorrelated (i.e., E[e1]E[e ] 0 = 1). 

[ 

1.2 0.9] { 1.2} 1.2 0.9 
E 0.1046 [:Et~2 Y; X10•-•] = 0.1046£ [ 1.38X10 

1
"
2 1 

•·• e10 + :E[=2 Y; Xo•·•] 
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First Term of E[YD] 

. 
For convemence, we rename the first term

{1 2+ 1.2} 1.2 
 (1.38X10 · o.9 e10 + :E[=2 Y; XDo.9) to (V = 

V1 + V2), which results in: 

v1 = 1.38X10{1.2 I ~:!le10, which, by inspection, is a lognormal distribution. 

Computing V 1 

The lognormal parameters of V1 (i.e., Pv and Qv) can be computed as follows: 1 

1) Compute the moments and lognormal parameters of {12+ 1.2} 
 A = X10 · o.9 : 

a. E[A] = [x10{1.2+~:!}] = E[X10
2

'
5333

] = 119237.5843, and 

b. Var(A) = (X10
2

·
5333

) = 1115733687, so 

c. PA = 11.6511, QA = 0.2749 

d. Propagate errors due to E10, where E[e10] = 1, a,10 = 0.32 

2) V1 = 1.38Ae10, so the moments and lognormal parameters are: 

a. Jl.v
1 

= 1.38J1.AE[e10] = 164547.866 

b. av1 = 1.38 aA2 + JI.A2a,10 
2 + aA2a,10 

2 = 68491.075 

c. Pv
1 

= 11.931 

d. Qy1 = 0.400 

Computing V 2 

:E[=
1.2 

The lognormal parameters of V2 = 2 Y;XDo.9 are able to be computed as well. First, we 
1.2 

must compute the mean and sigma of XDo.9, 

1.2 

1) The variable XD is a triangular distribution, so XDo.9 has the following moments: 

a. Jl. 1.2 = 465.351, a 1.2 = 67.365, 
x 0 o.9 x0 o.9 

b. P 1.2 = 6.132, and Q 1.2 = 0.144 
x 0 o.9 x 0 o.9 

1.2 

2) For each WBS element from 2 to 9, compute the moments ofY;XDo.9 

a. P 1.2 2... = Pyi + P 1.2 2... 
YiXD0.9e1 0.9 x0 o.9e1 D.9 

b. Q 1.2 2... = ( Qyf + (Q 1.2 2...)
2 

(in this case XD and CERs 2 to 9 are 
YtXn0.9e1 0.9 X 0 0.9e1 0.9 

independent) 

The results of these calculations for WBS elements 2 through 9 are shown in Table 11-6. 
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Table 11-6 Moments of First Term, Part V2 

i Py, Qy, p 1.2 
YtXo0.9 

Q 1.2 
YtXo0.9 

p. 1.2 
YtXo0.9 

u 1.2 
YtXo0.9 

2 6.305 0.302 12.437 0.335 266509.704 89209.682 
3 5.595 0.386 11.728 0.412 134930.196 55589.229 
4 4.359 0.374 10.491 0.401 39009.722 15643.639 
5 2.860 0.248 8.993 0.287 8382.836 2407.118 
6 5.423 0.197 11.555 0.244 107459.119 26253.462 
7 4.018 0.305 10.151 0.337 27105.923 9144.805 
8 3.477 0.208 9.609 0.253 15388.452 3895.777 
9 4.748 0.281 10.880 0.316 55825.914 17654.212 

Sum 654611.865 139002.227* 
. . 

*Th1s IS not the sum of the md1v1dual s1gmas . 

IJ.v
2
is the sum of the means in Table 11-6. crv

2 
is calculated using crv

2 
= jav/ pay , 

2

where p is the functional correlation sub-matrix of WBS elements 2 through 9 in Figure 
11-3. 

1J.v
1 

= 1.381J.A = 164547.866, and 1J.v
2 

= 654611.865 (from Table 11-6), so IJ.v is: 

l!v = J.l.v
1 
+ J.l.v

2 
= 164547.866 + 654611.865 = 819159.732. 

av, = 68491.075, and crv
2 

= 139002.227 (from Table 11-6), so avis the square root of 

the sum of the variances of V1 and V : 2

av = jCav,) + (av ) 2 = 154960.1446. 

From IJ.v and cry, we calculate the lognormal parameters Pvand Qyusing Equations 4-5 
and4-6: Pv = 13.598, and Qy = 0.189. The mean of the first term is computed by finding 
the expectation of an exponentiated lognormal RV: 

E[V0 9· ] = 209577.473, and by multiplication with the constant, 0.1046, we get: 

0.1046E[V0 9· ] = 21918.22. 

Second Term ofE[YD] 
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The second tenn is simple to compute, as: 

E(0.2898X10
2

'
4

£ 10e0 ] = 0.2898E[X10
2

'
4 ]E[e10e0 ] = 0.2898E[X10

2.4] 

Since X10 is triangularly distributed, with T(80,90,130), E[X 2 4
· ] 10 = 64340.222. The 

second tennis 0.2898E[64340.222] = 18645.796. 

The third term reduces to the following, since there are no correlated terms: 

E[Lf=z ytD] = rl=zE[ytD] = Ll=zE[Yt]E[D] = llol:l=21lYt = (52.823)(1406.704) = 

74305.896 

Summing these three tenns gets us: 

[ 
1.2 1 0.9] 

E[YD] = E 0.1046 [rt22 Yi Xto0·9 (Et)0 ·9 ] + E[0.2898Xto2
'
4EtoEo] + E[Lf=z Yi D], 

andE[YD] = 21918.224 + 18645.796 + 74305.896 = 114869.916. 

Now that all of the variables of the functional correlation have been obtained, the 
correlation can be computed as: 

E[YD]- JlyJlo 114869.916- (2166.995)(52.823) 
PY,D = ayu0 = (443.915)(24.935) = 0·0364 

The value py . 0 calculated from a 100,000-trial statistical simulation is 0.0366, which 

indicates excellent agreement with the analytic result. 

11.1.4.2 Joint PDF of Cost and Schedule 
The joint PDF of cost and schedule is computed using a bivariate lognormal distribution. 
The bivariate lognormal distribution is defined by the moments of the cost and schedule 
distributions and the correlation between the two distributions Figure 11-7. 
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p(x.r 
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Figure 11-7 Joint PDF of Cost and Schedule 
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11.2 Resource-Loaded Schedule Example 
NASA provided a schedule network of a rocket engine program (Table 11-7 and Figure 
11-8) which will be used to demonstrate the analytic method of uncertainty analysis on a 
resource-loaded schedule. This example demonstrates the application of the analytic 
method by providing a schedule risk analysis (including a probabilistic critical path 
analysis), a cost risk analysis, and a joint cost and schedule risk analysis. In this section 
we show how we developed the cost PDF, schedule PDF, joint cost and schedule PDF and 
a probabilistic critical path analysis for the program. 

Table 11-7 NASA Resource-Loaded Schedule Example 

ID Task Duration Start Finish PredeceSIIor Successor 

1 Analysis File 840days 10/1/2012 12/18/2015 
2 Milestone summary 840days 10/1/2012 12/18/2015 

3 Project An> Odays 10/1/2012 W/1/2012 11,855 

4 PDR Odays 4/26/2013 4/26/2013 12FF 
5 CDR Odays 10/24/2014 10/24/2014 20FF 

6 Rocket delivery Odays 12/18/2015 12/18/2015 32FF 9FF 
7 Project Support Costs hammock task 840days 10/1/2012 12/18/2015 
8 Support Start Odays 10/1/2012 10/1/2012 3SS 

9 Support Finish Odays 12/18/2015 12/18/2015 6FF 
10 Preliminary Design 150days 10/1/2012 4/26/2013 
11 Requirements definition and documentation 100days 10/1/2012 2/15/2013 3 12 
12 Preliminary design activities SO days 2/18/2013 4/26/2013 11 14,4FF 

13 Detailed Design 390days 4/29/2013 10/24/2014 

14 Initial detailed design SO days 4/29/2013 8/16/2013 12 15,16 

15 DeslgnGN&C 160days 8/1!3/2013 3/28/2014 14 20 

16 Trade studies and analysis 60days 8/1!3/2013 11/8/2013 14 17, 18, 1!3,35 

17 Design pyrotechnics 100days 11/11/2013 3/28/2014 16,35 20 
18 Design propulsion system 160days 11/11/2013 6/20/2014 16,35 20 

19 Design structures and mechanisms 120days 11/11/2013 4/"15/2014 16,35 20 
20 Finalize integrated design 90days 6/TJ/2014 W/24/2014 17,18,15,19 25,5FF,TJ,24 
21 Development and Unit Testing 150days 10/27/2014 5/22/2015 

22 Fabricate rocket Components 120days 10/27/2014 4/W/2015 
23 Fabricate and unit test structure (including pyros) 120days 10/27/2014 4/10/2015 20 27 
24 Fabricate and unit test engine 120days 10/27/2014 4/W/2015 20 27,34 

25 Develop and test flight software for GN&C 150days 10/27/2014 5/22/2015 20 29,36 

26 lntecration and Testing 170days 4/13/2015 12/4/2015 
27 Integrate rocket components 40days 4/13/2015 6/5/2015 13,24,34 28,29 

28 Test frame, fuel system and engine 3Sdays 6/8/2015 7/24/2015 27 30 
29 Test guidance system 60days 6/8/2015 8/28/2015 "15,27,36 30 

30 Final integration and testing 70days 8/31/2015 12/4/2015 28,29 32 
31 Delivery 10days 12/7/2015 12/18/2015 
32 Delivery 10days 12/7/2015 12/18/2015 30 6FF 
33 Risk Register 400days 11/8/2013 5/22/2015 
34 Risk 1- Tl - Additional Purchase Odays 4/10/2015 4/W/2015 24 27 

35 Risk 2- Duration- Additional Studies Required Odays 11/8/2013 11/8/2013 16 17,18,1!3 

36 Risk 3- Tl and Duration - Delay from Additional sw PurchasE o days 5/22/2015 5/22/2015 "15 29 

The nominal start and finish dates for the program are 10/112012 (defined by task 3, which 
is the project's ATP date), and 12/18/2015 (defined by tasks 6 and 32 which are the tasks 
that defme the delivery date), respectively. Using the nominal dates and durations, we get 
a point estimate of schedule duration equal to 1173 calendar days. The milestone 
summaries are tasks 2 through 6; the program support "hammock tasks'' are tasks 7 
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through 9 whose duration is defined by the A TP and delivery dates; the design, 
development, integration, test and delivery tasks are tasks 10 through 32; and the program 
risks are tasks 33 through 36. The Gantt chart for this schedule is shown in Figure 11-8. 

Figure 11-8 NASA Resource-Loaded Schedule Example Gantt Chart 

The nominal critical path summary tasks include "Preliminary Design" (task 10), "Detailed 
Design" (task 13), "Development and Unit Testing" (task 21), "Integration and Testing" 
(task 26), "Delivery" (task 31), and "Risk Register'' (schedule-related risks summarized by 
task 33). 

11.2.1 Schedule Probability Distribution 
The schedule distribution will be defined by the distributions of those tasks on the 
probabilistic critical paths (i.e., tasks 10 through 36). We will define the probabilistic 
fmish dates of these tasks using Equation 11-1. 

Finishi = Starti +Duration£ where 
i is the task number 

11-1 

11.2.1.1 Input Probability Distributions 
The A TP date is defined as a discrete date. The remaining start and finish dates for all of 
the tasks are RVs because each of the task durations are defined as RVs with parameters 
defined in Table 11-8. Two types ofPDFs are shown in Table 11-8. The first type of PDF 
is used to replace the nominal duration with a RV and are defined as uniform (U), 
triangular (T), normal (N) or lognormal (L) PDFs. The second type of PDF is an 
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uncertainty used to multiply the nominal duration by a PDF. These are identified with the 
same PDF shape symbols as the first (e.g., U, T, N, L), but have a multiplication symbol 
next to the distribution's parameters (e.g., U * (90,110)), which are represented as 
percentile values. 

All of the PDFs are uncorrelated with respect to each other except for tasks 23, 24 and 25 
(i.e., the development duration "DEVDUR" tasks). These tasks are correlated with each 
otherwithp = 0.75. 

Table 11-8 Duration Probability Distributions 

TaskiD Task Description PDF 

7 Project Support Costs hammock task 

10 Preliminary Design 

11 Requirements definition and documentstion T • (95,100,110) 

12 Preliminary design activities T • (95,100,110) 

13 Detailed Design 

14 Initial detailed design T • (90,100,120) 

15 DesignGN&C T • (90,100,120) 

16 Trade studies and analysis T • (90,100,120) 

17 Design pyrotechnics T • (90,100,120) 

18 Design propulsion system T • (90,100,120) 

19 Design structures and mechanisms T • (90,100,120) 

20 Finalize integrated design T • (90,100,120) 

21 Development and Unit Testing 

22 Fabricate Rocket Components 

23 Fabricate and unit test structure (including pyros) u. (80,110); 
p(DEVDUR = 0.75) 

24 Fabricate and unit test engine u. (80,110); 
o(DEVDUR = 0.75) 

25 Develop and test flight software for GN&C L • (105,5); 
p(DEVDUR = 0.75) 

26 Integration and Testing 

27 Integrate rocket components N • (100,15) 

28 Test frame, fuel system and engine T • (80,100,130) 

29 Test guidance system T • (80,100,130) 

30 Final integration and testing T(55,70,91) 

31 Delivery 

32 Delivery N(10,3) 

33 Risk Register 

34 Risk I - TI - Additional Purchase R(p,D)(0.30,0) 

35 Risk 2 - Duration - Additional Studies Required R(p, D)(0.15, DU(15,25,40)) 

36 Risk 3 - TI and Duration - Delay from Additional Software Purchase R(p, D)(0.3, T(20,25,30)) 
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11.2.1.2 Calculating the Schedule Probability Distributions 
Using the discrete start date of 10/01/2012, the predecessor/successor relationships defined 
in Table 11-7 and the probabilistic durations of the tasks defined in Table 11-8, we can 
fmd the PDF of the finish dates of the resource-loaded example schedule. 

Only one obstacle lies in our way - the issue of whether to compute the statistics in 

working days or calendar days. For simplicity, we will perform computations in working 
days - denoting durations, start dates and finish dates with an accent (e.g., finish';) - then 

when specific dates are required, convert them to calendar days using the conversion factor 
in Equation 3-8. 

An example calculation of the duration statistics follows: Since Duration' 11 is a PDF 

defined by 100wd * T(95,100,110)/100, !lourationt11 = 101.67 wd and Uourationt 11 = 

3.12wd using the definitions of the mean and standard deviation of a triangular PDF from 

Section 16.1.1. We repeat these calculations to compute the duration statistics (in wd) for 
all non-summary tasks shown in Table 11-9. 

The discrete risk duration calculations for tasks 34-36 rely on the technique described in 

Section 9. There are two risks, R2 and R , 3 with which we are currently concerned. R2 is 

defined as a discrete risk, R2 (0.15, D(15,25,40)), with probability of occurrence of 15% 
and equiprobable consequences of 15, 25, and 40 wd, respectively. The possible outcomes 

and associated probabilities of the states of R2 are: 

Owd ,p = 0.85 
. , 15 wd , p = 0.05 

Duratwn Rz = 25 wd { 'p = 0.05 

40 wd ,p = 0.05 

The moments of the duration of R2 are calculated using Equations 9-4 and 9-7. 

. = (D1+D2+D2) = O 15 (15+25+40) = 4 d d 
JlDuratwn'Rz p 3 • 3 W ' an 

CTouration'Rz = (1- 0.15)(0- 4)2 + o.:5 
[(15- 4)2 + (25- 4)2 + (40- 4)2] 

CTouration'Rz = .J (0.85)(16) + 0.05[(11)2 + (21)2 + (36)2] = 10.32wd. 

Task 36 (R ) 3 is defmed as a discrete risk, R3 (0.30, T(20,25,30)), with probability of 

occurrence of 30% and a probabilistic impact, D, defmed by a triangular distribution with 
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parameters 20, 25 and 30 wd, respectively. The mean and standard deviation of the 
impact's triangular PDF, D = T(20,25,30), are: 

_ :Et=l D; _ 20+25+30 _ 25 d d "v---- - w an 
f"' 3 3 I 

-
:Et=1(D;-!'n)2 (20-25)2+(25-25)2+(30-25)2 

Uo -
12 

= 
12 

= 2.04wd. 

The moments of the duration of R3 are calculated using Equations 9-4 and 9-7 

J.I.Duration'R• = PJ.I.D = 0.30(25) = 7.50wd, and 

Unuration,R3 = 

.Jc1- o.3o)(o- 7.5)2 + 0.3[(2.04)2 + (20- 7.5)2 + (25- 7.5)2 + (30- 7.5)2] = 

11.51wd. 

Table 11-9 Duration Probability Distributions in Workdays 

Task ID Duration, wd PDF, Et P.ei a,.i 
11 100 T • (95,100,110) 101.67 3.12 

12 50 T • (95,100,110) 50.83 1.56 

14 80 T • (90,100,120) 82.67 4.99 

15 160 T • (90,100,120) 165.33 9.98 

16 60 T • (90,100,120) 62.00 3.74 

17 100 T • (90,100,120) 103.33 6.24 

18 160 T • (90,100,120) 165.33 9.98 

19 120 T • (90,100,120) 124.00 7.48 

20 90 T • (90,100,120) 93.00 5.61 

23 120 u. (80,110) 114.00 10.39 

24 120 u. (80,110) 114.00 10.39 

25 150 L • (105,5) 157.5 7.50 

27 40 N • (100,15) 40 6.00 

28 35 T • (80,100,130) 36.17 3.60 

29 60 T • (80,100,130) 62.00 6.16 

30 70 T(55,70,91) 72.00 7.38 

32 10 N(10,3) 10.00 3.00 

34 0 R(p, D)(0.30,0) 0.00 0.00 

35 0 R(p, D)(0.15, DU(15,25,40)) 4.00 10.32 

36 0 R(p, D)(0.3, T(20,25,30)) 7.50 11.51 
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In the next series of calculations, we compute the means and standard deviations of start 
dates (in wd) and finish dates (in wd) for these tasks. 

11.2.1.3 Preliminary Design 
The "Preliminary Design" summary task (task 10) consists to two lowest-level tasks (tasks 

11 and 12) that are arranged serially. The computations for the task durations, start dates 
and finish dates are: 

Start10 = Start11 = Start = 3 ATP date of 10/01112 

Finish'10 = Finish'12 by defmition because task 10 is a Sllmmary task 

Duration'10 = Finish' -10 Start10 = Duration'11 + Duration' , 12 because tasks 11 
and 12 are serial tasks 

Finish'11 = Start11 + Duration'1t. in wd 

From Table 11-9 we have: 

Jlourationt 11 = 101.67wd and C1ourationt11 = 3.12wd 

Jlourationtlz = 50.83wd and CTourationtlz = 1.56wd. 

So, Finish'12 = Start12 + Duration'12 = Finish11 + Duration'12 = Start3 + 
Duration'11 + Duration\ , 2 in wd 

So Duration'10 = Duration'11 + Duration'12 

Therefore, 

Jl Durationt10 = Jl Durationt11 + Jl Durationt12 = 152.50wd, and 

C1' Duration112 = C1 Duration111 
2 + C1 Durationt12 

2 = 3.49wd. 

Using these calculations, we get the results in Table 11-10. 

Table 11-10 Workday Results for Preliminary Design 

TaskiD JlDUTationt tT DuratiOJll JlStartt tT Start' JlFinishJ tlpi.Jiishl 

10 152.50 3.49 10/01/12 0 03/02/13 3.49 

11 101.67 3.12 10/01/12 0 01/10/13 3.12 

12 50.83 1.56 01/10/13 3.12 03/02/13 3.49 

11.2.1.4 Detailed Design 
The "Detailed Design" s11mmary task (task 13) consists of seven lowest-level tasks (tasks 

14 through 20) arranged in a tree structure. The nominal durations of tasks 14 through 20 
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have the same multiplicative triangular PDF (defined by Duration' • T(90,100,120)), with 
mean of 1.033 and a standard deviation of0.062. 

Task 14 has one predecessor, task 12, so its start and finish dates are defined as: 

Start' 14 = Finish' , 12 and Finish' 14 = Finish' 12 +Duration' 14 

From Table 11-9: 

J.l.ouratiant14 = 80 * 1.033 = 82.67wd, and 

O'ourationt14 = 80 * 0.062 = 4.99wd. 

Table 11-11 Workday Results for Detailed Design Task 14 

TaskiD Jlouratlont t1ouratlonJ ILStartl t1 Start' P. F!nlslv tiFtnlshl 

14 82.67 4.99 03/02/13 3.49 05/24/13 6.09 

Task 15 has a single predecessor, task 14, and we compute its start and finish dates as: 

Start'15 = Finish' , 14 and Finish' 15 = Start'15 +Duration'15 

From Table 11-9: 

J.l. Duration,15 = 160 * 1.033 = 165.33wd, and 

O'ourationt15 = 160 * 0.062 = 9.98wd. 

Task 16 also has a single predecessor (task 14), and its start and finish dates are: 

Start' 16 = Finish' , 14 and Finish' 16 = Finish' 14 +Duration' 16 

From Table 11-9: 

J.I.Durationt16 = 60 * 1.033 = 62.00wd, and 

O'ourationt16 = 60 * 0.062 = 3.74wd. 

Tasks 17 through 19 share risk R2 as a common predecessor, and R/s predecessor is task 

16. We must first compute the moments of R2 in order to calculate the start dates, 
durations and end dates of tasks 17 through 19. 

So, Start'R2 = Finish'16 and Finish'R2 = Finish'16+Duration'R2 and 

From Table 11-9: 

J.I.DurationtR = 4wd and 0' DurationtR = 10.32wd. 2 2 
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Since Start'17 = Start\8 = Start\9 = Finish'R , and 2

Finish'17 =Finish' R +Duration' , 17 Finish' = Finish'R +Duration' , 2 18 2 18 and 

Finish'19 = Finish'R
2 
+Duration' , 18 we need to compute the moments of the durations 

of tasks 17 through 19 to compute their finish dates. 

From Table 11-9: 

Jl Durationt17 = 103.33wd, CT Durationt17 = 6.24wd, 

Jlouration'la = 165.33wd, CTouration'la = 9.98wd, 

Jl Durationt19 = 124.00wd, and CT Duration,19 = 7.48wd. 

The statistics for the durations, start dates and end dates for tasks 15 through 19 (including 
task 36) are shown in Table 11-12. 

Table 11-12 Workday Results for Detailed Design Tasks 15-19 and 35 

TaskiD Jlouratlont t1ouratlonJ ILStartl t1 Start' P. F!nlslv tiFtnlshl 

15 165.33 9.98 05/24/13 6.09 11/05/13 11.69 
16 62.00 3.74 05/24/13 6.09 07/25/13 7.14 

35 (R2 ) 4.00 10.32 07/25/13 7.14 07/29/13 12.55 
17 103.33 6.24 07/29/13 12.55 11/09/13 14.02 
18 165.33 9.98 07/29/13 12.55 01/10/14 16.03 
19 124.00 7.48 07/29/13 12.55 11/30/13 14.61 

Task 20 has four predecessor tasks, so its start date is defined by the maximum fmish date 
of its predecessors (i.e., tasks 15, 17, 18 and 19). This is expressed as: 

Start'20 = Max(Finish\ , 5 Finish' , 17 Finish\ , 8 Finish' ) 19

Nearly all of the duration PDFs used in this example schedule are right skewed, so a 
lognormal distribution is assumed for all of the start and finish date PDFs. Since the 
distributions of the finish dates of these tasks approximate lognormal distributions, the 
equations for the moments of the maximum of lognormal distributions (Equations 10-8 
through 10-10) are used to find the fmish date statistics for tasks 15, 17, 18 and 19 and thus 
the start date statistics for task 20. The latest, or maximum, finish date of the four tasks 
can be calculated in pairs, so three comparisons will be made, and the following three 
intermediate distributions will be formed: A = max(18,19), B = max(17,A), and 
C = max(15,B). 

We can calculate the mean of the maximum of two lognormal distributions using Equation 
10-8, which is: 
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and from Equation 10-9, which is: 

where= .JQf + Q~- 2pQ1Q2 , andp = Q1~2 ln [1 + p1,2 ( j[eQf -l][eQ~ -11)] 
These computations require knowledge of the statistics of the finish dates of pairs of 

tasks: Ill• ll2• av a2, Pv P2, Qv Q2, 8, p1,2 , and p. Table 11-13 provides the statistics 

used in the calculation of the maximum finish dates of tasks 15, 17, 18 and 19. 

The finish dates of tasks 15 through 19 are correlated due to common predecessor­
successor relationships. Using Equation 8-8, we can determine the pairwise correlation 
between these tasks or the maximums of pairs of tasks. 

Table 11-13 Statistics for Maximum Finish Dates of Tasks 15, 17,18 and 19 

Statistic A=max{18,19) B=max{17,A) C=max{lS,B) 

/1.1 01/10/14 11/09/13 11/05/13 

ll2 11/30/13 01/10/14 01/10/14 

0"1 16.03 14.02 11.69 

0"2 14.61 16.03 16.03 

P, 10.6370 10.6356 10.6355 

p2 10.6361 10.6370 10.6370 

Q, 0.000385 0.000337 0.000281 

Q, 0.000351 0.000385 0.000385 

P12 0.67236 0.70115 0.14383 

p 0.67236 0.70115 0.14383 

/l.m•Y 01/10/14 01/10/14 01/10/14 

O"moY 16.03 16.03 16.03 

*Note due to the small values of Qi, that p ,1 2 and pare 1dent1cal 

Tasks 18 and 19 share a common predecessor, the risk task (task 35, or R ), 2 so their 
correlation is: 

0.67236 

Task 17 shares R2 as a common predecessor with the maximum of task A (the maximum 
of tasks 18 and 19), so the correlation between task 17 and task A is: 
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UpfnishtR2 
2 

(12.55)2 = 
0

_
70104 p17.A = Upfnisht17 UFinishtA = (14.02)(16.03) 

Finally, task 15 shares task 14 as a common predecessor with task B (the maximum of 
tasks 17 and A), so task IS's correlation to task B is: 

P15,B = Upfnisht,.' = (6.09)2 = 0.19766 
O'Finisht15 0'Finishts 2 (11.69)(16.03) 

Task 20's predecessor is task C, so its fmish date is defmed as: 

Finish'20 = Finish' c+Duration'20 

From Table 11-9: 

ll Durationt14 = 90 * 1.033 = 93.00wd, and 

Uourationt20 = 90 * 0.062 = 5.61wd. 

The start date, finish date and duration results for task 20 are shown in Table 11-14. 

Table 11-14 Workday Results for Detailed Design Task 20 

TaskiD P.Duratton' O'Duratton' P.start' tT Start' P. Ftntsh' tTFtntsh' 

20 93.00 5.61 01/10/14 16.03 04/13/14 16.99 

11.2.1.5 Development and Unit Testing 
The "Development and Unit Testing" s11mmary task (task 21) consists of a s11mmary task 
(task 22) and three lowest-level tasks (tasks 23 through 25) that are arranged in a parallel 

structure. Each of the tasks has a common predecessor, task 20 and the durations of tasks 
23,24 and 25 are correlated to each other withp = 0.75. From Table 11-9: 

!louration'z• = 114.00wd, C1ouration123 = 10.39wd, 

!lourationt24 = 114.00wd, C1ourationt24 = 10.39wd, 

JlDurationt25 = 157.5Qwd, and C1ourationt25 = 7.5Qwd. 

Table 11-15 shows the duration, start and finish date statistics for the lowest-level tasks for 
"Development and Unit Testing". 

Table 11-15 Workday Results for Development and Unit Testing Tasks 

TaskiD Jlouratlont t1ouratlonJ JlStartt t1 Start' P. Flnlsht tiFtnlsht 

23 114.00 10.39 04/13/14 16.98 08/05/14 19.91 

24 114.00 10.39 04/13/14 16.98 08/05/14 19.91 

25 157.5 7.50 04/13/14 16.98 09/18/14 18.57 
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The fact that the durations of these tasks are correlated does not matter at this particular 
point since they are not serially arranged and merge to form a predecessor in a different 
summary task. This will become important when computing the maximum finish dates of 
these tasks and their respective Cis. 

11.2.1.6 Integration and Testing 
The "Integration and Testing" summary task (task 26) consists of four lowest-level tasks 
(27 through 30) arranged in a tree structure. 

Task 27 has three predecessors, tasks 23, 24 and 34, and the last is risk R . 1 Since R1 has 
zero duration, task 27 actually has only two predecessors, tasks 23 and 24. This means its 
start date is defined as maximum of the finish of tasks 23 and 24. Both tasks 23 and 24 
have the same finish statistics but their durations are correlated withp = 0.75. 

Start' 27 = Max(Finish' , 23 Finish' ) 24

Finish' 27 = Start' 27 + Duration' 27 

From Table 11-9, Jlourationr27 = 40.00wd and Uourationr27 = 6.00wd. 

Since the maximum of Finish' 23 and Finish' 24 depends on the correlation between the 
durations of tasks 23 and 24 as well as the functional correlation due to their common 

predecessor (task 2), we will use Equation 8-8 to determine PF•z•.F'z• then we can calculate 

the maximum finish date statistics using Equations 10-8 through 10-10. 

Up'20 
2 + Po•23,o•24Uo'23Uo•24 (16.99)2 + (0.75)(10.39)(10.39) 

p' = = = 09319 
F z•h• uF'

23
up•

24 
(19.91)(19.91) · 

The maximum finish date statistics are: 

Jl(Finishr23,Finishr24) = 08/08/14, and U(Finishr23,Finishr24) = 19.70wd. 

Task 27's statistics are provided in Table 11-16. 

Table 11-16 Workday Results for Integration and Testing Task 27 

TaskiD I'Du:ratfont tT Du:ratf01ll P.start' tT Start' ILFfnfshi tTptnfshl 

27 40 6.00 08/08/14 19.70 09/17/14 20.59 

Task 28 has a single predecessor (task 27), so Finish' 27 = Start' • 28 From Table 11-9: 

JlDurationrza = 36.17wd and Uourationrza = 3.60wd. 

Task 28's statistics are provided in Table 11-17. 
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Table 11-17 Workday Results for Integration and Testing Task 28 

TaskiD P.nuratlon, 0' Du:ratl01ll P.start' Ustart' llFfnlshl UFtntsht 

28 36.17 3.60 09/17/14 20.59 10/23/14 20.90 

The "Development and Unit Testing" task (task 29), has two predecessors, tasks 27 and 36 
(the latter is risk R ). 3 Tasks 27 and 36 branch from task 20 with multiple intermediate 
tasks, but since they share task 20 as a common predecessor, their finish dates will be 
functionally correlated. Before we can compute task 29's start date, we must compute the 
fmish date statistics for task 36. From Table 11-9: 

J.I.DurationtR3 = 7.50wd and UnurationtR3 = 11.51wd • 

The predecessor-successor and start-finish relationships (Start' R3 = Finish'25 and 
Finish' R3 = Start' R3 +Duration' R ) 3 allow us to compute the schedule statistics for task 
36 (R ) 3 in Table 11-18. 

Table 11-18 Workday Results for Risk R3 (fask 36) 

TaskiD JlDUTationt tT DuratiOJll JlStartt tT Start' ILFinishJ tiFinisht 

36 7.50 11.51 09/18/14 18.57 09/25/14 21.85 

Since tasks 27 and 36 share a common predecessor (task 20), they are functionally 
correlated, so we will use the now familiar Equation 8-8 to determine PF ,F • 127 136

Since 

Pn
21

,n36 = 0.75, we have: 

The maximum finish date statistics using Equations 1 0-8 through 10-1 0 are 

J.I.(Finisht27,Finisht36) = 09/28/14, and O"(Finisht23,Finisht24) = 20.78wd. 

From Table 11-9: 

J.l.nurationtzg = 62.00wd andunurationtzg = 6.16wd. 

Task 29's statistics are provided in Table 11-19. 

Table 11-19 Workday Results for Integration and Testing Task 29 

TaskiD P.ouratfont a Duratlont JLstart' tT Start' ILFfnt.slv aFtnlsl" 

29 62.00 6.16 09/28/14 20.78 11/29/14 21.68 
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The last "Integration and Testing" task is task 30. It has two predecessors, tasks 28 and 29. 
Since tasks 28 and 29 share task 27 as a co=on predecessor, they will be functionally 
correlated, and we will use Equation 8-8 to calculate it. We will assume Pv

28
,v

29 
= 0. 

uF,27 
2 (20.59)2 

Pv'2a.D'2• = u u = (20.90)(21.68) = 0.9356 
F'zs F'zs 

Equations 10-8 through 10-10 provide the following results 

J.l(Finishr20,Finishr29) = 11/30/14, and U(Finishr20,Finishr29) = 21.68wd. 

From Table 11-9: 

J.IDurationr30 = 72.00wd and Unurationr30 = 7.38wd. 

Table 11-20 summarizes the duration, start and finish date statistics for the lowest-level 
tasks for "Integration and Testing". 

Table 11-20 Workday Results for Integration and Testing Tasks 

TaskiD P.ouraUont tTouraUont JLstart' tT Start' ILFfnt.slv UFtm.sll' 

27 40 6.00 08/08/14 19.70 09/17/14 20.59 

28 36.17 3.60 09/17/14 20.59 10/23/14 20.90 

29 62.00 6.16 09/28/14 20.78 11/29/14 21.68 

30 72.00 7.38 11/30/14 21.68 02/10/15 22.90 

11.2.1. 7 Delivery 
The "Delivery" s••mmary task (task 31) consists of a single lowest-level task (task 32). 
Task 32 has a single predecessor (task 30). From Table 11-9: 

J.l Durationr32 = 10.00wd, and U Durationr32 = 3.00wd. 

The statistics for task 32 are shown in Table 11-21. 

Table 11-21 Workday Results for Delivery Task 32 

TaskiD Jlnurationt tT Durationt JLStartt t1 Startt ILFinishJ tlpfnisht 

32 10.00 3.00 02/10/15 22.90 02/20/15 23.10 

11.2.1.8 Criticality Index 
As described in Section 3.3.3, the CI is the probability that a particular task is on the 
critical path. Since tasks 30 and 32 are serial and always define the finish date, they are 
always on the critical path so their Cis are 100%. Tasks 11, 12 and 14 are serial tasks and 
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are by definition on the critical path so their Cis are I 00% as well. The tasks succeeding 
task 14 create a branch in the schedule network, so we must evaluate their CI up to the 

point of the start of task 20. These branches are: 

1) Task 15 

2) Tasks 16, 35 and 17 
3) Tasks 16,35 and 18 
4) Tasks 16, 35 and 19 

The expression for the duration between task 15 and task 19 is: 

The Cis of these tasks, using Equation 3-9, are: 

C/15 = P(F' 15 > F' max(17,18,19J) 

Clt6 = 1 - C/15 

C/35 = 1 - Clt5 

Clt1 = P(F' 11 > F' max(18,19J) 

C/19 = P(F' 18 > F' max(17,19J) 

C/19 = P(F'19 > F'max(17,18J) 

From Section 3.3.3, we can calculate Clt5 using the moments of the difference between the 

PDFs ofF' maxc17,18,19J and F' 15 then finding the integral of the PDF of the difference 

from- oo to 0. 

C/15 = P(F' 15 > F' max(17,18,19J) = P(F' max(17,18,19J - F' 15 < 0) 

ilF' c l = 01/10/14, and uF' c l = 16.03wd from Table 11-13. max 17,18,19 max 17,18,19 

llF' 15 = 11/05/13, and uF'15 = 11.69 wd from Table 11-12 

p = 0.14383 from Table 11-13. 

The moments of the difference of the PDFs are: 

{ju = , , - , , = 66wd and 
,.,. l""'F max(17,1B,19) r-F 15 ' 

OU = UF'max(17,18,19) 
2 + UF'1s 

2
- ZpuF'max(17,18,19)UF'1s = 17·B75wd. 

Since OJl is positive and u F' F' l' 
15 

< u c we expect the difference distribution to be max 17,18,19 

right skewed. Using the knowledge that OJl > 3ou we can expect all but a negligible 
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amount of area of the distribution lies to the right of the origin, so C/15 = 0. Since this is 

the case, Ch6 = 1, and C/35 = 1 since it is a direct successor to task 16. 

C/17 = P(F'17 > F' max(18,19)) = P(F' max(18,19) - F'17 < 0) 

llF' c l = 01/10/14, and a F' c l = 16.03wd from Table 11-13. max 18,19 max 18,19 

llF',
7 

= 11/09/13, and aF',
7 

= 14.02wd from Table 11-12 

p = 0.70115 from Table 11-13. 

The moments of the difference of the PDFs are: 

OJl = llF' c l - llF' 5 = 62 wd., and max 18,19 1 

OO" = 11F'max(18,19) 2 + 11F'1s 2 - 2pi1F'max(18,19)0"F'1s = 11.763 wd. 

Again, OJl is positive, and a F' < a F' ( l' 
17 

so we expect the difference distribution max 17,18,19 

to be right skewed. OJl > 3oa, in this case, so we can again expect C/17 = 0. 

C/18 = P(F'18 > F' max(17,19)) = P(F' max(17,19) - F'18 < 0) 

To fmd C/18 we require values for the following parameters: ilF' max(l ,7 l' 11 F' max(lo,l•l' 19
llF' , 11 F' , and p (which is the correlation between F' maxc18 18 17,19) and F'18). 

We again use Equation 10-8 and Equation 10-9 to calculate the mean ofF' maxc17,19) which 

result in: 

ilF' ( l = 11/30/13, and 11 F' ( l = 14.56 wd max 17,19 max 18,19 

JlF'
18 

= 01/10/14, and aF'
18 

= 16.03wd from Table 11-12. 

The correlation coefficient is calculated using the knowledge that these distributions rely 

on a co=on finish date for task 20 whose standard deviation is: 

11F'18 = 16.99 wd from Table 11-12 

So _ UFtnlsht20 
2 = (16.99)2 = 0_70115 , P17,19 - u u (14.56)(16.03) 

F' max(17,19) F' 18 

The moments of the difference of the PDFs are: 

OJl = llF' ( l - llF'18 = -41.27wd, and max 17,19 

011 = aF' ( )2 + 11Ft18
2

- 2paF' ( JI1Ft18 = 12.411 wd. max 17,19 max 17,19 

The area of this distribution is all less than zero, so Ch8 = 1.0. 
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Task 20 is a serial task and has a CI of 100%, but it has a complex set of branches 
succeeding it. The equivalent duration of the tasks between tasks 20 and 30 is the 

difference between the start date of task 30 and the fmish date of task 20. This duration 
represents the maximum duration of tasks 23 through 29, D[ ,23 291, which is equal to: 

D[ ,23 29J = max{max[max(D' , 23 D' ) 24 + D' , 27 D' 25 + D' ] 36 + D' , 29 max(D' , 23 D' ) 24 + 
D'21 + D'29} 

Tasks 28 and 29 define the start of task 30, so 

C/28 = P(F' 28 > F' ), 29 and 
C/29 = 1 - C/ . 28

C/28 = P(F' 28 > F' 29) = P(F' 28 - F' 27 < 0), which results in: 

fl.F' = 10/23/14,anduF' =20.89wdfromTablell-20 
28 28 

ilF'
2

• = 11/29/14, and uF'
2

• = 21.68wd from Table 11-20 

Since tasks 28 and 29 share task 20 as a co=on predecessor, the correlation between their 

fmish dates is defmed as: 

_ aFinisht20 
2 = (16.99)

2 = 0.63640 
P28,29 - a a (20.69)(21.68) F'za F'zg 

The moments of the difference between the two PDFs are: 

OJl = llF' 29 - llF' 28 = 36.6wd, and 

ou = UF' 2• 
2 + UF' 2• 

2
- 2puF'zouF'za = 18.164wd. 

Since p ,28 29 is not large enough to model the difference between these PDFs as a normal 

distribution, we will treat it as a lognormal distribution. The lognormal parameters P and 

Q for the difference are P = 3.4915 and Q = 0.4687. Substituting P and Q into the 
standard normal distribution and evaluating the integral of the difference of the PDFs from 
-oo to 0 we get zero, so C/28 = 0 . It becomes clear that task 29 is on the critical path with 

C/29 = 1 and the expression for the duration from task 23 to task 29 reduces to: 

This expression shows we must calculate C/ , 36 a discrete risk. R3 is defined as R(p, D) = 

{ 0.3, T(20,25,30) )wd, meaning there is a 30% probability that there will be an additional 

duration defmed by T(20,25,30)wd. 

The duration statistics for task 36 are: 

{
25.00 

llo' •• = 0.00 
, if R3 , p = 0.3 {2.04 
, if R3, 1- p = 0.7 'and Uo'•• = 0.00 

, if R3 , p = 0.3 

, if R3 , 1- p = 0.7 
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The finish date statistics for task 36 are: 

{
10/13/14 , if R3 , p = 0.3 {18.67 

J.IF'•• = 09/18/14 , if R3 ,1- p = 0.7 'and uF'•• = 18.56 
, if R3 , p = 0.3 
, if R3 ,1- p = 0.7 

C/36 = P(F'36 > F'27) = P(F'27 -F'36 < 0) 

f.i.F' 
27 

= 09/17/14, and uF'z7 = 20.59wd from Table 11-20 

Tasks 27 and 36 share task 20 as a common predecessor, however 

Finish'27 = Finish'2o + Max(D'23• D'24) + D'27, 

Finish'R3 = Finish'20+D'2s+D'R3, and 

P23,24 = P23,25 = P24,25 = 0.75, 

so there is additional correlation for which we must account when computing p , • 27 36

D'A = Max(D'23• D'24) + D'21 , and D' B = D'2s + D' R3 

a Finish1 2
+Po' n' cr o' cr o' 

p27 36 = 20 
A· 

8 
A 

8
, which will is calculated separately for each possible 

' qF1z7CTpl36 

outcome. We will assume Pv'A·v'8 = 0.75 and compute the standard deviations, Uv'A and 

Un,a· 

UMax(Dt23,0 ,24) = 10.23wd, using Equation 10-9. 

(JD'A = 

Un'a = [ ]
2 [ ]2 _ {.J[7.50]2 + [2.04]2 = 7.77wd , if R3 , p = 0.3 

Un'zs + Un'Rl - -
.J[7.50]2 + [0]2 = 7.50wd , if R3 ,1- p = 0.7 

,if R3 ,p = 0.3 
, if R3 ,1 - p = 0.7 

The moments of the difference of the PDFs are 

{
-25.57wd , if R3 , p = 0.3 

OJ.l = J.IF'z7- J.IF'•• = -0.57wd , if R3 ,1- p = 0.7 

2 2 -{8.752wd ,ifR3 ,p=0.3 
OU = UF1z7 + UF1

36 -
2PUF'z7UF'•• - 8.753wd , if R

3 
,1- p = 0.7 
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In the case where R3 occurs, we will assume the PDF of the difference is approximately 
normal since the two distributions are so highly correlated (p = 0.90510). Given this, the 

integral of the PDF of the difference from- oo to 0 is 0.9983, which is almost unity. In the 

case where R3 does not occur, we will again assume a normal distribution for the PDF of 

the difference. The resulting integral of the PDF of the difference from- oo to 0 is 0.5259. 

Combining these two Cis, we get a 30% probability that C/36 is 0.9983 and a 70% 
probability that C/36 is 0.5259. These probabilities result in 

C/36 = 0.3( 0.99830) + 0.7(0.5259) = 0.6676, so C/27 = 1- 0.6676 = 0.3324 

The relationship for the duration D[ ,23 291 can be rewritten as 

Since task 25 belongs to the same path as (and is a single predecessor to) task 36, then 
C/25 = 0.6676. 

The remaining two tasks, tasks 23 and 24, have identical distributions as shown in Table 
11-15, so they have an equal probability of being on the critical path. Given this we can 
multiply the CI of their path (CI=0.3324) by 0.5 to equally divide their probabilities of 
being on the critical path. 

C/23 = C/24 = (0.5)(0.3324) = 0.1662 

11.2.1.9 Schedule Risk Summary 
Table 11-22 summarizes the duration statistics (as well as the start and finish dates in 
workdays) and the Cis calculated in the previous section. The durations, start and finish 
dates are converted to calendar dates in Table 11-23 to display the actual duration statistics 
in days as well as the calendar days representing the statistics of the start and finish dates 
of the tasks. 

Table 11-22 Workday Results for Schedule Risk Analysis 

Task ID llourattont t1' Duratlont P.startt U Startt P.Ftntsht tTptnlsht Cl 

10 152.50 3.49 10/01/12 0.00 03/02/13 3.49 100% 

11 101.67 3.12 10/01/12 0.00 01/10/13 3.12 100% 

12 50.83 1.56 01/10/13 3.12 03/02/13 3.49 100% 

14 82.67 4.99 03/02/13 3.49 05/24/13 6.09 100% 

15 165.33 9.98 05/24/13 6.09 11/05/13 11.69 0% 

16 62.00 3.74 05/24/13 6.09 07/25/13 7.14 100% 

17 103.33 6.24 07/29/13 12.55 11/09/13 14.02 0% 

18 165.33 9.98 07/29/13 12.55 01/10/14 16.03 100% 

19 124.00 7.48 07/29/13 12.55 11/30/13 14.61 0% 
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Task ID P.Durattont t1' Durattont P.sta:rt, tl Sta:rtt P. Ftn.tsht tl'ptntsht Cl 

20 93.00 5.61 01/10/14 16.03 04/13/14 16.99 100% 

23 114.00 10.39 04/13/14 16.98 08/05/14 19.91 16.62% 

24 114.00 10.39 04/13/14 16.98 08/05/14 19.91 16.62% 

25 157.50 7.50 04/13/14 16.98 09/18/14 18.57 66.76% 

27 40.00 6.00 08/08/14 19.70 09/17/14 20.59 33.24% 

28 36.17 3.60 09/17/14 20.59 10/23/14 20.90 0% 

29 62.00 6.16 09/28/14 20.78 11/29/14 21.68 100% 

30 72.00 7.38 11/30/14 21.68 02/10/15 22.90 100% 

32 10.00 3.00 02/10/15 22.90 02/20/15 23.10 100% 

34 0.00 0.00 08/05/14 19.91 08/05/14 19.91 0% 

35 4.00 10.32 07/25/13 7.14 07/29/13 12.55 100% 

36 7.50 11.51 09/18/14 18.57 09/25/14 21.85 66.76% 

Table 11-23 Calendar Day Results for Schedule Risk Analysis 

TaskiD P.Duration 11'Duration I' start tT Start P. Finish t1'Finish Cl 

10 213.50 4.88 10/01/12 0.00 05/02/13 4.88 100% 

11 142.33 4.37 10/01/12 0 02/20/13 4.37 100% 

12 71.17 2.18 02/20/13 4.37 05/02/13 4.88 100% 

14 115.73 6.98 05/02/13 4.88 08/26/13 8.52 100% 

15 231.47 13.97 08/26/13 8.52 04/14/14 16.36 0% 

16 86.80 5.24 08/26/13 8.52 11/21/13 10.00 100% 

17 144.67 8.73 11/26/13 17.57 04/20/14 19.62 0% 

18 231.47 13.97 11/26/13 17.57 07/16/14 22.45 100% 

19 173.60 10.48 11/26/13 17.57 05/19/14 20.46 0% 

20 130.20 7.86 07/16/14 22.44 11/23/14 23.78 100% 

23 159.60 14.55 11/23/14 23.78 05/01/15 27.88 16.62% 

24 159.60 14.55 11/23/14 23.78 05/01/15 27.88 16.62% 

25 220.50 10.50 11/23/14 23.78 07/01/15 25.99 66.76% 

27 56.00 8.40 05/06/15 27.58 07/01/15 28.83 33.24% 

28 50.63 5.03 07/01/15 28.83 08/20/15 29.26 0% 

29 86.80 8.63 07/16/15 29.10 10/10/15 30.35 100% 

30 100.80 10.34 10/13/15 30.35 01/22/16 32.06 100% 

32 14.00 4.20 01/22/16 32.06 02/05/16 32.34 100% 

34 0.00 0.00 05/01/15 27.88 05/01/15 27.88 0% 

35 5.60 14.45 11/21/13 10.00 11/26/13 17.57 100% 

36 10.50 16.12 07/01/15 25.99 07/12/15 30.58 66.76% 

By examining the Cis of the tasks in Table 11-22 and Table 11-23, we can reduce the 
equation representing the duration of the project to the following: 
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The use of this specific relationship is restricted to the definitions of the duration PDFs 
defined in the model. If any of the PDFs of schedule duration changed in a manner that 
would affect the Cis of the tasks, the relationship may change. 

The PDF of the schedule distribution can be approximated by modeling it as a lognormal 
distribution, however if there are discrete risks in the probabilistic critical path (i.e., CI for 
any discrete risk is greater than zero) the distribution is accurately modeled as a mixed 
distribution. Examining tasks 34, 35 and 36 we see that tasks 35 and 36 (risks R2 and R , 3

respectively) are on the probabilistic critical path, so the project schedule will have a 
mixed distribution. To compare the lognormal approximation to the mixed distribution, 
we calculate the lognormal parameters P and Q for the schedule duration in workdays then 
derive the percentile statistics for the total schedule duration. 

Using Equations 4-5 and 4-6, with Jl.D'rat = 872.88wd and Uv·rat = 23.09wd, Pv'rat = 
6.7714, and Qv·rat = 0.0265. The resulting plot of the lognormal approximation to the 

total schedule duration is shown in Figure 11-9. 
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Figure 11-9 Lognormal Approximation of Total Schedule Duration 

The PDF of the mixed distribution is composed of a continuous distribution consisting of 
tasks 11-30 that are always on the critical path (i.e., CI-100%) and combinations of state­
dependent discrete risk durations. Since there are two schedule risks, we expect 2n = 
22 = 4 risk states with conditional outcomes. Beginning with the risk states, Si: 

S0 : R2 and R3 do not occur. P(S0) = (1- 0.3)(1- 0.15) = (0.7)(0.85) = 0.595 
S1 : R2 occurs and R3 does not occur. P(S1) = (0.3)(1 - 0.15) = (0.3)(0.85) = 0.255 
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S2 : R2 does not occur and R3 occurs. P(S2 ) = (1- 0.3)( 0.15) = (0.7)(0.15) = 0.105 
S3 : R2 and R3 occur. P(S3 ) = (0.3)( 0.15) = 0.045 

Risk R2 is a discrete uniform distribution with zero duration if the risk does not occur and 
has three equiprobable outcomes if the risk occurs (15wd, 25wd, or 40wd). The 
equiprobable outcomes have conditional probabilities, P(D)IP(R2 ) = 0.15/3 = 0.05. 
Risk R 2 has a C I = 1 whether it occurs or not, so it will always be on the critical path. If 
risk R3 occurs, it has a C/-1, but if it does not occur, its CI = 0.5259, and we will have to 
use the maximum of two PDFs to determine the correct duration to use. It has two 
possible outcomes: if the risk does not occur the duration is zero, and if the risk occurs the 
duration is modeled by a triangular distribution T(20,25,30)wd. Given the contingent 
probabilities of the possible outcomes, we have: 

S : 0 1 outcome: P(S ) 0 = 0.595, D50 = Owd 

sl : 3 outcomes: 

P(S1a) = (0.255) G) = 0.085 ; Ds1a = 15wd 

P(S1b) = (0.255) G) = 0.085 ; Ds,b = 25wd 

P(S1c) = (0.255) G) = 0.085 ; Dsle = 40wd 

S : 2 1 outcome: P(S ) 2 = 0.105; D52 = T(20,25,30)wd 

s3 : 3 outcomes: 

P(S3a) = (0.045) G) = 0.015 ; D53a = 15 + T(20,25,30) = T(35,40,45)wd 

P(S3b) = (0.045) G)= 0.015; D b 53 = 25 + T(20,25,30) = T(45,50,55)wd 

P(S3c) = (0.045) G) = 0.015 ; Ds,c = 40 + T(20,25,30) = T(60,65,70)wd 

The continuous distribution to which we combine these discrete risk states (with eight 
possible outcomes and associated probabilities of occurrence) is composed of tasks 11, 12, 
14, 16, 18, 20, 29, and 30. All of these tasks are on the critical path 100% of the time and 
have uncorrelated durations, so their durations are additive. The means will be additive 
and the standard deviation of the total will be the square root of the sum of the squares of 
the standard deviations. The resulting statistics of the continuous distribution are shown in 
Table 11-24. 

149 



ANALYTIC METHOD FOR RISK ANALYSIS 

Table 11-24 Continuous Distribution Statistics 

Task fl.o, Uo, 

11 101.67 3.12 

12 50.83 1.56 

14 82.67 4.99 

16 62.00 3.74 

18 165.33 9.98 

20 93.00 5.61 

29 62.00 6.16 

30 72.00 7.38 

32 10.00 3.00 

Total 699.50 16.84 

When R3 does not occur (R ), 3 the duration of the discrete distribution is governed by the 
following equation: 

Calculating the mean and standard deviations of the maximum of these distributions 
(assuming again that Pv' A·D' = 0.75 ) using Equations 10-8 through 10-10, we get: 8 

Jlv- = 160.40wd and av- = 9.50wd. 
R3 R3 

The resulting duration statistics for each state are shown in Table 11-25. 

Table 11-25 Discrete State Duration Statistics of D[ ,23 28J and D35 

State Risk 
Occurrence 

Prob fl.o, Uo, 

So R, nR, 0.595 160.40 9.50 

Sla R2a n R3 0.085 175.40 9.50 

s1• R2h n R, 0.085 185.40 9.50 

S1c R2b n R3 0.085 200.40 9.50 

Sz R2 nR. 0.105 182.50 9.71 

s,. R,n n R, O.D15 197.50 9.71 

s,. R2b n R3 0.015 207.50 9.71 

s,c R2c n R3 0.015 222.50 9.71 

Combining the continuous and discrete duration statistics into mixed distribution statistics 
(Table 11-26) allows us to compose the mixed distribution shown in Figure 11-10. 
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Table 11-26 Mixed Distribution of Duration Statistics 

State Risk 
Occurrence 

Pro b. /l01 tlo, Po, Qo, 

So R2 nR3 0.595 859.90 19.33 6.757 0.022 

Sla Rza n R3 0.085 874.90 19.33 6.774 0.022 

Stb Rzb n R3 0.085 884.90 19.33 6.785 0.022 

sle Rzb n R3 0.085 899.90 19.33 6.802 0.021 

Sz R2 nR3 0.105 882.00 19.44 6.782 0.022 

S3a Rza n R3 0.015 897.00 19.44 6.799 0.022 

s3b Rzb n R3 0.015 907.00 19.44 6.810 0.021 

S3c Rzc n R3 0.015 922.00 19.44 6.826 0.021 
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Figure 11-10 Mixed Distribution of Total Schedule Duration 

When we compare plots of the lognormal approximation to the mixed distribution we see 
the lognormal approximation is a reasonable one. 
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Figure 11-11 Mixed Distribution and Lognormal Approximation of Total Schedule 
Duration 
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Comparing the results of our analytic approximation to a 1 00,000-trial statistical 
simulation we see very good agreement as well. Differences in the statistics are due to 
sampling errors in the simulation (for wd statistics) and due to conversion of the analytic 
results into calendar dates (for cd statistics). 

Table 11-27 Comparison of Analytic and Statistical Simulation Finish Date Statistics 

Finish Date Analytic Approach Statistical Simulation 

llF• (wd) 02/20/15 02/18/15 
tip, (wd) 23.09 23.74 

/lp (cd) 02/05/16 01/24/16 
tip (cd) 32.34 33.17 

11.2.2 Cost Probability Distribution 
The program's costs are the sum of the lowest-level WBS elements shown in Table 11-28. 
The cost of each lowest-level WBS element is defmed by a time-dependent (TD) costs 
(i.e., those costs that vary with the duration of each task), and a time-independent (TI) cost 
(i.e., the probabilistic daily rate or other additive costs not related to schedule duration). 

Table 11-28 NASA Example WBS and Point Estimate 

WBS WBS Description Point Estimate, $ 
1 Analysis File $151,500,000.00 
1.1 Milestone Summary $0.00 
1.1.1 Project ATP 
1.1.2 PDR 
1.1.3 CDR 

1.1.4 Rocket delivery 

1.2 Project Support Costs hammock task $20,000,000.00 
1.2.1 Support Start 

1.2.2 Support Finish 

1.3 Preliminary Design $9,000,000.00 
1.3.1 Requirements definition and documentation $4,000,000.00 
1.3.2 Preliminary design activities $5,000,000.00 
1.4 Detailed Design $48,500,000.00 
1.4.1 Initial detailed design 
1.4.2 Design GN&C $15,000,000.00 
1.4.3 Trade studies and analysis 

1.4.4 Design pyrotechnics $7,500,000.00 
1.4.5 Design propulsion system $12,000,000.00 
1.4.6 Design structures and mechanisms $9,000,000.00 
1.4.7 Finalize integrated design $5,000,000.00 
1.5 Development and Unit Testing $42,000,000.00 
1.5.1 Fabricate rocket Components $30,000,000.00 
1.5.1.1 Fabricate and unit test structure (including pyres) $20,000,000.00 
1.5.1.2 Fabricate and unit test engine $10,000,000.00 
1.5.2 Develop and test flight software for GN&C $12,000,000.00 
1.6 Integration and Testing $29,000,000.00 
1.6.1 Integrate rocket components $6,000,000.00 
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WBS WBS Description Point Estimate, $ 
1.6.2 Test frame, fuel system and engine $8,000,000.00 
1.6.3 Test guidance system $5,000,000.00 
1.6.4 Final integration and testing $10,000,000.00 
1.7 Delivery $3,000,000.00 
1.7.1 Delivery $3,000,000.00 
2 Risk Register $0.00 
2.1 Risk 1 - Tl -Additional Purchase $0.00 
2.2 Risk 2 - Duration -Additional Studies Required $0.00 
2.3 Risk 3 - Tl and Duration - Delay from Additional Software Purchase $0.00 

Individual lowest-level WBS element Costs, X;, are defined by the combination of TD and 
TI costs as follows: 

X;= 

{
(TD;Ero.)(Tl;Er1.) = Duration';Er01Rate;Er11 

[(TD;Ero,)(TI;)] + E; = (Duration';Er01Rate;) + Er11 

, if Tl is multiplicative 

, if Tl is additive 

11-2 

where: 
Er11 is the Tl PDF 
Ern, is the TD PDF 
Duration'; is the probabilistic task duration in wd. 
Rate; is the nominal cost per wd. 

11.2.2.1 Cost-Estimating-Level Uncertainty Stlltistics 
The rate, and the TI and TD PDFs for each lowest-level WBS element in the NASA 
example are shown in Table 11-29. 

Table 11-29 NASA Resource-Loaded Schedule TI and TD Cost PDFs 

WBS Rate ($/wd.) TD Cost PDF Tl Cost PDF 

1.2 $23,809.52 N*(100,5) 
1.3.1 $40,000.00 T*(95,100,105) 
1.3.2 $90,000.00 T*(95,100,105) N (500000,40000); 

p (DESFABCOST =0.3) 
1.4.1 $0.00 
1.4.2 $93,750.00 T*(95,100,105) 
1.4.3 
1.4.4 $75,000.00 T*(95,100,105) 
1.4.5 $75,000.00 T*(95,100,105) 
1.4.6 $75,000.00 T*(95,100,105) 
1.4.7 $55,555.56 T*(95,100,105) 
1.5.1.1 $166,666.67 T*(95,100,105) T*(80,100,110); 

p(DESFABCOST=0.3) 
1.5.1.2 $83,333.33 T*(95,100,105) T*(80,100,110); 

p (DESFABCOST=0.3) 
1.5.2 $80,000.00 T*(95,100,105) 
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1.6.1 $150,000.00 T*(95,100,105) 
1.6.2 $228,571.43 T*(95,100,105) 
1.6.3 $83,333.33 T*(95,100,105) 
1.6.4 $142,857.14 T*(95,100,105) 
1.7.1 $300,000.00 
2.1 R(0.3,T($8M,$10M,$13M)) 
2.2 
2.3 R(0.3,T($13M,$15M,$20M)) 

The means and standard deviations of the triangular TD and TI PDFs are calculated using 
Equations 4-1and 4-2. Table 11-30 shows the rates and workday duration statistics of the 
schedule summary tasks. 

Table 11-30 Rate, Duration and Uncertainty Statistics for Cost-Estimating-Level 
WBS Elements 

was Rate llo• ao, "- a •• n 11.,., a., 
1.2 $23,809.52 872.88 23.10 1 0.0500 

1.3.1 $40,000.00 101.67 3.12 1 0.0204 
1.3.2 $90,000.00 50.83 1.56 1 0.0204 +500000 40000 
1.4.2 $93,750.00 165.33 9.98 1 0.0204 
1.4.4 $75,000.00 103.33 6.24 1 0.0204 
1.4.5 $75,000.00 165.33 9.98 1 0.0204 
1.4.6 $75,000.00 124.00 7.48 1 0.0204 
1.4.7 $55,555.56 93.00 5.61 1 0.0204 

1.5.1.1 $166,666.67 114.00 10.39 1 0.0204 0.9667 0.0624 
1.5.1.2 $83,333.33 114.00 10.39 1 0.0204 0.9667 0.0624 

1.5.2 $80,000.00 157.5 7.50 1 0.0204 1 0 
1.6.1 $150,000.00 40.00 6.00 1 0.0204 
1.6.2 $228,571.43 36.17 3.60 1 0.0204 
1.6.3 $83,333.33 62.00 6.16 1 0.0204 
1.6.4 $142,857.14 72.00 7.38 1 0.0204 
1.7.1 $300,000.00 10.00 3.00 1 0 

Using values form Table 11-30 and Equation 11-2, we can calculate the mean and standard 
deviation of each cost-estimating-level WBS Element (Table 11-31 ). 

Table 11-31 Mean and Standard Deviations of Cost-Estimating-Level WBS Elements 

was llx ax 
1.2 $20,782,813.74 $549,947.19 

1.3.1 $4,066,666.67 $149,842.51 
1.3.2 $5,075,000.00 $173,253.56 
1.4.2 $15,500,000.00 $987,658.22 
1.4.4 $7,750,000.00 $493,829.11 
1.4.5 $12,400,000.00 $790,126.57 
1.4.6 $9,300,000.00 $592,594.93 
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WBS llx ax 
1.4.7 $5,166,666.67 $329,219.41 

1.5.1.1 $18,366,666.67 $2,088,349.29 
1.5.1.2 $9,183,333.33 $1,044,174.65 

1.5.2 $12,600,000.00 $652,916.53 
1.6.1 $6,000,000.00 $908,480.87 
1.6.2 $8,266,666.67 $839,232.45 
1.6.3 $5,166,666.67 $524,520.28 
1.6.4 $10,285,714.29 $1,075,541.71 
1.7.1 $3,000,000.00 $900,000.00 

11.2.2.2 Computing WBS-Element Co"elations 
The statistics of the summary-level WBS elements are computed using the FRISK method 
described in Section 4.2.2.1. All but four of the WBS elements in the NASA resource­
loaded schedule are uncorrelated to each other. Correlations are defined between the 
following: 1) schedule duration PDFs for WBS elements 1.5.1.1, 1.5.1.2, and 1.5.2 (i.e., 

tasks 23, 24 and 25) with a correlation coefficient defined by PoEVDUR = 0.75; and 
between time independent cost PDFs for WBS elements 1.3.2, 1.5.1.1, 1.5.1.2 (i.e., tasks 

12, 23 and 24) with a correlation coefficient defined by PoESFABCOST = 0.3. 

The effects of the correlated schedule durations will manifest themselves in the standard 
deviations of the cost summations of WBS elements 1.5 and 1.51. The correlated time 
independent cost correlations will affect the standard deviations of the WB S elements 
where they are summed (i.e. WBS elements 1 and 1.51). The standard deviations of all 
other summary WBS elements can be computed using a root-sum-square of their 
constituent WBS elements. 

The correlations between schedule durations and the respective costs for WBS elements 

1.5.1.1, 1.5.1.2, and 1.5.2 are P1.5.1.1,1.5.1.2• P1.5.1.1,1.5.2• and P1.5.1.2,1.5.2• respectively. We 
will calculate them in that order. 

P1.5.1.1,1.5.1.2 

We use Equation 4-26, and following the steps in Section 8 to compute the correlation 
coefficient. From Section 8, Step 1, which is: 

P 
_ E[X1.5.1.1X1.5.1.2]-E[Xl.S.l.l]E[Xl.S.1.2] _ E[X1.5.1.1Xl.S.1.2]-1'1.5.1.11'1.5.1.2 

1.5.1.1,1.5.1.2 - a a - " " 
1.5.1.1 1.5.1.2 1.5.1.1 1.5.1.2 

x1.5.1.1 = ( Duration'1.5.1.1 Erol.S.l.J ( Rate1.5.1.1 Enl.S.l.J 

The TD uncertainty defmed for WBS 1.5.1.1 is Ero1_5_1_1 = T(0.95,1.00,1.05). Using 

Equations 4-1 and 4-2, ll.TD = 1, and a•rn = 0.0204. 
1.5.1.1 1.5.1.1 
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The TI uncertainty defined for WBS 1.5.1.1 is ET/1_5_1_1 = T(0.80,1.00,1.10). Using 

Equations 4-1 and 4-2 we get: J.lEri = 0.9667, and uEri = 0.0624. 
1.5.1.1 1.5.1.1 

We can rearrange the cost function as X1.5.1.1 = R 1.5.uD'1.5.uETDc1.5.1.1)ETI(1.5.1.1)• and by 

setting E1.5.1.1 = ETD(1.5.1.1)ETI(1.5.1.1), we can simplify some of the equations. 

By definition for each WBS element, the TI and TD uncertainty PDFs are uncorrelated, so 

J.l£1.5.1.1 = J.l£TD{1.5.1.1)J.l.ETJ{1.5.1.1)' and 

(J£1.5.1.1 = ( (J£TD(1.5.1.1)J.l£TI(1.5.1.1)) 

2 

+ (J.l£TD(1.5.1.1) (J£TI(1.5.1.1)) 

2 

+ ( (J£TD(1.5.1.1) (J£TI(1.5.1.1)) 

2

' 

From Table 11-30 J.lv,1.5.1.1 = J.lv,23 = 114wd, uv,1.5.1.1 = uv,23 = 10.39wd, and 

Rate1.5.1.1 = $166,666.67, which is a constant. 

From Step 2a, J.l1.5.1.1 = J.l.R1.5.u (J.lv,l.S.ull£1.5.1,) = $166,666.67(114)(0.9667) = 
$18,366,666.67 

From Step 2b, u 1.5.1.1 = Var(u1.5.u) = R 1.5.uVar(D\.5.uE1.5.u) 

Using the propagation of errors method: 

u: -1.5.1.1 -

$166,666.67" ([10.39][0.9667])2 + ([114][0.06542])2 + ([10.39][0.06542])2 

(J1.5.1.1 = $2,088,349.29. 

Using the same formulation for X . . . , 1 5 1 2 we get: 

J.l1.5.1.2 = $9,183,333.33 and u 1.5.1.2 = $1,044,174.65 

From step 2c, 

X1.5.1.1X1.5.1.2 = R1.5.1.1 (D' 1.5.1.1 E1.5.u)R1.5.1.2 (D' 1.5.1.2E1.5.1.2) 

X1.5.1.1 X1.5.1.2 = R1.5.1.1 R1.5.1.2 (D' 1.5.1.1 E1.5.u) (D' 1.5.1.2E1.5.1.2) 

From Step 2d, a = R1.5.u R1.5.1.2 

E[X1.5.uX1.5.1.2] = aE[(D' 1.5.1.1 e1.5.u)(D' 1.5.1.2e1.5.1.2)] 

Grouping correlated error terms gives us: 
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E[X1.5.1.1X1.5.1.21 = aE[(D' 1.5.1.1 D' 1.5.1.2)(e1.5.1.1 E1.5.1.2)1 

E[X1.5.1.1 X1.5.1.21 = aE [ (D' 1.5.1.1 D' 1.5.1.2) 1£ [ (e1.5.1.1 E1.5.1.2) 1 

E[D't.s.t.t D' t.s.1.2J = JI.D,t.s.t.tJ.LD,t.s.t.z + PD't.s.t.t.D'Ls.t.zuD,t.s.t.t O"n,t.s.t.z 

E[D'1.5.uD'1.5.d = (114)(114) + (0.75)(10.39)(10.39) = 13,077 

Expanding the expectation of the uncertainty term, we get: 

E[ E1.5.1.2E1.5.1.11 = E [ ETD(1.5.1.1)ET/(1.5.1.1)ETD(1.5.1.2)ET/(1.5.1.2)] 

= E [ ETD(1.5.1.1)ETD(1.5.1.2)]£ [ ETI(1.5.1.1)ETI(1.5.1.2)] 

= (P..TD(l.S.l.l)JI.ETD(l.S.1.2)) (P..TI(l.S.l.l)JI.ETf(l.S.1.2) + Peri(l.S.1.1)••TI(l.S.1.2) 0' •ri(l.S.l.l) a.TI(l.S.1.2)) 

= (P..TI(l.S.1.1)JI.ETf(l.S.1.2) + P£TI(l.S.1.1)•£ri(l.S.1.2) O'£TI(l.S.1.1) 0' £TI(l.S.1.2)) 

E [ E1.5.1.2 E1.5.1.11 = Jl.eri(l.S.1.1)JI.£ri(l.S.1.2) + Peri(l.S.l.l)•ETI(l.S.l.Z) O'£TI(l.S.1.1) 0' ETI(l.S.l.Z) 

E[e1.5.1.2 E1.5.u1 = (0.9667)(0.9667) + (0.3)(0.0624)(0.0624) = 0.9356 

Recombining terms, we get: 

E[D' D' 1E[E E 1 -1.5.1.1 1.5.1.2 1.5.1.2 1.5.1.1 -

{Jlv,l.S.l.l Jl.v,l.s.t.z + PD1t.s.t.t•D'l.s.t.z av,1.s.1.1 av,l.s.t.z) (JLeTI(t.s.l.l)Jl.ert(l.s.t.z) + 

Peri(1.5.1.1)•ETJ(1.S.1.2) U ETJ(1.S.1.1) 0" £TI(1.5.1.2)) 

E[Xl.S.l.lXl.S.l.z] = (13077)(0.9356) = 12,234.99 
a 

From Step 3, and removing the rate term, we get: 

= 12,234.99-12,996 = 0 5793 
P1.5.1.1,1.5.1.2 (10.6518)(10.6518) • 

P1.5.1.1,1.s.z and Pt.s.t.z,t.s.z 

p1,5.1.1,1.5.2 and p1,5.1.2,1.5.2 are calculated in a similar fashion, except Pel.S.uh.s.z = 0 and 

P£1.S.12••1.S.2 = 0. 

This simplifies the product moment term to: 
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E[D' D' ]E[E E ] -1.5.1.1 1.5.2 1.5.2 1.5.1.1 -

(P.n't.s.t.tllD't.s.z + PD't.s.t.vD't.s.z Un,t.s.t.t Un,t.s.z) (lleri(Ls.t.t)Jleri(t.s.z)) 

This results in correlation equations P1.5.u,1.5.2 and p1.5.1.2,1.5.2 (by similarity), which are: 

P1.5.1.1,1.5.2 = 

(ttD1t.5.1.1 JlD1t.5.2 +pD1t.5.1.1•D1t.5.2 UD1t.5.1.1 fTD1t.5.2 )(Jl£TI(1.5.1.1)Jl.£TI(1.5.2))-Jl.Dit.S.l.l Jl.Dit.S.Z 

{ um1.5.1.1)
2 

+(P.Dit.5.1.1 Ue1.s.1.1)
2 
+{ um1.5.1.1 Ue1.s.1.1)

2 
( uD1t.5.1.3)

2 
+(llD1t.5.1.3 Ue1.5.1.3)

2 
+( uD1t.5.1.3 Ue1.5.1.3)

2 

PL5.1.2,1.5.2 = 

(Jl.Dt 1.5.1.2 Jl.Dt 1.5.2 + p D1t.S.1.2•DI1.5.2 CTD/1.5.1.2 UD11.5.Z ) ( ll£ri(1.5.1.2) lle.Tl ( 1.5.2))-Jl.Dlt.5.1.2 Jl.Dlt.S.Z 

Solving P 1.5.1.2,1.5.2 using the parameters from Table 11-30, we get: 

llDt1.s.1.21lDt1.5,2 = (114)(157.5) = 17,955 

PD•1.5.1.2•D'1.5.20'D,1.5.1.20'D,1.5.2 = (0.75)(10.39)(7.50) = 58.46 

JlETI(1.5.1.1)JlETI(1.5.2) = (0.9667)(1) = 0.9667 

= (17,955+58.46)(0.9667)-17,955 = 0 5526 
P1.5.1.1,1.5·2 (10.65)(8.16) • 

Coincidently, the values for p1,5.1.2,1.5.2 are the same, so 

= (17,955+58.46)(0.9667)-17,955 = 0 5526 
P1.s.1.2,1.5·2 (10.65)(8.16) . · 

The correlation matrix for WBS 1.5's subordinate elements is: 

Pt.s = [o.5;93 
0.5526 

0.5793 
1 

0.5526 

0.5526] 
0.5526 

1 

Pt.3.2,t.s.t.t• and Pt.3.2,t.s.z 

The second set of correlations defmed in the NASA resource-loaded schedule are those 
defined between TI PDFs. The correlations between independent cost PDFs affect the 
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correlation between WBS elements 1.3.2, 1.5.1.1, 1.5.1.2. We need to calculate 

P 1.3.2,1.5.1.1• and p 1.3.2,1.5.2. Since there is no correlation between the durations of these 

WBS elements, 

P 
_ E[X1.3.2X1.S.1.1]-E[X1.3.2]E[X1.S.1.1J _ E[Xl.s.uX1.S.1.2]-JL1.3.21hs.1.1 

1.3.2,1.5.1.1 - " " - " " 1.3.2 1.5.1.2 1.3.2 1.5.1.1 

x1.5.1.1 = ( D' 1.5.1.1 Erol.S.l.J ( R1.5.1.1 Enl.S.l.J 

x1.3.2x1.5.1.1 = 
R1.3.2R1.5.1.1 D' 1.3.2D' 1.5.1.1 Ero1.3.2Ero1.s.u Enl.S.u + En1.3.2R1.5.1.1 D' 1.5.1.1 Ero1.s.u En1.5.1.1 

Setting a = R1.3.2R1.5.1.1 (a constant) we get: 

x1.3.2x1.5.1.1 = 

aD' 1.3.2D' 1.5.1.1 Ero1.3.z Ero1.s.1.1 Enl.S.l.l + En1.3.zR1.5.1.1 D' 1.5.1.1 Ero1.s.1.1 Erhs.1.1 

E[X X ]-1.3.2 1.5.1.1 -

aE [ D' 1.3.2D' 1.5.1.1 Ero1.3.z ErD1.s.u En1.s.ul + R1.5.1.1 E [ D' 1.5.1.1 Ero1.5.1.1 En1.s.1.1 En1.3.zl 

Separating the correlated terms results in: 

E[X X ]-1.3.2 1.5.1.1 -

aE [D' 1.3.2D' 1.5.1.1JE [ Ero1.3.2 Ero1.5.1JE [ Er11.S.1.,j + 

R1.5.1.1 E [ D' 1.5.1.1]£ [ Ero1.s.ulE [ En1.s.1.1 Enl .•. z] 

!l1.3.2 = $5,075,000.00 and 0'1.3.2 = $173,253.56 

!l1.5.1.1 = $18,366,666.67 and a1.5.1.1 = $2,088,349.29 

Computing each product moment tem1 

a = R1.3.2R1.5.1.1 = ($90,000.00)($166,666.67) = 1.5£ + 10 

E[D'1.5.ul = 114, and E[Ero1.5.1J = 1 

Since Po'l.>.z.D'l.s.u = 0, 

E[D' 1.3.2D' 1.5.1.1] = Jlo,1.3.2JlD,1.s.1.1 

E[D'1.3.2D\.5.1.1J = (50.83)(114) = 5,795 
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E[E E ] - II II - 1 
TD1.3.2 TD1.S.1.1 - ,....£TDt.3.2 ,....£TDt.5.1.1 -

E[ET/1.5.1.1] = 0.9667 

Using values from Table 11-30, we get: 

E[Er 1.5.1 11
ETI . . ] 

1 3 2
= (500,000)(0.9667) + (0.3)(40,000)(0.0624) = 484,081.66 

Computing the product moment term using previously computed values results in: 

E[X1.3.2X1.s.1.1J = (1.5£ + 10)(5,795)(0.9667) + ($166,666.67 )(114)( 484,081.66) 

E[X1.3.2X1.S.1.1J = 9.32251£ + 13 

Computing the product of the means provides: 

Jl.1.3.21l1.5.1.1 = ($5,075,000.00)($18,366,666.67) = 9.32108£ + 13 

E[X1.s.1.1X1.s.1.2l- Jl.1.3.zll1.s.1.1 = $14,218,298,069.73 

0'1.3.20'1.5.1.1 = 3.61814£ + 11 

(9.32251E+13)-(9.32108E+13) 
Pl.3·2·1·5·1·1 = 3.61814E+11 0.0393 

Substituting the values from WBS 1.5.1.2 into the equation and solving we obtain 

P1.3.2,1.s.1.2 = 0.0393. The results of a 100,000-trial statistical simulation show 

P1.3.2,1.5.1.2 = 0.0389, an excellent agreement. 

11.2.2.3 Statistical Summation of WBS Element Costs 
Once the correlation coefficients between correlated WBS elements have been computed, 
the total cost can be calculated through statistical summation. The mean of total cost from 
Equation 4-10 is: 

ILT = EIIr=1 x;J = I:r=1 E[x;] = I:r=1ILX; 

A simplified equation for calculating the variance of the total cost when dealing with the 
standard deviations of correlated (crcor) and uncorrelated (crunc) WBS elements based on 
Equations 4-11 and 9-12 is Equation 11-3. This relationship greatly simplifies the 
computation of variances of programs with many WBS elements by limiting the number of 
matrix multiplications required. 

crT2 = Var(XT) = Clun/Iaune +Cleo/ PCJeor , where 
Clune is a column vector of standard deviations of uncorrelated WBS 

11-3 
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elements with dimension JxM, 
O"cor is a column vector of standard deviations of correlated WBS 
elements with dimension JxN, 
I is the identity matrix with dimension MxM, 
p is the correlation matrix with dimension NxN, and 
( )T is the transpose operation 

We use the latter equation to account for the correlation between WBS elements 1.3.2, 
1.5.1.1, 1.5.1.2, and 1.5.2, whose correlation matrix is (in that row and column order): 

1 0.0393 0.0393 0.0000] 
0.0393 1 0.5793 0.5526 

p = 0.0393 [ 0.5793 1 0.5526 
0.0000 0.5526 0.5526 1 

The results of the MOM and 1 00,000-trial Statistical Simulation Summation of the WBS 
Elements are shown in Table 11-32. These results indicate very good agreement between 
the two methods. Discrepancies in the results obtained using the two approaches are 
primarily caused by approximations used in the calculation of workday statistics using the 
analytic method, inexact statistical sampling of correlated random variables by the 
statistical simulation, and difficulties of the statistical simulation when dealing with 
discrete risks (as discussed in Section 9.1.8). 

Table 11-32 Results of MOM and Statistical Simulation Summation ofWBS Elements 

WBS Analytic Method 100,000-Trial Statistical Simulation 

llx ax llx ax 

1 $160,810,194.69 $11,333,411.24 $160,756,897.76 $10,050,372.90 

1.2 $20,782,813.74 $1,176,015.04 $20,730,787.20 $1,179,300.81 

1.3 $9,141,666.67 $229,062.38 $9,141,657.73 $228,767.50 

1.3.1 $4,066,666.67 $149,842.51 $4,066,668.80 $149,839.56 

1.3.2 $5,075,000.00 $173,253.56 $5,074,988.93 $173,027.10 

1.4 $50,116,666.67 $1,517,626.47 $50,116,585.59 $1,514,678.61 

1.4.1 $0.00 $0.00 $0.00 $0.00 

1.4.2 $15,500,000.00 $987,658.22 $15,499,948.07 $986,900.52 

1.4.3 $0.00 $0.00 $0.00 $0.00 

1.4.4 $7,750,000.00 $493,829.11 $7,750,025.08 $494,218.56 

1.4.5 $12,400,000.00 $790,126.57 $12,399,988.36 $789,913.58 

1.4.6 $9,300,000.00 $592,594.93 $9,299,952.17 $591,903.15 

1.4.7 $5,166,666.67 $329,219.41 $5,166,671.91 $329,327.90 

1.5 $40,150,000.00 $3,495,228.26 $40,151,376.12 $3,276,044.29 

1.5.1 $27,550,000.00 $3,265,642.58 $27,551,339.35 $2,834,945.88 

1.5.1.1 $18,366,666.67 $2,088,349.29 $18,367,694.56 $2,097,256.41 
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WBS Analytic Method 100,000-Trial Statistical Simulation 

Jlx O'x Jlx O'x 

1.5.1.2 $9,183,333.33 $1,044,174.65 $9,183,644.79 $1,046,930.09 

1.5.2 $12,600,000.00 $652,916.53 $12,600,036.77 $653,556.59 

1.6 $29,719,047.62 $1,720,918.39 $29,718,882.73 $1,724,308.57 

1.6.1 $6,000,000.00 $908,480.87 $5,999,968.14 $908,846.37 

1.6.2 $8,266,666.67 $839,232.45 $8,266,635.33 $838,788.65 

1.6.3 $5,166,666.67 $524,520.28 $5,166,665.32 $524,44 7.49 

1.6.4 $10,285,714.29 $1,075,541.71 $10,285,613.94 $1,074,641.82 

1.7 $3,000,000.00 $900,000.00 $2,999,969.14 $900,141.94 

1.7.1 $3,000,000.00 $900,000.00 $2,999,969.14 $900,141.94 

2 $7,900,000.00 $10,478,546.08 $7,897,639.25 $8,785,656.92 

2.1 $3,100,000.00 $5,687,706.04 $3,098,858.74 $4,766,730.77 

2.2 $0.00 $0.00 $0.00 $0.00 

2.3 $4,800,000.00 $8,800,564.07 $4,798,780.51 $7,374,605.76 

11.2.2.4 PDF of Total Cost 
The PDF of the total cost can be approximated by a lognormal distribution or by 
computing the exact, mixed distribution. The lognormal approximation is easily obtained, 
as it was for the schedule PDF, by computing the lognormal parameters P and Q then 
deriving the percentile statistics for total cost. Using Equations 4-5 and 4-6, with P.xrot = 

$160,810,256.90 and UxTot = $9,765,611.10' PxTot = 18.8939, and QxTot = 0.0607. 
The resulting plot of the lognormal approximation to the total schedule duration is shown 
in Figure 11-12. 

Lognormal PDF of Program Cost 

100 120 140 160 180 200 

Cost,$M 

Figure 11-12 Lognormal Approximation of Total Cost 
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The PDF of the mixed distribution has a continuous distribution component and a discrete­
risks component. Since there are two risks in the discrete-risks component affecting the 

total cost (R1 and R ), 3 we will derive a set of risk-state statistics for each state. There are 

2n = 22 = 4 risk states with conditional outcomes. Beginning with the risk states, S;: 

S : 0 R1 and R3 do not occur. P(S ) 0 = (1- 0.3)(1- 0.3) = (0.7)(0.7) = 0.49 
S : 1 R1 occurs and R3 does not occur. P(S ) 1 = (0.3)(1 - 0.3) = (0.3)(0.7) = 0.21 
S : 2 R1 does not occur and R3 occurs. P(S ) 2 = (1 - 0.3)( 0.3) = (0.7)(0.3) = 0.21 
S3 : R1 and R3 occur. P(S3) = (0.3)( 0.3) = 0.09 

R1 has two possible outcomes: the cost is zero if the risk does not occur and if the risk 
occurs, the cost is modeled by a triangular distribution T($8M, $10M, $13M). R3 also has 

two possible outcomes: the cost is zero if the risk does not occur and if the risk occurs, the 
cost is modeled by a triangular distribution T($13M, $15M, $20M). 

Given these four possible outcomes, we have these states: 

S : 0 P(S ) 0 = 0.49, Xs = $0 0 

S : 1 P(S ) 1 = 0.21 ; Xs
1 

= T($8M, $10M, $13M) 

S : ) 2 P(S2 = 0.21; Xs = T($13M, $15M, $20M) 2 

S3 : P(S3) = 0.09 ; Xs, = T($8M, $10M, $13M) + T($13M, $15M, $20M) 

The continuous distribution to which we combine these discrete risk states is composed of 

WBS Elements 1.1 to 1.7. The resulting moments of the continuous distribution (Xcont) 

are: 

Jl.Xcont = $152,860,068.75, and Uxcant = $4,272,695.15 

The statistics of the discrete-risk states (J.Lxntscand uxnts) are computed usmg the 

calculations of the moments of the triangular distributions and (in the case of S , 3 which is a 
sum of triangular distributions) statistically summing them using Equations 4-1 0 and 4-11. 
The distributions of the triangular PDFs of the two risks are uncorrelated, so the standard 

deviation of the impact of state S3 is the square root of the sum of the squares of the 
standard deviations of the two triangular PDFs. The results are 

S0 : P(S0) = 0.49, Jl.Xntsc = $0, Uxntsc = $0 

sl : P(Sl) = 0.21 ; Jl.Xntsc = $10,333,333.33, Uxntsc = $1,027,402.33 

S2 : P(S2) = 0.21; Jl.Xntsc = $16,000,000.00, Uxntsc = $1,471,960.14 

s3 : P(S3) = 0.09; Jl.xnisc = $26,333,333.33, UxDisc = $1,795,054.94 
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To create the mixed distribution of the project cost, fxm (x), we combine the continuous 

and discrete distributions using Equation 11-4. fxm (x) represents the probability-of­

occurrence-weighted sum of the PDFs of the individual states. 

fxm (x) = ~~=O Psi fx5 . (x) , where 
t 

Pst = the probability of occurrence of state Si 
fxs. (x) = the PDF of state Si 

~ 

11-4 

The probabilities of occurrence and statistics used in this operation are shown in Table 
11-33. 

Table 11-33 Mixed Distribution of Cost Statistics 

State Risk 
Occurrence 

Pro b. P.x ax Px Qx 

So R1 nR3 0.49 $152,860,068.75 $4,272,695.15 18.8446 0.0290 

sl R1 nR3 0.21 $163,193,402.08 $4,394,482.83 18.9101 0.0269 

Sz R1 nR3 0.21 $168,860,068.75 $4,519,136.03 18.9442 0.0268 

s3 R1 nR3 0.09 $179,193,402.08 $4,634,452.08 19.0036 0.0259 

The mixed distribution shown in Figure 11-13 is a plot of fxm (x) . This is a multimodal 

PDF, and evidence of the discrete components are visible near the means of each state. 
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Figure 11-13 Mixed Distribution of Total Cost 

When we compare plots of the lognormal approximation to the mixed distribution we see 
the lognormal approximation captures the overall mean and standard deviation, but it does 
not accurately portray the multimodal nature of the mixed distribution. 
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PDF of Program Cost 
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Figure 11-14 Mixed Distribution and Lognormal Approximation of Total Cost 

11.2.2.5 Comparison ofTotal Cost Results 
The statistics of the total cost (and their differences) computed using MOM and a 100,000-
trial statistical simulation are provided in Table 11-34. 

Table 11-34 Total Cost Results from Analytic Approach and Statistical Simulation 

Computed Values Difference 

Analytic Statistical Simulation Additive Percent 

llx $160,810,256.90 $160,759,226.85 -$51,030.05) -0.032% 

ax $9,765,611.10 $10,064,871.60 -$299,260.50) -3.064% 

11.2.3 )oint Cost and Schedule Distribution 
The joint cost and schedule distribution is modeled using a bivariate normal distribution as 
shown in Equation 11-S. 

11-S 

The parameters of the lognormal marginal distributions are 

/lx = $160,810,194.69, and ux = $11,333,411.24 

/lv, = 872.88wd and uv, = 23.09wd 
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The correlation between the total cost and schedule PDFs is calculated using Equation 
11-6. 

E[XD]-E[X]E[D] E[XD]-I'xi'DI h 
Pxo = = ; were 

' uxt1Dt uxrro, 

X= :Ei=LLWBsX;, the sum of the costs of the lowest-level WBS elements, X; 
D = :Ei=SSE Di, the sum of the serialized schedule elements (SSE), Di 

11-6 

It is important to note that there will actually be several correlation coefficients between 
the cost and schedule PDFs, since each state will have a different set of values in Equation 
11-6. For purposes of this example, we will use the correlation of the combined states. 

The sum of the serialized schedule element durations for the NASA example is: 

D = Du + D12 + D14 + D[15,19] + D2o + D[23,2BJ + D29 + D3o + D32, where 

If we elinlinate tasks with C/ = 0 from D, the serialized schedule equation becomes 
Equation 11-7. 

D = Du + D12 + D14 + D16 + D3s + D1a + D2o + D[23,2BJ + D29 + 
D 30 + D32, where D[23,2a] = max[max(D23 , D 24) + D 27, D25 + D 36] 

11-7 

The product of cost (X) and duration (D), which is a term required to calculate the 
correlation between them, is the rather large polynomial expression formed by: 

XD = (:Ei=ELX;)(Du + D12 + D14 + D16 + D3s + D1a + D2o + D[23,2B] + D29 + D3o + 
D32) 

Since the numerator of the correlation equation, E[XD] - E[X]E[D], represents the 

covariance terms, we only need to account for the correlated durations. X and D are only 
correlated to each other through their durations, since rates and uncertainties are 
uncorrelated within the same WBS element. We know the expectation of a squared 

duration is E[DiDi] = E[D/] 2 2 = Jlo + u1 01 

Its contribution to the numerator in the correlation equation will be: 

This means that any individual task,j, on the critical path with Cli = 1 will have 
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p0 i.D i = 1, and if it is uncorrelated to other tasks, its contribution to the numerator of the 

correlation equation will be represented simply by aD 2i • We also know the expectation of 

two correlated durations is: 

Their contribution to the numerator in the correlation equation will be: 

The elements of the productXD that will remain in the numerator of the correlation 
equation are: 

1) R;( aD' f Jl.e-rn-1' , for tasks i = [11,12,14,16,20,29,30,32], 
I I STii 

2) R;a 0• .Jl.•rn-1' (Po•. D' .aD'.), for tasks i = [7, 23,24,25,27], and j = [ 7, [23,28]], 
' t SJ'Ii '' J J 

and R;u o' 1Jl.•rn;I'•Tiis substituted with P(R3 )uR, for task 36.65 

' 
The first term is quite simple to calculate and results in: 23,476,686.51. 

The second term is calculated through the matrix multiplication of the matrix of correlation 
coefficients between i andj shown in Figure 11-15. 

p D7 

7 

11 0.1350 

1 

Dll 

0.1350 

1 

D12 

0.0675 

0 

D16 

0.1620 

0 

D35 

0.4469 

0 

D18 

0.4321 

0 

D20 

0.2430 

0 

D[23,28[ 

0.5613 

0 

D29 

0.2670 

0 

D30 

0.3197 

0 

D32 

0.1299 

0 
12 0.0675 0 1 0 0 0 0 0 0 0 0 
16 0.1620 0 0 1 0 0 0 0 0 0 0 
35 0.4469 0 0 0 1 0 0 0 0 0 0 
18 0.4321 0 0 0 0 1 0 0 0 0 0 
20 0.2430 

23 0.4500 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0.2661 

0 

0 

0 

0 

0 

0 
24 0.4500 0 0 0 0 0 0 0.2661 0 0 0 
25 0.3248 0 0 0 0 0 0 0.3865 0 0 0 
27 0.2598 

29 0.2670 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.1536 

0 

0 

1 

0 

0 

0 

0 
30 0.3197 0 0 0 0 0 0 0 0 1 0 
32 0.1299 

36 0.3248 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.6168 

0 

0 

0 

0 

1 

0 

Figure 11-15 Matrix of Correlation Coefficients between WBS Elements i and Tasks j 

65 Task 35 does not have a cost impact, so it does not appear in the term of the product moment. 
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The resulting calculations give us the numerator of the correlation between cost and 
schedule, which is 120,005,239.09. 

We will use the duration statistics (in wd) to calculate the correlation between cost and 
schedule. When we use them in the correlation equation, we get: 

E[XD] - E[X]E[D] 120 005 239 09 
Px,D = uxuD, - (9,765,~11.~0 )C23.09) = 

0
"
5322 

The resulting calculations show, for the combined risk states, Px , D 0.5322.=  The results 

from the 100,000-trial statistical simulation show Px.D = 0.5597, which is very similar. 

Using Equation 11-5, we are able to provide a three-dimensional plot of the bivariate 
lognormal PDF of cost and schedule using: 

f.Lx = $160,810,256.90, ux = $9,765,611.10 

f.LDt = 872.88 Wd, UD, = 23.09 Wd. 

0.0008 

Y=Schedule. wd 

X=Cost. $1\1 

200 

Figure 11-16 Bivariate Lognormal Probability Density of Cost and Schedule 

The mixed distribution of cost and schedule relies on the distributions of the individual states, S" 
whose parameters are provided in Table 11-35. The state in which no risks occur, S , 0 accounts for 

41.65% of the outcomes. This state has cost and schedule means of$152,860,068.75 and 859.90 
wd, respectively. The other states have appreciably lower probabilities of occurrence, but their 
means represent larger values. 
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Table 11-35 Lognormal Distribution Parameters of Joint Cost and Schedule 
Probability States 

s, Risk Occurrence P(S1) Jl.x tlx Jl.D1 tiD, 

So R1 n R2 nR3 0.4165 $152,860,068.75 $4,272,695.15 859.90 19.33 

S1 Rt n R2 nR3 0.1785 $168,860,068.75 $4,519,136.03 882.00 19.44 
S2a R1 nR2a nR3 0.0245 $152,860,068.75 $4,272,695.15 874.90 19.33 

s2.b R1 nR2, n R3 0.0245 $152,860,068.75 $4,272,695.15 884.90 19.33 

S2c R1 n Ru, n R3 0.0145 $151,860,068.75 $4,172,695.15 899.90 19.33 

S3a Rt nR2a nR3 0.0105 $168,860,068.75 $4,519,136.03 897.00 19.44 
s3, R1 nR2, n R3 0.0105 $168,860,068.75 $4,519,136.03 907.00 19.44 
S'ilc: R1 n R,, n R'il 0.0105 $168,860,068.75 $4,519,136.03 912.00 19.44 
s4 R1 nR2 nR3 0.1785 $163,193,402.08 $4,394,481.83 859.90 19.33 
Ss Rt n R2 nR3 0.0765 $179,193,402.08 $4,634,452.08 882.00 19.44 

S6a R1 nR2a nR::~ 0.0105 $163,193,402.08 $4,394,482.83 874.90 19.33 
s6, R1 nR2, n R3 0.0105 $163,193,402.08 $4,394,482.83 884.90 19.33 
S6c R1 n R2c n R3 0.0105 $163,193,402.08 $4,394,482.83 899.90 19.33 

S?a R1 nR2a nR3 0.0045 $179,193,402.08 $4,634,452.08 897.00 19.44 
s?, R1 nR2, n R3 0.0045 $179,193,402.08 $4,634,452.08 907.00 19.44 

S7c R1 n R2c n R3 0.0045 $179,193,402.08 $4,634,452.08 922.00 19.44 

The joint PDF formed is a mixture distribution formed by the probability-weighted joint 
PDFs of each state (Figure 11-17). Note the variance of the mixed distribution is much 
greater than that of any of the individual states. This is due to the variance contribution of 
each state's distance to the mean of the mixed distribution. 

Figure 11-17 Joint Probability Density of Cost and Schedule 
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The probability that the project will cost equal to or less than the point estimate of cost 

(PEX) and will be completed on or before the schedule point estimate (PED) is evaluated 
through integration of the following joint cost and schedule PDF: 

rPEX rPED 
P[d ;5; PED; x ;5; PEX] = Jo Jo fv,x(d,x) dDdx 

We can set the upper limits of the integral above using the point estimate for cost, PEX = 
$151,500,000, and the point estimate for schedule, PED = 1173cd or 840wd. 

Since the distribution fv,x(d, x) is a mixture distribution with 16 possible states, we can 

express the joint probability as the probability-weighted sum: 

P[d ;5; PED; x ;5; PEX] = l:l~o P(S;) J:Ex J:ED fv.xs, (d, x) dDdx = l:l~o P(S;)ls, 

This results in the set of sixteen joint probabilities (P(S;)) and probability-weighted joint 

probabilities (P(S;)] ,), 5 as shown in Table 11-36. The sum of P(S;)]sp which represents 

the joint probability of the point estimates of cost and schedule, is 0.04766, or 4.766%, 

which is extremely low. P(S )]0 50 is 4.630%, which accounts for nearly all of the joint 

probability. This is because state S0 has the highest joint probability density at the x, d 
coordinates of the point estimates of cost and schedule duration. The marginal cost and 
schedule variances of all of the states are similar; however the means of the risk-included 

states are all higher than that of S • 0

Table 11-36 Joint Probabilities of Possible Risk States 

s, Risk Occurrence P(S,) Is P(S,)/5 

So R1 n R2 n R3 0.4165 1.11E-01 0.046304804 

s1 R, n R2 n R, 0.1785 1.37E-05 2.45409E-06 

S2a R1 nR2a nR3 0.0245 2.87E-02 0.000704228 

s2• R1 n R2• n R3 0.0245 8.09E-03 0.000198291 

S2c R1 n R2• n R3 0.0245 6.75E-04 1.65497E-05 

s,. R, n R, n R, 0.0105 4.41E-06 4.62865E-08 
s,. R, n R2• n R, O.Q105 1.30E-06 1.36871E-08 

s,. R1 nR2c nR3 O.Q105 9.49E-08 9.9621E-10 

s. R1 n R2 n R3 0.1785 2.33E-03 0.000415305 

Ss R1 n R2 n R3 0.0765 4.34E-11 3.31634E-12 

s •• R1 nR2a nR3 O.Q105 1.28E-03 1.34409E-05 

s •• R, n R,. n R, 0.0105 6.18E-04 6.48392E-06 

s •• R, n R2 c n R, O.Q105 1.11E-04 1.1689E-06 

S7a R1 nR2a nR3 0.0045 3.29E-11 1.48011E-13 

s7. R1 n R2• n R3 0.0045 2.08E-11 9.37364E-14 

S7c R1 nR2c nR3 0.0045 5.63E-12 2.53355E-14 
Total 1.0000 0.04766 
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12 Summary 
This report presents an analytic (i.e., a non-simulation based) method of quantitative cost 
and schedule risk analysis building on analytic techniques of applied probability and 
statistics. The analytic method provides near-instantaneous results with exact statistics 
such as mean and variance of total cost and total schedule duration. It capitalizes on the 
fact that the structures of both cost and schedule estimates define mathematical problems 
to be solved through the use of applied probability. In this report we provide the 
mathematics required to perform the task of 1) calculating the uncertainty of an estimate, 
2) determining the risk from this uncertainty and a point estimate. 

While much of the mathematics of applied probability used in this report are publicly 
available through journal publications, the authors have derived methods and formulae for 
functional correlation and application of discrete risks that have never been published 
before. Therefore the report provides a very unique set of mathematics useful in the 
analytic assessment of cost and schedule uncertainty and risk. 

The report includes several quantitative examples, including two example estimates, where 
the results obtained using the analytic method compare well with those results obtained 
through statistical simulation. In cases where large-tailed distributions were involved in 
the analysis (e.g., when discrete risks are used in an estimate or when we wish to find the 
product of two or more RVs) we found simulations require very large number of trials and 
often did not provide correct or even stable answers from run to run. 

Given the excellent results obtained through this research, additional applications of the 
analytic method are recommended for use in risk analysis, estimating relationship 
development and probabilistic cost and schedule estimating. 

171 



ANALYTIC METHOD FOR RISK ANALYSIS 

13 Conclusions and Recommendations 

13.1 Conclusions 
In the course of this research, perhaps the most daunting task was how to perform analytic 
cost risk analysis using analogies and cost-on-cost factors. On the surface, these cost 
estimating methods are simple and easy to understand, but they have much larger, more 
complicated, and perhaps even sinister implications when treating them probabilistically. 

The first issue is how to model probability distribution of an analogy, which is discussed in 
Section 3.2.2.2. Without specifying the analogy as the mean or as a particular percentile of 
the PDF, the distribution parameters are difficult to calculate. As pointed-out in the 
literature (Flynn, Braxton, Garvey, & Lee, 2012), specifying a percentile value for an 
analogy reduces the problem enormously. 

The second issue is the difficulty in proper derivation and use of the cost -dependent CER 
or factor. Anderson and Covert (Reducing Systemic Errors in Cost Models, 2008), 
(Regression of Cost Dependent CERs, 2002) discuss how to properly develop these factors 
- which is correct, but not the current industry norm. Additionally, the use of cost­
dependent CERs in a probabilistic uncertainty analysis requires the calculation of the 
statistics of the product of the individual uncertainties. Calculating the moments of the 
product of two lognormal distributions is a difficult task to perform analytically and is 
particularly difficult for statistical simulations to do correctly and consistently from one 
simulation run to another. The analyst understanding the probabilistic implications of 
using cost-dependent CERs in an estimate will gain a healthy respect for these functions 
bordering on a strong dislike of them. 

The final conclusions we draw from this research are that analytic methods provide exact, 
near-instantaneous results in cost and schedule (and joint cost and schedule) uncertainty 
analysis. The mathematics used in the analysis require a significant non-recurring set-up 
time and are best suited for models that have a defined WBS, such as the NASA/Air Force 
Cost Model (NAFCOM), the NASA Instrument Cost Model (NICM) and the Umnanned 
Space Vehicle Cost Model (USCM). The methods provided in this report would be a great 
improvement to the performance of the risk analysis capabilities of these models. 

13.2 Recommendations 
The following set of recommendations provides avenues for continuing research in the area 
of applied probability with applications to probabilistic cost and schedule risk analysis. 
This research will improve the understanding of cost and schedule estimating through the 
application of uncertainty in our estimates, which are uncertain predictions of future 
events. 
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13.2.1 Evaluating Statistical Simulations 
This research provides many examples whereby the exact statistics ofRVs and functions 
of dependent RV s are compared to the results from statistical simulations. In some cases, 
particularly when computing the product of two lognormal random variables and when 
discrete risks are included in an estimate, the results of the statistical simulation are not 
close enough approximations to ignore simulation error. The ability to extract statistical 
data from simulations is important because it allows the analyst to determine how the 
simulation arrived at a particular set of results. We reco=end developing a small set of 
test cases and experiments to determine the quality of statistical simulation tools that can 
be compared to the exact values computed with the equations and methods presented in 
this report. 

13.2.2 Using Estimating Methods 
The results of this research have indicated that estimates relying on methods such as build­
up approaches and direct analogies may require additional cost and schedule risks to be 
included in them. Estimates using multiple scaled actuals or CERs that are created from a 
database of actual costs and schedule durations from similar programs require fewer risks 
to be included, presumably because the actual costs and schedule durations in the database 
will include risks that have occurred. We reco=end performing a study that compares 
the risk-estimating ability of different estimating methods to determine whether or not 
using estimating methods derived from multiple scaled actuals is a better predictor of 
estimating uncertainty. 

13.2.3 Basis of Estimate Credibility 
Basis of estimate (BOE) credibility can be enhanced by use of multiple scaled actuals I 
CERs as either a primary or secondary estimating method. BOEs based on expert 
judgment and analogies require inclusion of discrete risks to account for missing risks in 
the estimate. Discrete risk formulations such as those described in Section 9 provide a 
method of accounting for discrete risks and the uncertainty due to them. BOEs based on 
CERs or multiple scaled actuals require fewer discrete risks to be applied to the estimate 
and provide a more substantive estimate. 

13.2.4 Developing Cost Models 
CER regression techniques have traditionally been limited to curve fitting of vectors of 
discrete dependent variables (cost) with vectors of discrete independent variables (cost 
drivers) as shown in Figure 13-1. 

173 



ANALYTIC METHOD FOR RISK ANALYSIS 

Ois cret ev<llues for (x. y) _,, .-· 

,•' 

'f. (y) 

•' ,. 
.. .. 

--· 
+ Hllt •)ll;:.11dJtl pOIIt 

- ·~oH U 11n J111 g IH11))1' I I> 

. .... Otl ldJ id~ICle i HIIO i bOII (I; 

...__..__ _ _._ ___ _.___,___. 

Cost D1ive1 (X) 

Figure 13-1 Regression ofDiscrete Variables 

We assume the regression variables are discrete and non-random in nature; however, errors 
in both the dependent and independent variables can arise in the data collection and 
normalization process (Figure 13-2). Error-in-variables (EIV) regression techniques can be 
employed to find appropriate CERs with errors in either the dependent or independent 
variables or even when both are random variables (Covert R. P., 2006).66 Using the 
analytic method in the CER development process makes a non-simulation-based EIV 
regression technique feasible and allows the CER developer to instantaneously see the true 
error effects of CER regressions on cost model errors . 

:f. (y) 
• HUorl:aldata di>111Htb l 

- con u 11n <11119 retl1)) 1U p 

Cost 01 ive1 (x) 

Figure 13-2 Regression of Random Variables 

13.2.5 Improving Cost and Schedule Risk Tools 
Cost models such as NAFCOM, NICM, USCM and the Aerospace Small Satellite Cost 
Model (SSCM) are all good candidates for implementing the analytic methods of 
uncertainty analysis shown in this report. 

66 Covert, R., .. Errors-In-Variables Regression", Joint SSCAG/EACEISCAF Meeting, London, UK, 
September 19-21,2006. 

174 



ANALYTIC METHOD FOR RISK ANALYSIS 

Currently, NAFCOM uses a two-step process to model cost risk since the methods and 
equations for calculating functional correlation were unknown at the time NAFCOM 
implemented its cost risk analysis method based on FRISK. In the first step, uncertainty is 
calculated for the prime mission product (PMP). In the second step, uncertainty for cost­
on-cost functions such as System Engineering, Integration Assembly & Test is calculated. 
We recommend replacing the method of CRAin NAFCOM to instantaneously calculate 
exact means and variances of total cost distributions in a single-step approach using the 
methods proposed in this report rather than through a two-step approach. This will provide 
exact answers and increase computational efficiency. 

13.2.6 Time-Phasing a Resource-Loaded Schedule 
A natural extension of the second example problem in this report is to include time­
phasing of a resource-loaded cost and schedule estimate. Using what we have learned 
about using probability distributions of cost and schedule duration (i.e., uniform, 
triangular, beta), we can apply the same principles to distributions of resources over time. 
The resulting information that could be obtained from a time-phased, resource-loaded 
schedule estimate will be a multivariate distribution of probability with respect to cost, 
schedule and time. Combining these in a probabilistic estimate would allow the analyst 
to compute joint probability/resource-loaded cost and schedule estimates. Conditional 
values of cost and schedule duration would be easily obtained as well as the joint 
probability distribution. 

13.2. 7 Allocating Schedule Margin 
Allocating margins to schedule tasks (or groups of tasks) is important to ensure projects 
do not overrun their schedules. Several methods have been proposed that use the results 
of statistical simulations to reverse-and-forward-allocate schedule margin. These 
methods start with a confidence level of the probabilistic finish date and back-allocate 
schedule reserve to tasks along the critical path to the starting task. Then the schedules 
with reserve are recalculated to compute the new point estimate of the finish date. 

Book (2006) proposed a method of cost risk allocation based on the ''needs" of particular 
WBS elements reqnired to achieve a particular confidence level.67 This method has not 
been applied to schedule estimating prior to this report, to our knowledge, since the 
effective linearization of the schedule network problem has not been widely published. 
We believe that "linearized" schedule networks such as the one demonstrated in Section 
11.2 provide the necessary mathematical structure to allow schedule allocation based on 
need. We propose developing a risk allocation method using these principles. 

67 Book, S. A. (2006). Allocating Risk Dollars Back to WBS Elements. ISP A/SCEA Joint Conference and 
Training Workshop. Seattle, W A. 
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14 Acronyms, Symbols and Defmitions 

14.1 Acronyms 
AIAA American Institute of Aeronautics and Astronautics 
ADACS Attitude determination and control system 
AGE Aerospace ground equipment 
ATP Authority to proceed 
BOE Basis of Estimate 
BOLP Beginning-of-life power 
cd Calendar days 
CDF Cumulative distribution function 
CDF-1 Inverse cumulative distribution function 
C&DH Command and data handling 
CDR Critical Design Review 
CER Cost estimating relationship 
CI Criticality index 
CMF Cumulative mass function 
CRA Cost risk analysis 
CTV Contribution to variance 
EIV Errors-in-Variables 
FGM Farlie-Gumbel-Morgenstern 
FRISK Formal Risk Assessment of System Cost 
GFLOPs Giga (billions of) floating point operations per second 
IA&T Integration, assembly and test 
IEEE Institute of Electrical and Electronics Engineers 
iff If and only if 
JACS Joint Analysis of Cost and Schedule 
JCS Joint cost and schedule 
LLWBS Lowest-level work breakdown structure [element] 
LOOS Launch and orbital operations support 
MOM Method of moments 
NASA National Aeronautics and Space Administration 
NAFCOM NASA/ Air Force Cost Model 
PDF Probability density function 
NICM NASA Instrument Cost Model 
PDR Preli Design Review 
PM Project management 
PMF Probability mass function 
PMP Prime mission product 
ROR Risk and opportunities register 
RV Random variable 
SEITPM Systems engineering, integration and test, and program management 
sos System-of-Systems 
TCS Thermal control system 
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TD Time-dependent 
TI Time-independent 
TIC Telemetry, tracking and command/control 
USCM Unmanned Space Vehicle Cost Model 
uv IDtraviolet 
WBS Work breakdown structure 
wd Workdays 
WRT With respect to 

14.2 Symbols 
a, b, c, d Coefficients a through d 

e Naperian base 
Et Error i 

f,g,h Functions 
i,j,k,l Indices i through l 
m,n Counters 

p The probability a particular event occurs 
D; Risk impact j 

P,Q Lognormal shape parameters 
E[X] Expectation of X 

OJL Difference of two means 
{jq Difference of two standard deviations 
D' Duration in workdays 
F' Finish date in consecutive calendar days 

fx(X),!Jx(X) PDFs of fx and fix over x 
Fx(X), Gx(X) CDFs of fx and fix 
Max(X, Y) Maximum of X andY 

Var(X) Variance of X 
Corr(X,Y) Pearson correlation ofRVs X andY 
Cov(X,Y) Covariance of X andY 

Px,; Pearson correlation ofRVs X andY 

Uxy Covariance of X andY 

/1. MeanofX 

Ilk kth Raw moment of X 

ux Standard deviation of X 
Ux2 Variance of X 

U(L,H) Uniform distribution defined by L and H 
T(L,M,H) Triangular distribution defined by L, M and H 

N(JL, u) Normal distribution defined by 11. and u 
L(P,Q) Lognormal distribution defmed by P and Q 

B(a,p,L,H) Beta distribution defmed by shape parameters a,p, and 
limits L,H 
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Yi,i Binary value of bit j of integer i 
R; Risk i 

PxY Linear (Pearson) correlation coefficient for X and Y 

Px,Y5 
Rank (Spearman) correlation coefficient for X andY 

S; [Risk] state i 
qJ PDF of Standard Normal Distribution 
<I> CDF of Standard Normal Distribution 
v Skewness 
K Kurtosis 
n Boolean "and" 
R, Boolean ''not" of risk i 
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16 Appendices 

16.1 Appendix A- Probability Distributions 

16.1.1 Uniform Distribution 
The uniform distribution is defined by two parameters: The minimum possible value (L), 
and the maximum possible value (H). 

1 
--r­
H - L 

L H 
X 

Figure 16-1 Uniform Distribution 

The PDF ofthe uniform distribution U(L,H) is: 

fx(x) = (H~L) , if L < x ~ H 16-1 

The CDF of the uniform distribution U(L, H) is: 

{ 

0 ,if X< L 
_ (x-L) . < < 

Fx(x)- (H-L) ,1.{ L _ x _ H 

1 ,ifx > H 

16-l 

Its mean, or expected value, E(X), is: 

E(X) = L+H 
2 

16-3 

And its variance, Var(X), is: 

Var(X) = 2..(H- L)2 
12 

16-4 

Higher order moments such as skewness and kurtosis are: 

Skew(X) = 0 
Kurt(X) = -6/5 

16-5 
16-6 
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16.1.2 Triangular Distribution 
The triangular distribution is defined by three parameters, the lowest possible value (L ), the 
mode (M), and the highest possible value (H). 

The PDF of the triangular distribution T(L, M, H) is: 

F_ ( ) = (H-L)(M-L) 

{ 

2(x-L) 

JX X 2(H-x) 

(H-L)(H-M) 

if L ~ x < M 

if M <X '5. H 

16-7 

2 

H - L 

L M H 
X 

Figure 16-2 Triangular Distribution 

If X is a triangular random variable, then its mean, or expected value, E(X), is: 

E(X) = (L+M+H) 
3 

16-8 

its variance, Var(X), is: 

1 
Var(X) = 

18 
[(M- L)(M- H)+ (H- L)2] 

16-9 

Higher order moments such as skewness and kurtosis are: 

Skew(X) = ..fi(L+H-2M)(2L-H-M)(L-2H+M) 
s.J(L2 +M2 +H2 -LH-LM-MH)3 

Kurt(X) = -3/5 

16-10 

16-11 

16.1.3 Normal Distribution 
The normal PDF is uniquely defined by the parameters Jl and u. 

The normal distribution N(Jl, u) is defined by the following PDF: 

= _1 e -{i[[¥1]} fx(x) ..Jlia 

16-12 
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p -Ja p -lt:T p - a 

................. 

p 

X 

0.13.$3 

Figure 16-3 Nonul DfmtlnatlOD from (GuYey, 2000) 

The CDF of the llOfDI8l dialribulion is often of interest, Iince it eubles calculation of the 
pen:entiles of the distribution. The CDF of lhe normal distribution ia defined as follows: 

Fz(X) = P(X :S: X)= J~..,~e -{~[[cr-Jzl]}dt 1 13 
6-

Skew(.~)= 0 
Kurt(.~)= 3 

16-14 
16-15 

16.1.4 Lopormal DlstrlbuUOD 
A lognormal :nmclam variable is lhe expcmartialion of a normal nmtom variable. Because 
lhe logD.Ol'lllll random variable (X) IDd. 1he no!lll.al. nmtom variable (l') are rclaMcl, their 
mCIIIS and lltaiLdard deviaticma are lllo related. 
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p 

y 

Normal Distribution 

... 
eP 

X = g_K 
Lognormal Distribution 

Figure 16-4 Transformation of Lognormal Distribution 

Other important statistics associated with the lognormal distribution are the mode and 

median: 

Mode(X) = elly-try2 = e~'-Q2 
Median(X) = eP.Y = e" 

16-16 
16-17 

The PDF of the lognormal distribution is: 

16-18 

and the CDF of the lognormal distribution is: 

{t[[(Jn(t)-P)2]]} 
Fx(x) = P(X < x) = f." -~ e- i fl

2 dt 
- 0 "V2rt:Qt 

16-19 

16.1.5 Beta Disbibution 

16.1.5.1 Stllndtml Beta Distribution 
The standard beta distribution, Beta(a,{J), is defined by two shape parameters, a and P 
over the interval [0,1]. 

The PDF of B(a,fJ) is 

16-20 

With mean, 
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E[X] = a:P 16-21 

and variance, 

Var(X) = ap 
(a+P) 2 (a+P+1) 

16-22 

The kth moment of Bs(a, P) is 

16-23 

which is a recursive equation. 

16.1.5.2 The Four Parameter Beta Distribution 
The four paranteter beta distribution, Beta4(a,p, a, b), is defined by four parameters: a 
and p (which are the standard Beta shape paranteters); and support parameters a and b 
(which are the minimum and maximum bounds of the distribution, respectively). 

The PDF of Beta4(a,p, a, b) is obtained through affine transformation of the standard 
beta distribution which changes the support from [0, I] to [ a,b ]. 

(
y-a)a-1( (y-a))fJ-1 

fi (y) 1 F (y-a) 1 b::a 
1

- b::a 
Y = (b-a) I X b-a = (b-a) B(a,p) 

(y-a)"-1 (c-y)P-1 

= (b-a)a+fJ 1B(a,p); (a< Y <b) 

16-24 

With mode, 

m= -- b+ --a ( 
a-1 ) ( P-1 ) 

a+P-2 a+P-2 
16-25 

mean, 

E[Y] = c:p) b + c~p) a 16-26 

and variance, 

V 
aP(b-a)2 

ar(X) - .,........:::::7:-..:::,--. 
- (a+P)2 (a+P+1) 

16-27 

16.1.5.3 The PERT Distribution 
The PERT distribution, P(a, m, b), is a special case of the four paranteter beta distribution 
whereby: 1) the paranteters a and b are the maximum and mininlum bounds of the 
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distribution; 2) the mode, m, is explicitly defined; and 3) the mean and variance obey strict 
definitions: 

Mean, 

Variance, 

J.l. = E[X] = a+4m+b 
6 

Var(X} = (b-a)
2 

36 

16-28 

16-29 

For 16-28 and 16-29 to hold true for the PERT distribution, the standard beta parameters, a 
and p, are derived from P( a, m, b) bl8 

a = (!t-a)(Zm-a-b) and 
(m-~t)(b-a) 

P a(b-1') h 
= (It-a) w ere 

a+4m+b 
J.l.=--

6 

16-30 

For the symmetric case, the standard beta parameters a and p must satisfy this condition: 69 

If  = b;a, then a = 3 and p = 3 m (proof of this is provided in Appendix C - Derivations) 

16.1.6 Bivariate Normal Distribution 
The bivariate normal distribution is a joint distribution formed by two normal 
distributions and is defined by 

BiN ( (J.I.1, J.l.z), (lTv O"z, P1,2)) = fx1,x2 (x1, Xz) = ~ e -{H ; 
27l'a1 O'z 1-Pt,z 

where w = 1-~l, [ (x1;;1 r _ 2p1,2 (x1;;1) (x2;;2) + (x2;;2 n. 
P1,2 = Px1.x2 

16-31 

16.1. 7 Bivariate Normal·Lognormal Distribution 

BiNL ( (J.I.v J.l.z), ( 0"1, O"z, P1,2)) = fx1,x2 (xv Xz) = ~ e -{iw}; 
27l'a1 Qz 1-Pt,zXz 

where w = ~ [(x1-1'1)2 
_ 2P12 (x1-1'1) (ln(x2)-P2) + (ln(x2)-P2)2

], 
1-Pt,z a1 ' 0"1 Qz Qz 

16-32 

68 From Vose Software Mode!Risk Help,© Vose Software™ 2007. Reference Number: M-M0361-A 
69 Note the Beta Distribution article in Wikipedia, as accessed 13 November 2012, does not correctly specifY 
these formulae and states that for the symmetric case that a = 4 and {J = 4, which are incorrect. 
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P2 is defined by P = ~ ln (,)';"2), Q2 is defmed by Q = ln ( 1 + ::), 

_ j.QL1 
P1,2 - Px1.x2 ~ 

16.1.8 Bivariate Lognormal Distribution 

16-33 
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16.2 Appendix B - Expectation Operations 

16.2.1 Expectation Properties 
If X is a PDF then the expected value of X is: 

E[X] = J.lx 

The variance of X is: 

The covariance of X andY is: 

Cov(X, Y) = uXY = E[(X- J.lx)(Y- J.ly )] 
Cov(X, Y) = Px,yUxUy 
Cov(X, Y) = E[XY] - J.lxJ.ly 
Cov(X, Y) = Cov(Y,X) 
Cov(aX + b, cY +d) = (ac)Cov(X, Y) 
If X andY are independent, then Cov(X, Y) = 0 

E[XY] = Px,yUxUy + J.lxJ.ly 
Corr(X Y) = p = E[XYl-l'xi'Y 

, X,Y uxcry 

E(a + bX) = a+ bE(X) = a+ bJ.lx 
Var(a + bX) = (b 2 )Var(X) 

The klh moment of X 

{ 
Lx g(x)Px(x) , if X is discrete 

E[g(x)] = f_"""" g(x)fx(x)dx , if X is continuous 

E[X + Y] = E[X] + E[Y] 
E[X- Y] = E[X] - E[Y] 
Var[X + Y] = Var[X] + Var[Y] + 2Cov(X, Y) 
Var[X- Y] = Var[X] + Var[Y]- 2Cov(X, Y) 
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16.2.2 Expectation Operations 

For the uniform case, where fx(x) = -
1
-

H-L 

(''" 1 (''" 1 1 H Hk+l- Lk+l 
E[Xk] = l_..,xkfx(x)dx = H -LL""xkdx = [H -L] [k+ 1]xk+11L = k+ 1(H -L) 

For the triangular case 

k - 2 {Mk+Z_Lk+Z 
E[X l - (H-L)(M-1) k+2 

Mk+t_Lk+t} 2 { Hk+t_Mk+l 

L k+l + (H-L)(H-M) H k+l 
16-52 

For the normal case (by definition), k is defined as a positive integer. In cases where k is 

not an integer value, E[Xk] is defined by a series of confluent hypergeometric equations. 

E[X0 ] = 1 

E[Xl] = IL 

E[X2] = /L2 + u2 

E[X3] = p 3 + 3pu2 

E[X4] = /L4 + 6pzuz + 3a4 

For the lognormal case from Garvey (2000), E[Xk] is defined for all positive values of k. 
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