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ANALYTIC METHOD FOR RISK ANALYSIS

1 Executive Summary

Estimates of cost and schedule duration of a task or project are uncertain values, so we do
not know the exact, discrete values until it is complete. Given the inherent uncertainty of
estimates, the only way to portray them is with probability distributions of possible costs
and schedule durations (or dates). Probabilistic cost and schedule distributions for a
program are quantified through the means of cost and schedule uncertainty analyses. The
most popular way these analyses are performed is though statistical simulation. Statistical
simulation (i.e., Monte Carlo and Latin Hypercube sampling) techniques are widely used
in cost and schedule risk analysis, but they have limitations.

Analytic methods of cost and schedule risk analysis exist that: 1) correctly model random
variables (RVs); 2) exactly correlate RVs and their sums, which many statistical simulation
tools cannot; 3) have no fundamental limit to the number of RVs or correlation coefficients
that can be defined; 4) provide [near] instantaneous results; and 5) have the ability due to
their mathematical form to clearly indicate uncertainty drivers and thus the risk.

This report presents an analytic (i.e., a non-simulation based) method of quantitative cost
and schedule risk analysis building on analytic techniques of applied probability and
statistics. The analytic method provides near-instantaneous results with exact statistics
such as mean and variance of total cost and total schedule duration. It capitalizes on the
fact that the structure of estimates defines a mathematical problem to be solved through the
use of applied probability. This report provides the mathematics required to perform the
tasks of calculating the uncertainty of an estimate, and determining the risk from this
uncertainty and a point estimate.

While much of the mathematics of applied probability used in this report are publicly
available through journal publications, the author has derived methods and formulae that
have, to his knowledge and through his research, never been published before. Therefore,
the report provides a very unique set of mathematics useful in the analytic assessment of
cost and schedule uncertainty and risk.

The report includes several quantitative examples, including two example estimates, where
the results obtained using the analytic method compare well with those results obtained
through statistical simulation. Given the excellent results obtained through this research,
additional applications of the analytic method are recommended for use in risk analysis,
estimating relationship development, and probabilistic cost and schedule estimating.

11



ANALYTIC METHOD FOR RISK ANALYSIS

2 Introduction

2.1

2.2

This report describes an analytic method of applied probability analysis techniques
germane to problems encountered in cost and schedule risk estimation. By their very
nature, estimates are uncertain projections of future events. Given that, we discuss the
probabilistic nature of estimates and describe the mathematical problems encountered in
cost and schedule estimating. We discuss the mathematical tools that can be used to solve
these problems (i.e., statistical simulation and statistical analysis) and we compare the two
approaches. The next sections of the report provide the tools required to perform statistical
analysis. Finally, we provide two sample problems to demonstrate analytical techniques.

Probabilistic Nature of Estimates

Cost and schedule estimating is an integral part of the program management process.
Organizations use these estimates for planning purposes such as cost/performance tradeoff
studies, benefit/cost analyses, source selections, and budget planning. But estimates are
predictions and their exact values are uncertain in nature since they have not yet become
“fact”. Since the true cost and schedule durations of a project (or task) are only known
when it is complete, the best we can do is to rely on estimates at various stages of planning
and completion,

The word “estimate™ itself implies uncertainty, so an estimate is not well represented by a
single number but by a distribution of possible estimates. The distribution of possible
estimates is defined by the estimate’s probability distribution that is calculated through the
application of probability and statistics.

Uncertainty and Risk

Uncertainty is a measure of the distribution of possible outcomes of a random variable,
such as cost and schedule estimates. This distribution is called a probability distribution
and can either be a continuous, discrete, or mixed distribution.'

2.2.1 Probability Density and Probability Mass

Probability distributions defined for continuous distributions are probability density
functions (PDFs). PDFs such as the one shown in Figure 2-1 can be expressed in terms of
a mathematical formula of fy(x), where fyx(x) is the PDF defined over the range, x.

! A “mixed distribution” is a combination of discrete and continuous distributions.

12



ANALYTIC METHOD FOR RISK ANALYSIS

Cost Estimate Probability Density

7\
\

; \
/l( Point Estimate \

Vil N\

X, Cost, BY20125M

Density, p(X)

Figure 2-1 Probability Density Distribution

Probability distributions of discrete risks (which are discontinuous functions) are defined
by probability mass functions (PMFs) such as the one shown in Figure 2-2. We will define
the PMF as gx(x), where gx(x) is the function defined over the range x.

Cost Estimate Probability Mass

X, Cost, BY20125M

Probability Mass, f{x)

Figure 2-2 Probability Mass Distribution

2.2.2 Cumulative Probability
The cumulative probability is the probability that a real valued random number will be less
than some value x. In the case of discrete distributions, it is the sum of the probability-
weighted values of the PMF less than x, and in the case of continuous distributions,

(remembering our college calculus) it is the integral of the PDF from - oo to x.

13



ANALYTIC METHOD FOR RISK ANALYSIS

2.2.3 Definition of Risk
Any point estimate has some probability that it will be sufficient or be exceeded (Figure
2-3). The probability that an estimate will be exceeded (i.e., overrun) is the risk, and the
probability that the estimate will be sufficient (and that there is a probability of the actual
value being lower) is the opportunity or reward.

Cost Estimate Probability Density

/N

O Unfavorable

O Faverable

- Density, pIX)

Polnt Estimate

X, Cost, BY20125M

Figure 2-3 Risk, Reward and the Point Estimate

Since the entire area under the PDF shown in Figure 2-3 is, by definition, equal to one, the
sum of the probabilities of overrun (risk) and under-run (reward or opportunity) is also
equal to one. The probability of risk occurrence is the area of the distribution to the right
of the point estimate and the probability of reward is the area to the left. As stated earlier,
the area of the distribution under a curve can be computed using the definite integral
expression bounded by the lower and upper limits. Therefore, risk is the integral of the
PDF from the point estimate, ¢, to infinity (o).

Risk = [” fy()dx = 1- [ fy(x)dx = 1~ F(c). 21
Reward or opportunity represents the area under the curve from —oo to ¢, which is
Reward = _f_cm Fe(x)dx = Fx(c). 2-2

If we are using discrete risks defined by PMFs, then the risk equation is a summation of all
of the probability-weighted risk consequences at all points x (i.e.,, costs or schedule
durations) (Garvey P. R., 2000) greater than our point estimate, ®

Risk = Yy Px(x). 2-3

? Garvey, P. R. (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineering
Perspective. New York, NY: Marcel Dekker.

14



ANALYTIC METHOD FOR RISK ANALYSIS

The amount of risk to an estimate is defined by two things: the uncertainty of the estimate
and the point estimate, or the bet. To illustrate the interaction of risk with uncertainty and
the bet, consider the four examples in Figure 2-4. Figure 2-4a. is a low-uncertainty, high-
risk estimate since the area under the PDF to the right of the bet is much larger than that to
the left. This means there is a disproportionate amount of risk compared to opportunity.
In in Figure 2-4b, the risk is reduced by choosing a bet further to the right in the PDF.
Note that in both of these cases, the potential low- and high-end outcomes remain the same
— only the bet is changed. When the low bet is accompanied by a larger estimate
uncertainty, as in in Figure 2-4c, the risk is reduced, but the potential impacts due to high-
end outcomes (consequences) are increased. Finally, moving the bet to the right in the
high uncertainty case, the risk is reduced as shown in in Figure 2-4d, but the potential for
extreme high-end cutcomes remains.

a. Low Uncertainty, Low Bet b. Low Uncertainty, High Bet
/\ A
z [\ g [\
\ /)
AN SEVAN \N
¢. High Uncertalnty, Low Bet d. High Uncertainty, High Bet
2 %
A\ /N

Figure 2-4 Relationship between Risk, Uncertainty and the Bet

2.3 Joint Probability Distributions

So far we have discussed the univariate’ probability distributions of single random
variables (i.e., estimates of cost or schedule). When we are interested in the probability
distribution of more than one random variable, we are interested in the multivariate
probability distributions, such as the probability of achieving a particular cost and schedule
of a yet-to-be-completed project. When the relationships between variables such as
estimated cost and schedule must be considered, we need to form a joint probability
distribution. An example of this is shown in Figure 2-5.

3 Single variable

15
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0.008

0.004

0.002

plCost, Schedule)

27 o

S 32 &

Chedyye, Mo 3742 45 e
Nths 62

Figure 2-5 Joint Probability Density Function

If we have two random variables X and Y, we can define the probabilities

P{X < x}=Fx(x) = [*_Fy(z)dz 24
PY <y}=F ) = [’ F(2)dz

The joint probabilities of P{X < x,Y < y} can be expressed as the joint distribution
function
PX <x,Y <y} =Fy(xy) = 2 [% fav(z,w) dzdw 25

The joint PDF is defined as the partial derivative of Fyy(x, y) with respect to x and y.

8% Fxy(x.y) 2-6

2.3.1 Marginal Distributions
The marginal distributions of a joint probability function are those distributions that are
considered individually. Given a joint distribution of two random variables, the marginal
distribution of one is its probability distribution averaged over the probability information
from the other’s distribution.

2.3.2 Conditional Distributions
A conditional distribution of a joint probability function is the distribution of one random
variable given a specific value of the other distribution(s).

16
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2.4 Statistics of a Random Variable

2.4.1 Moments
Moments provide useful information about the characteristics of a random variable, X,
such as the measures of central tendency, dispersion and shape. When referring to the
moments of a distribution or a set of data, it is useful to define which of the three types of
moments are being used: raw moments, central moments or standardized moments.

2.4.1.1 Raw Moments
The 4™ moments about the origin are called “raw moments” of a PDF, fy, and are defined
as:

; Yxx*f(x) ;if Xisdiscrete 2.7
U = J-

-] k o . .
_o X f(x)dx ;if X is continuous

The mean, g , is the first raw moment of X about the origin, and it is a measurement of the
central tendency of the data. We are more familiar with the mean being represented as, y,
so we will use this notation for the mean hereafter.

24.1.2 Central Moments
Central moments of a distribution are the raw moments about the mean, u. The first
central moment is by definition zero, but the second central moment is the variance, 62,
which is a measure of dispersion about u. Equation 2-8 provides the definition of the Kt
central moments of discrete and continuous RVs.

2 _ Yx(x — W3f(x) ;if Xis discrete 2-8
N {f wm(x — W2f(x)dx ;if X is continuous

The variance, o2, is the square of the standard deviation, o.

The first five central moments expressed in terms of the raw moments are:

=0 2-9

py = —pp” + =y — 2-10
= 2u5> — 3ul b + u 2-11

H3 H1 . #1#22 H3

Ha = —3%1 + 6#53 W — 4#&:125 + 4 2-12

fs = 41 — 10p1" pp + 1043 "pg — Spy g + ps 2-13

2.4.1.3 Standardized moments
Standardized moments are the &™ central moments, Hy, normalized by the Kt powers of the

standard deviation o* (i.e., % )

17
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The most well-known standardized moments arc skewness and kurtosis. Skewness, 19, is
the measure of asymmetry of X and is defined as the third standardized moment:

skew(X) =9 = g 2-14

A distribution is a) symmetric if 4 = 0, b) left (i.e. negatively) skewed if 9 < 0, and ¢)
right (i.e., positively) skewed if 9 > 0 as shown in Figure 2-6,

Right Skewed Left Skewed
Y=0 Y <0

Figure 2-6 Left and Right Skewed Distributions

Kurtosis is the fourth standardized moment. Most textbooks define kurtosis of symmetric,
unimodal distributions as a measure of peakedness of a distribution X. This is a correct
definition, however a more descriptive definition of kurtosis exists (DeCarlo, 1997),
(Moors, 1986), (Balanda & MacGillivray, 1988), and (Darlington, 1970).* * ¢ 7 Moors
defines kurtosis as the measure of the dispersion around the two “shoulders” of a
distribution located at 4 + 0. DeCarlo warns that the classical attribution of peakedness of
a distribution vice its “fat-tailedness™ is not a good representation of the meaning of
kurtosis and provides examples where this is the case.®

keurt(X) = 5 2-15

A more commonly used metric is the “excess kurtosis”, which is kurt(X) — 3. Since the
kurtosis of a normal distribution is equal to three, the excess kurtosis denoted as k, is
adjusted by 3 as in Equation 2-16.

x=kurt(x)—3=g—3 2-16

In general, where a) k = 0 the distribution is mesokurtic, b) k > 0 it is leptokurtic, and ¢)
K < 0 1t is platykurtic.

4 DeCarlo, L. (1997). On the meaning and use of kurtosis. Psychological Methods, 292-307.

3 Moors, J.J.A. The meaning of kurtosis: Darlington reexamined. Amer. Statist.1986, 40, 283-284.
§ Balanda, K.P.; MacGillivray, H.L. Kurtosis: A critical review. Amer. Statist. 1988, 42, 111-119,
7 Richard B. Darlington. Is Kurtosis Really "Peakedness?". Amer. Statisz. 1970, 24, 19-22.

§ DeCarlo, L. (1997).
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/ Leptokurtic
k>0
Mesokurtic \ _/\
k=0

Platykurtic
k<0

Figure 2-7 Excess Kurtosis of Distributions

2.4.1.4 Moment Summary
The moments describing the characteristics of a random variable such as the measures of

central tendency, dispersion and shape (i.e., #, 62,9,x) can be derived from the raw
moments g of X. We will capitalize on these relationships in the analytic method
proposed in this report.

2.4.2 Quantile Statistics
Quantiles are a set of divisions of data into groups containing equal numbers of
observations. We are most familiar with percentiles, which are division of the data into
100 groups of 1% of the cumulative area under a PDF. We will denote the percentile, g, of
a random variable,X, asX,_,. For example the 50% percentile of X would be

written X,_q5.

2.4.3 Expectation Operator
The expectation operator, E[-], of a random variable is a powerful expression. The
expected value, or g, (Equation 2-17) of a random variable is perhaps the most important
single parameter in applied probability. It is written as

E[X]=px, 217
and is the integral
E[X] = [ xfy(x)dx, where fy(x) is the PDF of X. 2-18

The mean represents the center of gravity of the random variable. Another important
parameter is a2, defined by the expectation of the squared difference of the PDF and its
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mean. This quantity represents the moment of inertia of the probability masses (Papoulis,
1965).°

Var(X) = 0% = E[(X — p)?] = [*_ (X — ) fx(x)dx 2-19

What is most important about E[-] is its ability to determine the raw moments (Equations
2-7 and 2-18) and central moments (Equations 2-8 and 2-19) of a random variable, and
thus the measures of central tendency, dispersion and shape (i.e., &, 02,9, k).

2.4.4 Order Statistics

2.5

Order statistics are those statistics that describe the numerical order in which random
variables or samples of random variables appear. Some of the simplest order statistics are
the minimum and maximum values defining the range of a PDF. Other, more complex
order statistics are those which describe the maximum and minimum of a series of random
variables. Order statistics play an especially important role in schedule risk analysis
whereby the maximum probabilistic end dates of certain tasks define the maximum
probable end-date of the schedule.

Section Summary

The mathematics of the analytic techniques used to solve estimating uncertainty problems
require definition of the estimating problems germane to cost and schedule estimates. In
the next section, we discuss the mathematical problems typically found in cost and
schedule estimating,

? Papoulis, A. (1965). Probability, Random Variables and Stochastic Processes. New York, NY: McGraw
Hill.
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3 Cost and Schedule Estimates

3.1

Cost and schedule estimates are defined by a set of mathematical formulae that lend
themselves to probabilistic uncertainty analysis. In this section, we will discuss the
structures of these types of estimates and define the mathematical problem(s) to be solved
in probabilistic uncertainty analysis.

Book!®!! (1994; 2002) showed the cost and schedule estimating communities that every
cost and schedule estimating problem should be treated as a risk analysis, not simply an
exercise in summing most likely costs — the result of which is a number that has no
statistical meaning without risk analysis. Furthermore, he showed estimates should be
treated as random variables and not deterministic numbers (i.e., constants).

Nomenclature
To better describe the mathematical problems germane to cost and schedule estimates, we
will define constants, variables, and random variables.

A numerically expressed entity is called a “constant” if there is a unique specific number
that is always its numerical value (e.g., m, 1.414, -2). A numerically expressed entity is
called a “variable” if there are several possible specific numbers that may serve as its
numerical value and which specific number happens to be its numerical value in any
particular situation depends on the particular circumstances (e.g., X, ¥, 2)'>. A variable is
further denoted a “random variable” if the proportion of particular situations in which any
specific number happens to be its numerical value is established by a probability
distribution (e.g., X, Y, cost, schedule duration).

We will use the following notation throughout this document to define variables.
Constants will be defined using their numerical value or lowercase letter (e.g., a, b, ¢, d, ).
Variables will use lowercase letters u, v,w,x,y,and z, and random variables will use
uppercase letters U, V, W, X,Y and Z. Random variables defined by commonly used PDFs
will use the following notation:

Uniform: fx(; LH) =U(L, H) 3-1
Triangular:  fy(x; L,M,H) =T(L,M,H) 3-2
Normal: fx(x;u,0) = N(u,0) 33
Lognormal:  fy(x; i, ) = Ly, 0) 3-4
Beta: fx(x;a,B8,a,b) =B(a,B,a,b) 3-5
Where

19 Book, S. A., “Do Not Sum “Most Likely’ Cost Estimates”, 1994 NASA Cost Estimating Symposium,
Johnson Space Center, Houston, TX, 8-10 November 1994,

' Book, S. A, “Schedule Risk Analysis: Why It is Important and How to Do It”, Ground Systems
Architectures Workshop, The Acrospace Corporation, El Scgundo, CA, 13-15 March 2002,

2 Book, 8. A., 1994.
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L, M, H are low, most likely (mode), and high shape parameters

u, o are the mean and standard deviation of the distribution in unit space
a, B are standard beta distribution shape parameters

a, b are lower and upper bounds of the four-parameter beta distribution

The properties of these distributions are provided in Appendix A — Probability
Distributions.

The Cost Estimating Problem

The cost estimating problem is defined by the mathematics of the following: 1) the work
breakdown structure (WBS), which requires multiple levels of statistical summation; and
2) the mathematics most applicable to the estimating approach(es) used (i.e., bottom-up,
analogy, parametric). We will first describe the statistical techniques used to perform
statistical summation of a WBS structure and then discuss, in more depth, how to apply
analytic uncertainty and risk analysis to the individual WBS elements.

3.2.1 WBS structure

The WBS defines the summation hierarchy of the project. In other words, it defines the
mathematical problem of summation of individual WBS elements to successively higher
levels of the WBS up to the total project level. The statistical treatment of summing
correlated random variables is fairly straightforward and can be easily programmed into a
spreadsheet or cost estimating tool (Young, 1992)."3

3.2.2 Estimating Methods

The methods used to estimate costs at different WBS levels define another part of the
mathematical problem to be solved. Different estimating methods require different
mathematical procedures, so we will examine these methods individually and note the
important mathematical features of each. These include bottom-up, analogy approach
relying on scaled actuals, multiple scaled actuals, and cost estimating relationships (CERs).

3.2.2.1 Bottom-up

The bottom-up estimating approach relies on summing a detailed list of the classical
elements of cost: labor (effort), material and expenses. If a detailed, resource-loaded
schedule is used to estimate effort, then the duration of the task, the staffing level and the
associated labor rates can be represented by random variables. As an example, the cost of

13 The “Formal Risk Assessment of System Cost Estimates” (FRISK) method is an analytic risk model that
uses “Method of Moments” to calculate summary distributions. FRISK was originally developed by Phil
Young of The Aerospace Corporation in 1992 (before Crystal Ball and @Risk became available) with
funding from USAF SMC. A BASIC Program implementing FRISK was developed by Dr. Stephen Book
and enjoyed many years of use. FRISK has been reprogrammed in Excel by various analysts since 2000,
with each new version providing more advanced capability and features and ease of use.
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the effort for a particular task is the product of the task duration, the resource loading
profile and the associated labor rates. Each is treated as a random variable.

W = XYZ; where
W = effort, measured in dollars
X = duration of the task, measured in hours
Y =resource loading, measured in heads
Z = the labor rate, measured in dollars per hour per head

In this case, the first mathematical problem to be solved is the multiplication of multiple
(and perhaps correlated) random variables. This will be discussed in Section 5. The
second problem is the summation of the elements of cost represented by random variables
for each WBS element, as discussed in Section 4.2.2,

3.2.2.2 Analogy (Scaled Actuals)

The analogy method relies on using an actual cost of a product or service to estimate the
cost of a similar product or service. Intuitively, it is the easiest method to use when
preparing a cost estimate. The simplest form of an analogy estimate is a direct analogy, in
which case the estimated cost is equated to the actual cost of the similar product or service.
Unfortunately, this simple procedure does not provide any information about the
uncertainty of the estimate. Indeed, the analogy can be the most misleading estimating
method from a probability perspective.

Studies (MacKenzie & Addison, 2000) by the Space Systems Cost Analysis Group
(SSCAG) have shown the standard deviation of the costs of similar items at the “box level”
of the WBS to be as much as 30% to 40%."* In the same report, the authors showed the
data to be lognormally distributed, which provides a shape to the distribution. Given this
information, we are able to derive a measure of the standard deviation of the “actual” cost
based on the coefficient of variation (CV = u/a), but we do not know at which percentile
to place our particular analogy. Is it at the 50 percentile (median), the mode, the mean
(expected value), or is it at some other percentile such as the 4% or the 85, or somewhere
else? Ifitis at the mean, then the PDF of the analog is easily determined. But, is this the
right PDF to use in this situation? Figure 3-1 shows an example lognormal distribution
based on the mean and CV = 0.3, L(100, 30).

14 MacKenzie, D. and Addison, B., “Space System Cost Variance and Estimating Uncertainty”, 70 SSCAG
Meeting, Boeing Training Center, Tukwila, WA, October 12-13, 2000.
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Figure 3-1 PDF of Cost of Analogy at Mean

Now consider the case where the analogy is one cost of many possible costs within an
unknown probabilistic range. To provide a distribution about the analogous cost, we need
to either 1) assume a percentile value for the analogy within a prescribed distribution, or 2)
determine the (yet unknown) probabilistic range of possible values to which the analogous
cost belongs. The first case is described by Flynn, Braxton, Garvey and Lee (2012).)° The
second case requires the use of applied probability to determine the probability
distribution. The derivation for this approach is provided in Appendix C — Derivations.

3.2.2.3 Scaled Actuals (Factor)
If a simple factor is used to scale an actual cost, then the mathematical problem is the
multiplication of random variables, where one random variable is the scaling factor and the
other is the PDF of the analogy, described in Section 3.2.2.2.

3.2.2.4 Scaled Actuals (Interpolation)
When we estimate the cost of an item through linear interpolation of two actuals using a
cost driver (i.e., weight), the mathematical problem is a linear relationship:

Yo=Y+ X, —x) % _(YZ—Y1)’ where 3-6
(x2—2x1)

Y= the cost estimate (random variable)

X, = the cost driver of the item we are estimating (a random variable)

Y;, Y, = the costs of the two actuals, (random variable)

X1, X5 = the cost drivers of the two actuals (constant)

5 Flynn, B., Braxton, P., Garvey, P., & Lee, R. (2012). Enhanced Scenario-Based Method for Cost Risk
Analysis: Theory, Application and Implementation. 2012 SCEA/ISPA Joint Annual Conference & Training
Workshop. Orlando, FL.
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The plot of the discrete interpolation problem is shown in Figure 3-2.

Discrete Variable Interpolation

W
] _-e--txrn
8 o~ - Xy
S X.¥1
Cost Driver, x

Figure 3-2 Discrete Variable Interpolation

The mathematical problems to be solved in Equation 3-6 are the addition, subtraction and
multiplication of random variables.

Note the costs of the two actuals have a similar issue as the direct analogy method whereby
we cannot assume the a priori standard deviations of the samples. If we cannot treat these
samples of actual values as constants (no error) in the direct analogy case, then we
shouldn’t treat them as such in the interpolation case.

3.2.2.5 Multiple Scaled Actuals and Cost Estimating Relationships
Multiple scaled actuals are those actuals that are similar in nature and whose costs can be
represented by a probability distribution or by simple moments such as u and . For
example, the costs of three-meter ground station antennas could be represented by a normal
distribution, N(¢, d). Provided the antenna of interest fits into the set of three-meter
ground station antennas represented by the PDF, we know the y, ¢, and confidence level of
each estimate in the range of the PDF.

When we are estimating costs of products or services that are based on a similar set of
parameters, we can develop a cost estimating relationship (CER) that explains some of the
variations in cost based on variations in one or more independent variables (i.e., cost
drivers). Consider the generic form of a recurring CER based on unit theory shown in
Equation 3-7.

y ={[a + b i p(u,") [T (%) T 1 (er)]}e ; where 3-7
a, b, c,d,and e are coefficients of the regression (¢ = In,(LCS;)),

LCS¢ = cumulative average learning curve slope when a =0,

U; = unit number I,
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X; = independent variable j,

N = number of independent variables,

Sy = indicator (“dummy”) variable k,

M = number of indicator variables, and

€ = percent standard error (multiplicative).

The independent variables, x;, can be represented by random variables X;as can the

multiplicative error of the estimate, £. The dependent variable, y, will also be a random
variable, ¥, defined by the PDFs of each independent variable, the functional
transformation of the CER form, and the PDF of the multiplicative error, .

The CER provides a model for constructing the PDF, so we can obtain the y, o, and
confidence level of each estimate in the range of the PDF as in the case of multiple scaled
actuals. To compute the statistics of the CER, we must first learn how to convolve and
transform random variables. This is discussed in Sections 4 through 7.

3.2.3 Discrete Risks
Analysts may need to include discrete risk events form a risk register (Table 3-1) in a cost
or schedule estimate. In the single risk case, this means there is a probability that some
estimate of additional cost or schedule will be added. With multiple risks, the problem
becomes combinatoric, since we must account for any combination of risks that could
potentially occur.

Historical cost and schedule actuals contain realized risks which may or may not have been
mitigated or manifested themselves into cost and schedule growth from the original
proposed estimate. By using historical actuals to form the estimating relationships, the
resulting estimate 1) will appear more conservative than if it had been developed using
engineering judgment or non-metric-based approaches; 2) will inherently contain schedule
and cost risks typical of similar programs; and 3) will be more prone to double or even
triple-counting risks when augmented with discrete cost and schedule risks from a risk
register (Table 3-1).

Table 3-1 Example Risk Register

Risk ID | Description Probability | Impact Impact Area
R1 Additional program management personnel 0.50 $200,000 Cost
R2 Redesign of computer board 0.25 6 Manths Schedule
$75,000 Cost
R3 Parts failure 0.10 $250,000 Cost
Technical
R4 Second vendor required 0.05 12 months Schedule
Technical
01 Renegotiate subcontract 0.25 $100,000 Cost
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To form a complete risk picture, additional cost-related risks identified by the schedule risk
assessment (SRA) and the discrete risk analysis obtained from the risk and opportunities
register (ROR) are included to form the risk profile of the program. In many cases, the
historical risk inherent in the use of estimating methods developed from actual data covers
many potential risks (Figure 3-3). In these cases, the analyst must identify unique risks
and omit redundant risks (B and C) identified and represented in the SRA and ROR. The
use of more robust statistical and risk analyses minimizes the unidentified and untracked
risks (A).

Potential Risks
Additional
Schedule
Risks

Historical Data
from Analogous
Programs

|

Additional
Cost
Risks

Figure 3-3 Estimating Risk Venn Diagram

The Schedule Estimating Problem

The schedule estimating problem is defined by the method used to estimate the schedule
duration. When scaled analogy or multiple scaled actuals or schedule estimating
relationships (SERs) are used to estimate schedule duration, the mathematical problem to
be solved is similar to those of cost estimating. The two fundamental differences are: 1)
probabilistic durations are measured in workdays, and 2) when the bottom-up approach is
used, the schedule network defines the mathematical problem to be solved. We will
discuss the issues that arise when using workdays rather than calendar days and then
discuss the issues arising from the arrangement of tasks in a network.

3.3.1 Using Workdays in a Schedule

When using workdays in a program schedule, probabilistic dates are expressed as discrete
rather than continuous distributions. This arises from the fact that a particular task may
finish on a particular day (or part of a work day) but not all possible values within the
range. Consider the example of the duration of a task to be a continuous, uniform
distribution defined as U(1,2). The lower bound of the continuous distribution is defined
as one day and the upper bound as two days. Assuming a continuous distribution for the
duration of the task, the finish date of the task will be within the range of one to two days
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later. In our example, the mean and standard deviation of the duration’s continuous
uniform U(L, H) distribution are:

L+H
Boaz =5 < 1.5 days

1 1 1
dyaz = [ H-L? = |;2-1)2= J; = 0.2887 days

Since schedules (and scheduling software programs) use discontinuous working days (as
opposed to continucus calendar days) to define start and finish dates, the probabilistic
finish date will be one or two days after the start date, not anywhere within entire range of
the distribution. This phenomenon induces changes in the statistics of the finish date of the
task and the overall distribution shape and statistics of the schedule. If the duration is
treated as a discrete uniform DU(L, H) distribution with two (n=2) discrete days duration,
the statistics are:
L+H 142

ﬂpu(j_'z) = S = > =15 workdays (Wd)

_ 2 (L— 2 _ _
Opu(i2) = J(H Epu(2)) Hi—pu(2) — J(Z 15)2+(1-15)% _ \E — 05 wd

n 2

Note the mean is unchanged, but the variance increases dramatically because the
probability mass is equally distributed at the lower (L) and upper (H) bounds of the
distribution. The statistics take a more severe departure when evaluating the distribution in
calendar days where one possible finish day may occur on a Friday and another on a
Monday, assuming Saturday and Sunday are not workdays. This translates into a
distribution with two possible durations in calendar days with the statistics:

L+H 1+4
Upuqe = 5~ =5 = 2.5 calendar days (cd)

- 2 (i— 2 o Y24 (1_7 =2
Couctey = J(H #pua2) +(E—#puaa)? _ J(4 252 +(1-2.5)% _ ‘E —15 o

n 2

We must take great care to properly define the appropriate units and respective shapes of
durations or else we may be miscalculating the correct moments of the schedule durations,
start dates and finish dates. For this reason, probabilistic workdays are defined by
continuous distributions, and calendar days are defined by discrete distributions.

3.3.1.1 Converting Calendar Days to Workdays
Scheduling software makes provisions for converting from a number of calendar days to
workdays and vice versa. A simple approximation that can be used is:

cd = (7/5)wd + £ where £ = 1wd 3-8
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This conversion provides less than 1% error for date conversions over 10 wd as shown in
Figure 3-4. An equally useful approach when using Excel is to compute the finish date (in
cd) using the WORKDAY() function, which calculates the finish date (in cd) using the start
date (in cd) and duration (in wd). The duration in cd (and the appropriate conversion
factor from wd to cd) can be calculated by subtracting the finish date (in cd) from the start
date (in cd).

3.3.1.2 Expressing Durations and Dates as Random Variables
When probabilistic schedule network tools use continuous distributions to define the
probabilistic durations of tasks, they effectively transform the continuous distributions into
discrete distributions binned into possible working days. This discretization of continuous
distributions scales the standard deviation of the task’s duration. The conversion factor
shown in 3-8 provides a good approximation of this scaling for standard deviations of
durations over 25 wd as shown in Figure 34.

WD to CD Approximation Error

400%
350%
300%
250%
200%
150% i
100% -

50% s

0% " \ . . ,

-50% O 10 20 30 40 50 60
Work Days

=== [}ate error

Error

= Sigma error

Figure 3-4 Workday-to-Calendar Day Approximation Error

3.3.2 Arrangement of Tasks in a Network
Schedule networks contain the task durations and the arrangement of those tasks with
respect to each other. There are four possible arrangements: serial, parallel, tree and
feedback (Book S. A., 2011).%

1S Book, 8. A., “Schedule Risk Analysis: Why It is Important and How to Do It”, 2011 ISPA/SCEA Joint
Annual Conference & Training Workshop, Albuquerque NM, 7-10 June 2010.
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3.3.2.1 Serial Arrangement
In a serial arrangement, each task is arranged as a predecessor or a successor of another.
Figure 3-5 shows a serial arrangement of tasks represented by boxes. The number in each
box indicates the duration (number of wd) allocated to the individual tasks. The serial
network’s critical path passes through all of the boxes, and its duration is the sum of the
durations of the individual activities in the serial network. The critical path, in this case,
has a total duration equal to 32 wd.

[3P{1ple2p{ap{ap{ap{2p{1]s]

Figure 3-5 Serial Network (Book S. A., 2011)

3.3.2.2 Parallel Arrangement
In a parallel arrangement, two activities are “parallel” if neither is a predecessor or a
successor of the other. The critical path passes through those boxes whose combined
duration is the longest possible through the network, not the sum of the durations of all of
the individual tasks in the network.'” In Figure 3-6, the series of tasks on the top (the
critical path) is outlined in solid lines and have a total duration of 32 wd; the series of tasks
at the bottom is outlined in dashed lines and has a total duration of 27 wd.

|3H1H6H2H3H4H2H2H1H8>

|-—'I |——'I bl |
L22elam2m2eolsm2zol2ef1ol5.

Figure 3-6 Parallel Network (Book S. A., 2011)

3.3.2.3 Tree Structure

A ftree structure is a mixture of serial and parallel activities in a schedule network. In
Figure 3-7, the numbers in boxes indicate number of workdays allocated to the task
represented by each box. The critical path passes through those boxes whose combined
duration is the longest possible through the network, not the sum of the durations of all of
the individual tasks in the network. The critical path, consisting of boxes outlined in solid
lines, has a total duration = 25 wd. The sequences of boxes outlined in dotted black lines
have “slack time” of 3 wd, 8 wd, 21 wd, 5 wd and 1 wd, respectively.

7 The fundamental reason why “Earned Schedule” is an incorrect approach for cstimating the expected
duration of a program with parallel paths is that the total schedule duration is not equal to the sum of the
individual task durations.
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Figure 3-7 Tree-Structured Network (Book S. A., 2011)

The critical path in this case is defined by the maximum of the path durations of each
“branch” or path in the tree structure. This is a fundamental difference between schedule-
analysis software and cost-analysis software. The work breakdown structure is a “linear”
list, and program cost is calculated by adding together the costs of all items on that list.
The schedule network (unless it is entirely serial) is not linear, and therefore program
duration cannot be calculated by adding together the durations of all activities in the
network.

3.3.2.4 Merging Tasks

When parallel branches or tasks in a tree structure merge, the start date of their successor
task is driven by the maximum of the end dates of the merging predecessor tasks. The
mathematical problem to be solved when dealing with probabilistic schedule analysis (i.e.,
probabilistic start dates, end dates and durations) where tasks merge is the calculation of
the PDF of the maximum, max(fy(x)), of the PDFs of merging tasks (Covert, Using
Method of Moments in Schedule Risk Analysis, 2011). This is the source of a
phenomenon called “merge bias” which was first discovered in the early 1960s
(MacCrimmon & Ryavec, 1962), (Archibald & Villoria, 1967) when a statistical approach
was applied to schedule network analysis.'® !°

3.3.2.5 Feedback Loop

A feedback loop uses a series of feedback paths to define repeated paths such as repeated
testing due to test failures and subsequent fixes. In Figure 3-8, the numbers in boxes
indicate the number of wd allocated to the task represented by each box. The critical path
passes through those boxes whose combined duration is the longest possible through the
network. If “feedback” is not exercised, the critical path, consisting of the boxes outlined
in solid lines, has a total duration = 19 wd. If “feedback” is exercised once, all boxes lie
on the critical path, which then has total duration = 44 wd.

¥ MacCrimmon, K. R., & Ryavec, C. A. (1962). An Analytical Study of the Pert Assumptions. Santa
Menica, CA: RAND,

1% Archibald, R. D., & Villoria, R. L. (1967). Network-Based Management Systems (PERT/CPM). New
York: John Wiley & Sons.
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Figure 3-8 Feedback Loop (Book S. A., 2011)

3.3.2.6 Probabilistic Branching
The feedback loop is difficult (and sometimes impossible) to model using commercially
available scheduling software, and is often modeled using probabilistic branching
techniques. These techniques insert a series of tasks in a schedule network with a set of
enabling “switches” based on the probability that these additional or repeated tasks will
occur. In Figure 3-9 , the probabilistic switches are indicated by circles (nodes) containing

(2 )

p”, representing the probability of the path being exercised.

T L

(3 hG P b oI beli
] Ca e

Figure 3-9 Feedback Loop with Probabilistic Decisions

Written in a non-recursive form, the additional, repeated tasks look like those shown in
Figure 3-9,

GG REPE %I—»
1 - - — - — -
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Figure 3-10 Feedback Loop with Probabilistic Branching

Probabilistic branching requires us to know how to add probability-weighted schedule
duration (a random variable) to a particular path’s duration (another random variable)
(Covert, Using Method of Moments in Schedule Risk Analysis, 2011).

3.3.3 The Critical Path
The criticality index (CI) is the probability a particular task’s path will be on the critical
path, or the probability one path will have a longer duration than the others. Where three
parallel paths (A, B and €) with probabilistic end dates merge, there are three potential
critical paths, each with its own €I, defined as:

Cl, = P(A > max(B,C))
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Clz = P(B > max(4,())
Cl. = P(C > max(B, 4))

Generally, we can state the CI of path X (Cly) to be
CIX; = P(Xl > mG.X(X}=[)) 39

Using the notation for the maximum of distributions to be X, then the probability that the
end date of path A is greater than the maximum of paths B and C, P(A>X), which is the
same as P(X<A), and therefore P(X-A<0). We will need to know how to subtract two
correlated random variables (the probabilistic durations of the individual paths in the
network) to compute the CI (Covert, Using Method of Moments in Schedule Risk
Analysis, 2011).%°

3.4 Mathematics of Estimates

In Sections 3.2 and 3.3, we discussed mathematical problems to be solved when using a
variety of cost and scheduling estimating methods. The mathematical operations applied
to random variables in which we are most interested are (Figure 3-11): addition and
subtraction, multiplication and division, correlation between random variables, minimym
and maximum, linear and nonlinear transformations, and discrete risks and probabilistic
branching. These operations between PDFs result in new PDFs with moments of their
own, which we will use in the analysis. What we have not discussed yet is the subject of
correlation of random variables, which affects all of these operations.

Addition

Discrete Risks Subtraction

Probabilistic Branching H

Mlax and Min
Schedule Merge Points

Wiultiplication
Division

Dependence
Correlation

Transformation

Figure 3-11 Mathematics of Random Variables

2 Covert, R. P. (2011). Using Method of Moments in Schedule Risk Analysis. Bethesda, MD: IPM.
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3.4.1 Correlation between Random Variables

When performing operations on random variables we must have knowledge of how they
behave with respect to each other, or covary. Correlation is a statistical measure of
association between two random variables and is specified by a correlation coefficient
(pi;). It measures how strongly the random variables are related, or change, with each
other. If two random variables tend to move up or down together, then they are said to be
positively correlated. If they tend to move in opposite directions, they are said to be
negatively correlated. The most common statistic for measuring association is the Pearson
(linear) correlation coefficient, p. Another is the Spearman (rank) correlation coefficient,
Ps, which is used in statistical simulation tools such as Crystal Ball and @Risk. These two
definitions of correlation are different, and should not be confused to mean the same thing.
Garvey (1999) pointed out that simulations relying on rank correlation do not correctly
model the covariance of random variables.>!

Pearson product-moment linear correlation, p(X,Y), measures the extent of linearity of a
relationship between two random variables. It plays an explicit, well-defined role in
establishing the sigma value (as well as the range) of the total-cost distribution as
described by Book (1994). For example:

e p(X,Y) = +1 if and only if (iff) X and Y are linearly related, i.e., the least-squares
linear relationship between X and ¥ allows us to predict ¥ precisely, given X

e p?(X,Y) = proportion of variation in ¥ that can be explained on the basis of a
least-squares linear relationship between X and ¥

o p(X,Y) = 0 iff the least-squares linear relationship between X and Y provides no
ability to predict ¥, given X

The second type of correlation, called Spearman rank correlation, pg(X,Y), measures the
extent of monotonicity of a relationship between two random variables. Since it does not
appear explicitly in the formulae for any of the mathematical operations for which we are
concerned, its impact on sigma is not known.

e pg(X,Y)=+1 iff the largest value of X corresponds to the largest value of Y,
the second largest, ... , etc.

o po(X,Y) = —1 iff the largest value of X corresponds to the smallest value of ¥,
etc.

o po(X,Y) = 0 iff the rank of a particular X among all X values. In this case it
provides no ability to predict the rank of the corresponding ¥ among all X values

2 Garvey, P. R. (1999). Do Not Use Rank Correlation in Cost Risk Analysis. 32 DOD Cost Analysis
Symposium.
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Linear and rank correlations are different for different sets of pairwise data. As an
example, Figure 3-12 shows the lincar and rank corrclation coefficients for different plots
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of x and y variables.
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Figure 3-12 Linear vi. Rank Correlation

We discuss these two types of correlation because: 1) Pearson product-moment correlation
i an essential element used to find the distributions formed by mathematical operations on
random variables, 2} Spearman correlation is used nearly exclusively in statistical
gimulations and does not define covariance, and 3) we need to know the difference
between them if we are interested in comparing analytical results to those produced by
statistical simmlations.

3.4.2 Calculating Correlation Coefficients

The correlation coefficient between lists of values of random wariables, such as the
multiplicative {or additive) error terms of CERSs, can be calculated quite easily. Previous
papers by the author (2001), (2002), (2006) have demonstrated this application, 2 2 **
The Pearson product-moment correlation between discrete values such as pair-wise CER
residuals is calculated using Equation 3-10.

s X(X; — pux)(Y; — uy)
" X — g2 (Y — py)?

3-10

2 Covert. R. P. (2011). Using Method of Moments in Schedule Risk Analysis. Bethesds, MD: IPM.
B Covert, R. P, (2001). Correlation Coefficients in the Unmanned Space Vehicle Cost Model Version 7
gISCM 7 Datahase, 3rd Joint ISPA/SCEA International Conference, Tyson's Comer, VA,

Covert, R. P. (2002). Comparison of Spacecraft Cost Model Correlation Cosfficients. SCEA NWational
Conference. Scottedale, AZ,
35 Covert, R. P. (2006). Correlations in Coat Risk Analysia, 2006 Antmal SCEA Conference. Tysons Cotter,
VA,
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where X and Y are CER residual pairs,
X; and Y; are individual program residual data, and
iy and py are the means of the residuals respectively.

If the two variables exactly follow a linear relationship (with no scatter), then the
correlation coefficient pyy = +1 or -1. Similarly, if there is no correlation between X and
Y, then the numerator should be zero, and pyy = 0.

3.4.3 Correlation, Dependence and Independence
In the process of researching the analytic method presented in this paper, we found
correlation can be induced between two vectors of sampled, uncorrelated variables X and Y
when one, the other, or both are transformed through a non-linear equation (i.e., a CER)
form such as y = aX?, or a triad type of CER, y = a+bX*.

Consider the two uncorrelated random variables U and V shown in Table 3-2. We will
introduce a linear transformation, W = 2 + 3U, and two exponential transformations,
X = U% and Y = V2. A linear transformation does not change the fundamental correlation,
as seen in the correlation coefficients pyw and pyy (Table 3-3). Small amounts of
correlation are induced by the exponentiation of the uncorrelated random variables U and
V as seen in pyy = —0.0088, and p, y = 0.1925. Variables correlated with their squares
show a decrease in their correlation from 1.0 as seen in pyx = 09811 and pyy =
0.9990.

Table 3-2 Transformed Random Variable Samples

u ; W=2+3U X=uU* Y=v*
1 4.2 4 1 17.64
2 21 6 4 4.41
3 1.8 8 9 3.24
4 2.2 10 16 4.84
5 4.15 12 25 17.2225

Table 3-3 Correlations between Transformed Random Variables

u v w X Y
v 1.0000 0.0000 1.0000 0.9811 -0.0088
Vv 0.0000 1.0000 0.0000 0.1924 0.9990
w 1.0000 0.0000 1.0000 0.2811 -0.0088
X 0.9811 0.1924 0.9811 1.0000 0.1828
Y -0.0088 0.9990 -0.0088 0.1828 1.0000
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This demonstration shows that while any pair of sampled vectors of random numbers may
themselves be uncorrelated, their exponentiated values are not (i.e., pyy # pyzy2). While
we may believe we have two sample vectors of independent random variables, we
probably do not. True statistical independence is a high standard of independence between
random variables and is difficult to achieve — particularly through statistical sampling. A
less stringent type of independence is “expectation independence”, in which the variables
remain uncorrelated (i.e., pyy = pykyk = 0) for any higher order of expectation
operations. “Uncorrelated” is the least stringent standard, and as our demonstration shows,
correlation can be induced through exponentiation of the random variables.

Another way RVs can be correlated is through the structure of the mathematical problem
(i.e., the functional relationship to each other directly through one equation or indirectly
through more than one equation), whether that structure is a cost estimate or a schedule
network. In a cost estimate, two CERs can be correlated through sharing a common cost
driver or where one CER drives another CER, such as a cost-on-cost factor. Garvey26
(2000) provides an analytic method of determining pyy when X and Y are random
variables representing the estimates from errorless CERs. In a schedule network, two finish
dates may have uncorrelated durations of their predecessor tasks, but will still be correlated
to each other by sharing a common predecessor. We are interested in calculating
functional correlation out of necessity when using analytic methods of uncertainty
analysis.

% Garvey, P. R. (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineering
Perspective. New York, NY: Marcel Dekker.
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4 Probability Tools

When we use a cost model to perform a cost risk analysis, we need to know the uncertainty
of the individual cost estimates, their statistical dependencies, and how to calculate their
sums. We can employ statistical modeling techniques such as statistical simulation or
statistical analysis to find these uncertainties and their properties. Although the goal is the
same, these techniques differ, which we will discuss in more detail.

4.1 Statistical Simulation
Statistical simulation is a numerical experiment designed to provide statistical information
about the properties of a model driven by random variables. It is often used in cost and
schedule risk analysis to model the complex interaction of the transformations and
summations involved with correlated random variables.

The statistical simulation process follows these steps:

1) Define numerical experiment (spreadsheet, schedule network, etc.)
2) Define PDFs for each random variable
3) Define correlation coefficients for random variables
4) Determine the number of experimental trials
5) For each trial:
a. Draw correlated random variable(s) from defined PDF(s)
i. Sample uniform distributions, U(1,0)

ii. Transform each U(1,0) to the desired PDF based on an inverse
transformation of the cumulative density function (CDF),
denoted as CDF™.

iii, Correlate the set of PDFs
b. Compute the experimental result(s)
c. Save the experimental result(s)
6) At the end of the simulation, determine the statistics from the experimental
results

4.1.1 Sampling Techniques
Statistical simulation tools use one or more of the following sampling techniques:

e Bootstrap sampling: Re-sampling with replacement from sample data numerous
times in order to generate an empirical distribution of a statistic

e Monte Carlo sampling: New sample points are generated without taking into
account the previously generated sample points

e Latin Hypercube sampling: Each variable is divided into m equally probable
divisions and sampling is done without replacement for each set of m trials

e Orthogonal sampling: This adds the requirement that the entire sample space
must be sampled evenly

The most commonly-used statistical simulations use Monte Carlo or Latin Hypercube
sampling of correlated random variables. The reasonableness of the simulation results
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depends on the reasonableness of the user inputs, correct modeling of PDFs for all random
variables, and the correct specification of the correlation between these PDFs (even if it is
assumed to be 0). The accuracy of the simulation is highly dependent on the simulation’s
ability to draw uniformly-distributed random variables U/(1,0) in step 5.a.i and to correlate
them correctly in step 5.a.iii.

4.1.1.1 Generating PDFs from Random Number Generators
A random number generator, such as the Excel RAND( ) statement, produces a uniformly-
distributed pseudo-random number between 0 and 1 (0 < U(0,1), < 1). We know that the
range of the CDF, Fy(x), for any random number is the same (i.c., 0 < Fy{(x) < 1). Based
on that knowledge, the uniform draw can be transformed by the inverse of the CDF, the
CDF, to get the desired probability distribution, fx(x) as shown in Figure 4-1. The Excel
statements are fairly simple to use for this purpose, as we will demonstrate.

We can generate different PDFs using Excel to demonstrate how statistical simulations
generate differently-distributed random numbers. First, we will generate a pseudo-random
number based on a uniform distribution U{0,1), then transform it into the desired PDF
using the inverse CDF (i.e., CDF™") using simple Excel functions.

CDF(p=1,6=0.3) . CDF(p=1,5=0.3)

1 15 2 25 ] 0:2 04 06 08
Pix)

Note: In the graph on the left, the cumulative prabability, P(x), is the vertical
axis, and in the graph on the right, P(x) is the horizontal axis.
Figure 4-1 Simulating a Lognormal Distribution

In our example, 1000 uniformly-distributed numbers over the interval [0,1] were generated
using the Excel RAND( ) function. Figure 4-2 shows the histogram of the 1000 uniform
draws, which is a representation of U(0,1).
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Histogram of Transformed Random Numbers
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Figure 4-2 Simulated Uniform Distribution

The moments of the pseudo-random uniform distribution formed by the 1000 samples, the
vector ¥, can be easily calculated using the following Excel statistical functions:

o u= AVERAGE(Y)
o o=STDEV(Y)

o I=SKEW(Y)

o xk=KURT(Y)

Note the kurtosis calculated by the Excel function is excess kurtosis. The moments of the
uniform samples and their exact values based on the defined uniform distribution are
shown in Table 4-1.

Table 4-1 Moments of the Simulated Uniform Distribution

Moment | Simulated | Exact
u 0.488 0.500
o 0.292 0.083
9 0.053 0.000
K -1.222 -1.200

Based on the moment statistics of the uniform distribution, it is slightly biased low (based
on the mean), somewhat unevenly distributed (based on the standard deviation), right-
skewed (based on the positive skewness), and platykurtic (based on the excess kurtosis).

A normal distribution N(1000,300) can be generated by transforming U(0,1) using the
inverse CDF of a normal distribution. The transform function (i.e., the inverse CDF of a
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normal distribution) used in this example is NORMINV (x, 4,6),?” where x is the draw
from U(0,1), u = 1000, and & = 300. Figure 4-3 shows the histogram of the normal PDF
formed by this procedure, and Table 4-2 shows the moments of the simulated and exact
values expected.

Histogram of Transformed Random Numbers
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Figure 4-3 Simulated Normal Distribution

Table 4-2 Moments of the Simulated Normal Distribution

Moment | Simulated Exact
7} 987.7155 1000
a 303.4236 300
9 0.001349 0
K -0.12993 0

Likewise, a lognormal distribution L{1000,300) can be generated by transforming U (0,1)
using the inverse CDF of a lognormal distribution. The transform function used in this
example is LOGINV(x,P,0).”* Before we can use the inverse lognormal transformation,

we must find P and @, which are the log-transformed mean and sigma of the lognormal

4
distribution. The log-transformed mean, P = lln( z'u 2) = 6.8647, and the log-
z peto

transformed sigma, Q = |in (1 +:—:) = 0.2936.

2T NORMINV( ) is an Excel 2007 function, and NORM.INV( ) is an Excel 2010 function,
2 LOGINV( ) is an Excel 2007 function and LOGNORM.INV( ) is an Excel 2010 function.
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Figure 4-4 shows the histogram of the lognormal PDF formed by this procedure, and Table
4-3 provides the moments of the simulated and exact values expected.
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Figure 4-4 Simulated Lognormal Distribution
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Table 4-3 Moments of the Simulated Lognormal Distribution

Moment | Simulated | Exact
H 988.989 1000
ag 299.102 300
9 0.855934 0.927
K 1.094075 1.566

4.1.2 Correlating Random Numbers
Much literature in the statistics community exists regarding generating correlated random
numbers for use in statistical simulation, but few families of joint PDFs specified in terms
of their Pearson product-moment correlation exist. Among ones that do exist are
correlated joint normal, joint normal-lognormal and joint lognormal distributions discussed
in Garvey (2000).”’ Other families of joint distributions are formed through the use of
copulas — a transformation technique used to create joint probability distribution.

4.1.3 Timing of Discovery of Correlation Methods
The timing of the discovery of methods of generating correlated random numbers was an
influence on which commercially-available risk analysis tools use Pearson (product
moment) correlation vs. Spearman (rank) correlation. Commercial tools developed in the
carly-1980s (i.e., @Risk and Crystal Ball) use a method of generating rank correlated

# Garvey, P. R. (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineering
Perspective. New York, NY: Marcel Dekker.
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random numbers based on a published paper (Iman & Conover, 1982)*°. In the late-1990s,
a new algorithm (Lurie & Goldberg, 1998)*" 3 was published that provided a method of
generating Pearson-correlated random numbers. Many of the commercially available
statistical simulation tools were developed before the Lurie-Goldberg paper, so they rely
on Spearman rank correlation. However, these are limitations of using rank correlation
when performing cost risk analysis as noted in Garvey’s papf:r33 (1999). Only since 1998
have tools such as Risk+ for Microsoft Project been programmed with the method
presented by Lurie and Goldberg.

4.1.4 Benefits and Drawbacks of Statistical Simulation Techniques

Statistical simulation has its benefits and drawbacks. Among its benefits are 1) its ability
to provide the statistics of a simulated PDF formed by complex mathematical modeling of
random variables and 2) its relative ease of use. Quite often, statistical simulation obtains
very close results to and is easier to use than statistical analysis. However, statistical
simulation does have its drawbacks — particularly due to its 1) inability to sample
uniformly, 2) (in)ability to correlate two distributions exactly using Pearson product-
moment correlation coefficients, 3) difficulty of correlating large numbers of random
variables, and 4) inability to provide reasonable results when the number of simulation
trials is too small to account for single or combinations of low-probability events. The last
error is further exaggerated when multiplying highly-skewed random variables (e.g., the
product of two lognormal PDFs) and when performing discrete risk analysis. In these
instances, high-impact, low-probability-of-occurrence events are difficult for simulations
to adequately sample in order to produce reasonable facsimiles of the exact results.

One way to check the reasonableness of the results of a statistical simulation is to: 1)
“dump” a list of the results of the correlated random variables being modeled, 2) calculate
the resulting statistics (e.g., Pearson correlation coefficient between the variables), and 3)
find the fit statistics of the distributions being modeled. By performing a dump of the
simulated variables, an analyst will be able to ensure the simulation has created a
reasonable facsimile of the desired input distributions and output distributions (or the
calculation of the Pearson correlation between the correlated random variables) and that
they are close to that specified. Any statistical simulation tool that does not provide the
ability to examine a dump of the trials should be avoided.

30 Iman, R.L. and Cenover, W.J., “A Distribution-free Approach to Inducing Rank Correlation among Input
Variables,” Communications in Statistics - Simulation, Computation, Vol. 11, No. 3(1982), pages 311-334.

3 Lurie, P.M.; Goldberg, M.S., “A Method for Simulating Correlated Random Variables from Partially
Specified Distributions,” Management Science, Vol. 44, No. 2, February 1998, pages 203-218.

32 Related briefing: “Simulating Correlated Random Variables,” 32nd DOD Cost Analysis Symposium, 2-5
February 1999,

3 Garvey, PR., “Do Not Use Rank Correlation in Cost Risk Analysis,” 32nd DOD Cost Analysis
Symposium, 2-5 February 1999.

43



ANALYTIC METHOD FOR RISK ANALYSIS

4.2 Statistical Analysis
Unlike simulation, statistical analysis relies on the exact calculation of moments of the
PDF. We will use moments as the basis of the analytical technique proposed in this report.

4.2.1 Moments
Moments are important measures of the properties of random variables, and they come in
many varieties. The three we have discussed earlier and with which we are most concerned
are raw moments, central moments and standardized moments.

4.2.2 Method of Moments

Method of Moments (MOM) is a relatively easy-to-use, analytical technique used to
calculate the moments of probability distributions. The MOM technique relies on exact
statistical calculations of moments to derive the statistics of probability distributions such
as WBS element cost estimates or schedule durations. With the widespread use of
statistical simulation tools by cost and schedule analysts, MOM has become a forgotten
“art”. One of the surviving MOM techniques is the Formal Risk Assessment of System
Cost Estimates (FRISK) method (Young, 1992).*

4.2.2.1 FRISK
FRISK is a MOM approach used to calculate the i and o2 of the PDF of total cost formed
by the statistical summation of PDFs of subordinate cost elements.

The steps used in the FRISK method are:

1. Define numerical experiment; in this case, the summation structure of a WBS
2. Define triangular PDFs, T'(L;, M;, H;) for each cost, X;, or random variable to be
statistically summed, by specifying the low (L;), most likely (M;) and high

(H;) values
3. Calculate the g; and o;? for each T(L;, M;, H;) using Equations 4-1 and 4-2
Ui = (Lr. + Mi + H,,)/3 4-1
0;2 = (L2 + M;* + H? — L;iM; — L;H; — M;H;)/18 4-2
4. Sum the n means to calculate the mean of the sum of the PDFs using Equation
4-3
Hror = Xi=1 Hi 4-3

5. Define correlation coefficients, p; ;, for each pair of PDFs
6. Calculate the total variance of the sum of the PDFs using Equation 4-4

Orot? = Xieq 0¢> + Linj Xict P1,j010; 4-4
7. Assume the PDF of the total cost is a lognormal distribution, L(P, @)

* Young, P. H. (1992). FRISK - Formal Risk Assessment of System Cost. Acrospace Design Conference.
Irvine, CA: AIAA.
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8. Calculate the lognormal parameters P and Q using Equations 4-5 and 4-6.

P=im(L) 45
4-6

2
Q= Jm(1+ %)
9. Determine the percentile statistics L(P, @)z using the inverse CDF tables or the
LOGINY function in Excel.

The outputs from an example FRISK calculation are shown in Figure 4-5.

Bercentile Yalue Probability Density
10% 517.99
0.008
20% 542.63| s
% 0.006 /"‘\
30% 561.12| % 5004
0% 577.42| g 0.002 7/ \'
50% 593.08 0 - T T '
oo 609,17 400 500 600 700 800
. X, Cost, BY2012$M
70% 626.86
B0% 648.23 . age
Cumulative Probability
90% 679.06
g 1
T
Statistics Value £ s
Mean 506.40| = /
g
Median 593.08| & o T T T .
Kide EgEsE 400 500 600 700 800
) X, Cost, BY2012$M
Standard Deviation 63.18

Figure 4-5 Example FRISK Output

FRISK is even more efficient when programmed as an Excel spreadsheet. The means and
standard deviations of triangular distribution inputs in step 3 can be calculated using
AVERAGE(LM,H) and STDEVP(L .M, H)/2, respectively. When the series of means and
variances to be statistically summed appears in contiguous cells (rows or columns), the
following Excel functions can be used:

1. SUM(range), where range is the series of means

2. SQRT(MMULT(TRANSPOSE(G ) MMULT(R G))), where & is the range of the
vector of ¢; in columnar form and R is the nxn correlation matrix. This function
must be entered by pressing <CTRL> <SHIFT> <ENTER>. An example of the
correlation matrix is shown in Figure 4-6.
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1 02 02 02 02 02 0.2
02 1 02 02 02 02 02
02 02 1 02 02 02 02
02 02 02 1 02 02 02
02 02 02 02 1 02 02
02 02 02 02 02 1 02

02 02 02 02 02 02 1.

Figure 4-6 Example Correlation Matrix

When all g; and o; used in the statistical summation are not in contiguous cells, we can re-
create a set of contiguous cells elsewhere in the spreadsheet (or through an Excel macro) to
allow the use of the Excel functions (1 and 2) above.

Let us perform an example FRISK rollup calculation using a set of errorless estimating
relationships from Book (1994).>° Assume we have modeled the cost estimates of the
WBS elements with triangular distributions as shown in Table 4-4. The parameters of the
triangular distributions are the outputs of a CER using Low, Most Likely and High cost
drivers.

Table 4-4 Example FRISK Rollup Inputs (Costs in $K)

W8S Element, i L; M; H;

Antenna 191 380 1151
Electronics 96 192 582
Platform 33 76 143
Facilities 9 18 27
Power Distribution 77 154 465
Computers 30 58 86
Environmental Control 11 22 66
Communications 58 120 182
Software 120 230 691
TOTAL 625 1250 3393

Note the naive sum of the most likely costs, M;, is $1250K.

The first WBS element, the Antenna WBS eclement CER, is defined by a triangular
distribution, T(191,380,1151). The mean of a triangular distribution from Equation 4-1 is

191+380+1151

- = $574K 4-7

=+ M +H)/3=

and the standard deviation of the Antenna WBS cost using Equation 4-2 is

¥ Book, S. A. (1994). Do Not Sum 'Most Likely' Cost Estimates. 1994 NASA Cost Estimating Symposium,
Houston, TX.
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4-8
Of(x), = ,’Uf(x)iz =

[1912+3802+11512—(191)(380)—(191)(1151)—(380)(1151)]
J s = $207.62K

Repeating this procedure for all of the WBS elements in Table 4-4 allows us to calculate
the moments (U, and Ofy),) for all WBS elements as shown in Table 4-5. The mean of
the total is calculated using Equation 4-3. To calculate the total cost sigma, we need to
specify a correlation matrix. For this example, we use the matrix shown in Figure 4-6. To
calculate the standard deviation of the total, we use the matrix form of Equation 4-4 to
obtain the results shown in Table 4-5.

The mean cost is $1756K, which is significantly larger than the naive sum of the most
likely costs, which is $1250K (Book, 1994).%

Table 4-5 Example FRISK Rollup (costs in $K)

WBS Element, i Estimate, f(x); Pecx) Orx)
Antenna T{191,380,1151) 574 207.62
Electronics T{96,192,582) 290 105.08
Platform T{33,76,143) 84 22.63
Facilities T({9,18,27) 18 3.67
Power Distribution T{77,154,465) 232 83.86
Computers T{30,58,86) 58 11.43
Environmental Control T{11,22,66) 33 11.88
Communications T{58,120,182) 120 2531
Software T(120,230,691) 347 123.68
TOTAL (Not necessarily the sum) 1756 364.93

We quantify the percentile value of the sum of the most likely costs by forming a CDF. If
we assume the total cost of our estimate is lognormally distributed, we can compute the
lognormal distribution parameters (P = 7.4497 and @ = 0.2056) using Equations 4-5 and
4-6.

A quick calculation using the lognormal distribution functions in Excel tells us the
percentile of the naive sum of most likely costs. The equation and results are:

LOGNORM.DIST (1250, F, @ TRUE) =0.060553=6.0553%

This is why we model estimates probabilistically. It would be very difficult to defend an
estimate at the 6™ percentile and unwise to want it in the first place!

3 Thid.
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Using the inverse of the lognormal distribution, we find the cost value at any probability
level on the CDF. This is a very simple way of quickly forming CDFs such as the one
shown in Figure 4-7.

FRISK Example
1
0.9 —
0.8 /
= o7 /
: 0.6 ,/
£ 4 1756, 54.09%
8 04
S 03 /
a /
0.2
0'1 ----------- #{250 6 06%
0 T T T 2 . T T T 1
0 500 1000 1500 2000 2500 3000 3500
Cost, x

Figure 4-7 FRISK Example CDF

4.2.2.2 Enhancements to FRISK

4.3

FRISK is an elegant way to model the simple statistical summation of a cost estimate.
However, to be fully effective as a tool to exactly and efficiently analyze a cost estimate,
we need to be able to accommodate 1) statistical summation of non-adjacent cells; 2)
inputs that are non-triangularly distributed, such as normal or lognormal distributions; 3)
modeling CER cost-driver uncertainties, 4) transformation of cost-driver PDFs by a CER,
5) modeling the additive or multiplicative error of the CER, and 6) multi-level summations
as in the case of a complex WBS. Fortunately, solutions to these issues are available from
the literature (Covert R. P., 2006).”

MOM Operations and Analytic Method Description
This section describes the mathematical treatment of these operations on random variables
and provides methods of calculating the moments.

4.3.1 Addition and Subtraction of Random Variables

The simplest mathematical operation with which we will be concerned is the statistical
summation and subtraction of random variables.

As we discussed in Section 3.2.1 the WBS defines the summation of individual WBS
elements to higher hierarchical levels. Similarly, in Section 3.3.2.1, the serial arrangement
of schedule tasks allows us to statistically sum their durations. Both mathematical

37 Covert, R. P, (2006). Correlations in Cost Risk Analysis. 2006 Annual SCEA Conference, Tysons Corner,
VA.
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problems are treated with the same statistical summation technique. Let X; be the cost (or
duration) of an individual WBS element (or serially arranged set of schedule tasks), and X
be the sum of individual WBS elements, i. Then the mean of WBS element { is the
expected value E['] of the random variable, X;.

# = E[X;] 4-9
So the mean of the sum of individual WBS elements is the total mean, pr

br = E[XiL, Xi] = Xiz, EIXi] 4-10
More simply put, the mean of the sum is the sum of the means.

The total variance, 672, of the sum of the WBS elements is the square of the standard
deviation of the total, o7.

or? = Var(Xy) = XL, 6% + s X p1j0i0;j 4-11

In expectation parlance, Equations 4-12 and 4-13 are the expected values of the sum and
difference of two random variables.*®

E[X + Y] = E[X] + E[Y] 412
E[X — Y] = E[X] — E[Y] 4-13

Equations 4-14 and 4-15 are the variances of the sum and difference of two random
variables. Less intuitive is the variance resulting from the difference of two random
variables. Equation 4-15 is similar to Equation 4-14 except the covariance term
2Cov(X,Y) is subtracted from the sum of the variances of X and Y.

Var[X +Y] = Var[X] + Var[Y] + 2Cov(X,Y) 4-14
Var[X — Y] = Var[X] + Var[Y] — 2Cov(X,Y) 4-15

The shape of the distribution formed by the sum and difference of lognormally distributed
random variables is discussed in the applied statistics literature (Lo, 2012).% It is agreed
that the shape of the sum or difference of two correlated lognormal variables are neither
normal nor lognormal, but an approximate shape can be derived from the parameters of the
distributions.

% When calculating the criticality index (CI) of a schedule task, we must evaluate the integral of the
difference of random variables,

* Lo, C. F., The Sum and Difference of Two Lognormal Random Variables (May 22, 2012). Available at
SSRN: hitp://ssrn.com/abstract=2064829 or http://dx.doi.org/10.2139/ssrn. 2064829
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The parameters of interest when subtracting one lognormally distributed PDF from another
are: the correlation between the two PDFs, and their respective means and standard
deviations (or variances). These parameters not only determine the mean and variance of
the PDF formed by their difference but also the skewness and kurtosis of the same. To
estimate the shape of the distribution formed by subtracting one RV from another, we use
the results of a numerical experiment (i.e., a 100,000-trial statistical simulation).

The numerical experiment uses four PDFs defined as lognormal distributions: A = L(1,1),
B =1L(1,0.5), C = L(2,1), and D = L(2,0.5). Table 4-6 shows the difference between
uncorrelated pairs (i.e., p = 0) of A, B, C, and D. We show the mean, standard deviation,
skewness, kurtosis and shape of the PDF-defined difference in each of the twelve cases.

Table 4-6 Difference of Two Uncorrelated PDFs

Case Difference H a 9 K Fit Shape
1 A-B 0.000 1.1159 2.613 22.771 Logistic
2 A-C -1.000 1.4152 0.772 | 11.785 Student's t
3 A-D -1.000 1.1151 2.652 22.033 Max Extreme
4 B—A 0.000 1.1159 -2.613 22.771 Logistic
5 B-C -1.000 1.1177 -1.022 6.381 Logistic
6 B-D -1.000 0.7070 0.299 4471 Logistic
7 C—4 1.000 1.4152 0.772 11.785 Student's t
8 C-B 1.000 1.1177 1.022 6.381 Lognormal
9 C-D 0.000 1.1198 1.099 6.263 Lognormal
10 D—-A 1.000 1.1151 -2.652 22.033 Weibull
11 D—-B 1.000 0.7070 -0.29% 4471 Logistic
12 D-C 0.000 1.1198 -1.089 6.263 Weibull

A lognormal PDF is defined by its mean and standard deviation, is right skewed, and it is
supported over the range of real values [0,00]. The mean and standard deviation are
always positive real numbers, so a lognormal PDF must have a positive mean and positive
skewness. Only case 8 in Table 4-6 can be considered an approximation to a true
lognormal distribution based on its mean and skewness. Case 5 produces a mirror image
of case 8, so it is considered to be a “negative lognormal distribution”.

We can use the knowledge that if the difference of two RVs (i.e., X-Y) produces a negative
lognormal distribution, then all of the area of the PDF of X-Y is in the negative axis. Since
this is true, Y-X is a lognormal distribution, and all of its area lies on the positive real axis.

We have considered the uncorrelated case thus far, but when X and Y are highly
correlated, the difference of two RVs (i.e., X-Y) produces a distribution that is less skewed
and has the properties of a normal distribution.

We use the following rules to determine the approximate shape of the resulting
distribution:
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1. If X has a larger variance than Y, then we expect X to dominate the variance of the
distribution X — Y. The resulting distribution will have positive skewness.
a. Ifoy > oy, then k>0.
b. Conversely, if oy < oy, then Kk <0.
2. Ifthe mean of X is larger than the mean of Y, the mean of X — ¥ will be positive.
a. If uy = uy and oy > oy, then X —Y will be approximately lognormally

distributed.
b. If uy < uy and oy < oy, then X —Y can be approximated by a negative-
lognormal distribution.
3. If uy <uy andoy > oy, then X —Y can be approximated by a left-shifted
lognormal distribution.

4. If pyy is large (pxy~0.7) or greater, then the distribution formed can be
approximated by a normal distribution.

4.3.2 Covariance of Random Variables
When we are calculating the means and variances of CERs that rely on cost drivers that are
random variables, we are interested in the functional transformation of the PDFs by the
CER and the inclusion of the CER’s error. To accurately calculate the moments of the
CERs in the cost model, we must know how the CER and its error are correlated (or how
they “covary™) with each other in order to properly perform statistical summation.

Covariance is defined in Equation 4-16. Note that it is the expected value of the product of
the differences of the random variables and their respective means. It is also defined in
Equation 4-17 as the expected value of the product of the random variables minus the
product of their means.

Cov(X,Y) = axy = E[(X — ux)(Y — py)] 4-16
Cov(X,Y) = E[XY] — uxuy, and 4-17
Cov(X,X) = Var(X) = E[X?] — E[X]?

The correlation coefficient pyy in Equation 4-18 is the product-moment correlation

coefficient, which relates Cov(X,Y) to the product of the standard deviations of X and Y.
This is the same Pearson product-moment correlation coefficient used in FRISK’s
statistical summation.

E[XY] = pxyoxoy + pxpy 4-18

Two important theorems to remember are:

If XY are independent, then Cov(X,Y) = 0, 4-19
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and the symmetry of covariance of Equation 4-20 requires us to only define the upper or
lower off-diagonal elements of the correlation matrix (Figure 4-6), since p; ; = p; ;.

Cov(X,Y) = Cov(Y,X) 4-20

The bilinearity property of covariance means the following is true:

Cov(aX + b,cY + d) = acCov(X,Y) 4-21
Cov(X, + X,,Y) = Cov(X,,Y) + Cov(X,,Y) and 4-22
Cov(X,Y, +Y,) = Cov(X,Y;) + Cov(X,Y;)

4.3.3 Transformation of Random Variables
When using linear CERs (and factors) such as y = a + bX, uy is shifted by the additive
term (a) and scaled by the multiplicative term (b) (Equation 4-23), and the variance is
scaled by the square of the multiplicative term (b) (Equation 4-24).

E(a+bX) = a+ BE(X) = a + by 423
Var(a + bX) = (b¥)Var(X) = b%ay? 4-24

When linear transformations are applied to pairs of correlated random variables, the
covariance is unaffected by the additive terms and is scaled by the multiplicative terms
(Equation 4-25).

Cov(a + bX,c + dY) = (bd)Cov(X,Y) 4-25

We can calculate the correlation coefficient between two random variables, such as two
CERs that share a common cost driver, using Equation 4-26.

E[XY]- -
_ Cov(X.Y)
Pxy = p—

To do this with a pair of CERs, we will need to determine the mean and sigma values for
both CERs and the term E[XY]. The E[XY] term is the expected value of the product of X
and Y, which is why we call Pearson correlations “product-moment” correlations.

When nonlinear transformations are performed on random variables, as in the case where a
CER, Y, is expressed as a function of a random variable, X;

Y = f(X) = (a + bX®) ; where 4-27
a, b, and c are coefficients of the CER with (Var(-) = 0),

The terms iy oy are computed as follows:
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oy = /Var(Y) = \/Var(a + bX) 4-29

Since the variance of a constant is 0, Var(a;) = 0,

oy = \/b2Var(X®) = b/Var(X®), 4-30
If Z = x€ and Var(Z) = E[Z?] — E[Z]? then
Var(X©) = E[(X®)?] — (E[X°])? = E[X**] — (E[X°])? 4-31

The expectation E [X k] is dependent on the shape of the probability distribution of X. In
this case, if X is a triangular distribution, X = T(L, M, H), then

E[Xk] _ 2 {Mk+2_Lk+2 _ Mk+1_Lk+1} 2 [ Hk+1_Mk+1 _ Hk+2_Mk+2}

(H—LY(M—-L) k42 k41 (H-L)(H-M) k+1 k+2

Substituting k with ¢, we obtain:

el 2 1 MC+2_LC+2 _ MC+1_LC+1 1 HC+1_MC+1 _ HC+2_MC+2
Elx®] = (H-L) [(M—L){ c+2 L ct+1 } (H—M){ c+1 c+2 }]
and
2b MC+2_LC+2 MC+1_LC+1 2b HC+1_MC+1 HC+2_MC+2
Hy =a+ (H—L)(M—L){ el e ] (H—L)(H—M){ c+1 ¢tz }
So "Yb_a = E[X¢] and Var(X®) can be rewritten as:
2

oy — 2¢1 _ (Hr—¢
Var(x°) = E[x*] - (“22)

20y _ 2 1 M2C+2_LZC+2 _ MZC+1_LZC+1 1 H2C+1_M20+1 _
Var(x*) = (H-L) [(M—L){ 2c+2 2c+1 } + (H—M){ 2c+1

e - (e
Using Equation 4-30,

Oy =

b 2 [ 1 {MZC+2_LZC+2 L M2C+1_LZC+1} 1 H HZC+1_MZC+1 HZC+2_M2C+Z F‘f_a 2
- + o - {1- (%)
-L) L(m-L) 2c+2 2c+1 (H-M) 2c+1 2c+2 b

This is a rather lengthy equation, so VBA expressions are provided in Appendix D.

From this point forward, where a VBA function exists, such as for E [X k], we will leave

any expansions of equations in terms of E [X k].
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We often rely on the calculation of the higher-order moments to determine probability
distributions used in estimating relationships. The ¥* moment of the RV X is

e Yxx*¥Py(x) ;if Xisdiscrete 4-32
X'l = { IZ x®fy()dx ;if X is continuous

In summary, we can use the equations for expected value, variance, and covariance to find
the moments of a distribution and the covariance (and correlation between random
variables). Another simpler way of dealing with complex transformations of independent
random variables is through the use of Mellin transforms (Section 6).

4.3.4 Multiplication and Division of Random Variables

Often, we are interested in the moments of the PDF of the product or transformation of
multiple random variables in an equation such as a CER. Three methods of finding the
moments in this situation are the use of: 1} expectation operations, 2) Mellin transforms
and 3) propagation of errors. The first method is an extension of the expectation operations
shown in Section 4.3.2, and the last two methods are discussed in greater detail in Sections
6 and 7. Section 5 provides a general formula for the variance of the product of two or
more random variables.
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S Product of Dependent Random Variables

5.1

The moments of the PDF formed by the product of two dependent random variables are
used frequently in probabilistic cost analysis. Products of random variables are found in
probabilistic cost estimates using CERs that have correlated error terms, or when using
cost-dependent CERs. Products of multiple random variables occur when calculating the
correlation coefficient between different WBS elements. We first provide equations for
the moments of the product of two jointly normal random variables, then follow with the
case in which we have two jointly lognormal random variables. Using the methods used to
derive these equations, we provide equations for the moments of the product of multiple
random variables.

Product of Two Normal Random Variables
In the first case, we derive the moments of the product of two random variables that are
defined using normal PDFs. If X and Y are jointly dependent random variables defined by:

X=puy+roxZ+V1—r204E;,andY = py + royZ + V1 — r20yE,

where Z,E;, and E, are independent, standard normal PDFs (i.e., N(0,1)), then their
covariances are zero. This means Cov(Z,E;) = 0, Cov(Z,E,) = 0, and Cov(E, E;) = 0.
We can further state the means of X and ¥ are E[X] = uy, E[Y] = gy. The variances of X
and Y are Var(X) = ayx?, Var(Y) = oy?. Finally, we define ¢ = Cov(X,Y) = r’axay.
r% = py y by definition.

The expected value of the product XY is:

E[XY] = Cov(X,Y) + E[X]E[Y] = pxy0x0Oy + pxity using Equation 4-18.
The variance of the product is found through some manipulation:

Var[XY] = E[(XY)?] — E%[XY]

E[(XY)?] = Cov(X?,Y?) + E[X?]E[Y?]

Var[XY] = Cov(X?,Y?) + E[X%]E[Y?] — (Cov(X,Y) + E[X]E[Y])?

Var[XY] = Cov{(X?%,Y?) + E[X?]E[Y?] — (Cov?(X,Y) + 2E[X]E[Y]Cov(X,Y) +
E2[X]E3[Y]D

Var[XY] = Cov(X?,Y?) + E[X?]E[Y?] — Cov3(X,Y) — 2E[X]E[Y]Cov(X,Y) —
E?[X]E?[Y]

E[X?] = uy? + 64% and E[Y?] = uy? + 632
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Var[XY] = Cov(X?,Y?) + (ux® + 0x*)(uy? + 0y?) — Cov*(X,Y) — 2ugpyrioyoy —
HxPlty®
Var[XY] = Cov(X?,Y?) + ux*py®+itx20y* + axpy® + 0x%0y" — ¢% — 2pypiyc —
Hx’ py?
Var[XY] = Cov(X? Y?)+uylop? + ox?uy? + 5-1
2
ox’oy” — ¢® — 2ugpyc

This is the same result obtained by (Goodman, L. A., 1960) and (Bohrnstedt & Goldberger,
1969),441

To solve the Cov(X?,Y?) term, we must expand the squares of X and Y, use the definition
of covariance provided in Equation 4-17, and insert that result into Equation 5-1. This
derivation is provided in Appendix C — Derivations, Section 16.3.7. The resulting
covariance term is

Cov(X2%,Y?) = duguyc + 2c?
This allows us to express the variance of the product of two normally distributed PDFs as:
Var[XY] = 4pguyc + 2c2+px20y% + ox?py? + ax?ay” — (€)% — 2pgpiyc
This simplifies to Equation 5-2.

Var[XY] = 2uxpyc + c2+pugloy? + ax’uy? + axloy? 52
When X and Y are independent, ¢ = 0, Equation 5-2 reduces to Equation 5-3.

Var[XY] = pxoy? + ox’uy® + ox’oy? 53

When Y = X, ¢ = 652, Equation 5-2 becomes Equation 5-4.

Var[X?] = 2052 (2uy? + 042) 5-4

Product of Two Lognormal PDFs
In the case where we are interested in the product of two lognormal PDFs, we cannot rely
on the symmetric properties of the normal distribution to cancel terms and also cannot rely

“ Goodman, L. A. (1960, Dec.). On the Exact Variance of Products. Journal of the American Statistical
Association, 55(292), 708-713.

“1 Bohrnstedt, G. W., & Goldberger, A. S. (1969, Dec.). On the Exact Covariance of Products of Random
Variables. Journal of the American Statistical Association, 64(328), 1439-1442.
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on the standard normal distributions zero-mean properties to manipulate the equations. We
must rely on the fact that the lognormal distribution is related to the exponent of an
underlying normal distribution.

If X; and X, are jointly distributed normal random variables with py ., then ¥; and Y; are
jointly distributed lognormal random variables with py, ., and¥; = e*1, and ¥, = e*2. If
X, and X, are defined by N(P;,Q;), and N(P,,@;), thenY; and Y, are defined by
L(uy,, 0y,), and L(uy,, oy, ), respectively.” The mean and variance of ¥; and Y, are:

Hy, = e(Pi+%Qiz) and a'YZi = e(zpt"'Q?) (BQ? - 1) and

1
Pxix, = g o-In [1 + iy, (\/ e — 1Ve% — 1)]
The product Z = Y; ¥, = eX1e%2 = e*1+%2 g0 the distribution of In(Z) has mean:

E[In(Z)] = P; + P,, and variance, [In(Z)] = Q% = Qf + 2px, x,010Q2 + Q% .

Therefore, the mean and variance of Z = Y, Y, is:

iy = ellPrPallof 20, x;,0:0a+05]) 5 5-5
of = o(2[P1+P]+[0}+2px, x,0102+0F]) (e[Qf+2pX1,szlqz+Q%] _ 1) 5.6

Equation 5-5 is an exact solution of the variance of the product of two lognormal
distributions. Results of the exact standard deviation using the square-root of the variance
calculation using Equation 5-5 are compared to a 100,000-trial statistical simulation in
Table 5-1. The simulated mean of the product is low compared to the exact result due to
the inability to correlate the two RVs to exactly p = 0.5. The simulated standard deviation
is slightly lower than the exact result due to uneven sampling of the lognormal PDFs.

Table 5-1 Analytic and Simulated Results of the Product of Two Lognormal PDFs

Analytic Simulated
13 g Pyyy; J1i a Py, ¥,
Y, 1.000 1.000 0.500 0.999 0.999 0.432
Y, 1.000 1.000 0.999 0.999
Y,Y, 1.500 4.243 1.430 3.749

“2 Lognormal Distributions: Theory and Applications
Edwin L. Crow, Kunio Shimizu, 1988. Marcel Dekker, NY, Statistics, textbooks and monographs Series,
vol. 88, p14-17.
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When Y; and ¥, are independent, py, y, = 0, so the mean and variance of Z are:

Uy = e([P1+P2]'|—:[Qf+ZQ1QZ+Q§])’ and 5-7
oZ = el2lP+ral+[of+f]) (lof+ez] _ 1) 5.8

To calculate the moments of the square of Y;, we can set Yy = Y5, so uy, = py,, py, v, = 1.
The resulting mean and variance of Z are;

Uz = eZ(P1+ZQ1z), and 5.9

o2 = e(2P1+4Qf)(e[4Q%] -1) 5-10

Additionally, when py, =1, and oy, =1 (i.e., ¥; is a unit lognormal distribution, ¥; =
L(1,1)), then Var[¥;?] = 60.

Since oy, = ,Var[le], oy, = V60, or 7.7459667.

Comparing these results to a statistical simulation, we get similar means but different
standard deviations as shown in Table 5-2.

Table 3-2 Analytic and Simulated Results of the Square of Two Lognormal PDFs

Analytic Simulated
H o u o
Y, 1.000 1.000 1.000 1.005
¥’ 2.000 7.746 2.010 8.900

The difference between the sigma values from the analytic (exact) answer and the
simulated (approximate) answer is due to the simulation’s sampling of the lognormal PDF.
Since none of the error can be attributed to the correlation between random variables (i.e.,
it is a square of a single RV), it must be due to the ability of the simulation to sample the
large tails of the lognormal PDFs. Looking at the results of the variance from 10
simulation runs of 100,000 trials each shows the simulated variance is biased low and there
is a large standard deviation of results of the variance of ¥;2. This is due to the fact that
sampling highly skewed distributions will always be difficult for simulations, so
simulations cannot always be trusted in these situations. It is best to check your
simulation’s results to see that the simulation has reproduced the correct Pearson
correlation coefficient and that the means and standard deviations of the inputs and product
are correctly computed.
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Table 5-3 Ten Simulated Sample Runs of Variance of LN PDF Squared

Simulation Simulation
Run Var(¥,)) Run Var(¥Y®)

1 49.894 6 63.005
2 54.359 7 58.854
3 47.536 8 57.698
4 51.769 9 57.165
5 87.246 10 49.030

Byary, 57.656

Tyarcry ™ 11.491

5.3 Product of Exponentiated Lognormal PDFs
In some cases, it may become necessary to calculate the product of two lognormal PDFs
that are exponentiated. Exponentiation of a lognormal PDF Y; by some constant exponent,
c, (i.e., ¥f) is equivalent to multiplying its underlying normal distribution by c.

ch — eCX]_

If the distribution X; has mean P;and standard deviation @y, then the distribution cX;will
have mean cP;and standard deviation cQ;. If we multiply two exponentiated lognormal
PDFs Y, and Y, by exponents ¢ and d, we can compute the mean and variance of the
resulting distribution, Z = YFY£, using the exponents of the underlying normal
distributions of ¥; and Y, which are X; and X,.

Z = Y]_CYZd = ecX;ledXz = e(CX1+dX2)
With the mean and variance of the underlying normal distribution,
PZ = CPX:[ + dPXz and Q% = CZQ§1 + 2pX1erCdQX1QX2 + dZszrz

the correlation between the underlying normal PDFs, py, x,, will be unaffected by the
affine transformation® of the underlying normal distribution. The correlation between the
lognormal PDFs, py, y,, will also remain unchanged. The correlation between the variables
U and V (pyy), where U = Y{ and V = Y7, will be different from that of py, y,, however.

“ An affine transformation does not change the properties of the variable(s) undergoing the transformation.
For example, the correlation between two RVs is unchanged when either (or both) undergo a linear
transformation. That linear transformation is considered an affine transformation.
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5.3.1 Correlation Between Exponentiated Lognormal PDFs

5.4

Using the derivation above, the exponentiated lognormal RVs undergo a non-affine
transformation, meaning their relationship to each other changes. In the case of the

product of lognormal RVs, Z = UV = Y{£Y£, the correlation Py 1s calculated using:

e(‘dPXLXz Uxy QXz)—1

e(cqx1)z—1Je (dqxz)z_l

Puy = J

As an example, We will exponentiate two lognormal PDFs (¥; and Y;) defined by L(1,0.5)
with correlation py y, = 0.5. We wish to find the correlation, p;y, where U =Y{,

V =Y& ¢ =009,and d = 1.2. First we must find Q,and Q, where:

2 2
Q; = }m [“"u;:"] , which results in @, = 0.4724 and Q, = 0.4724.
Yi

Next we calculate py_ y, using py. x, = ﬁln [1 + Pr.y, (\/ e® —1y/e® — 1)]

1
Pxix: = (0.4724)(0.4724)

In[1+ (0.5)(V1.25 — 1V1.25 — 1)] = 0.5278

Last, we have the correlation between U/ and V:

e([0.9] [1.2][0.5278][0.4724][0.4724]) -1

= 0.4951.

Puy = Vel(08][0.4724])2 _ 1/ g ([0.4724][0.4724]2 _1

Product of Multiple Lognormal PDFs

In the case where cost-on-cost factors are used in a probabilistic cost estimate, the
correlation between a WBS element that is estimated using a cost-on-cost factor and its
base is governed by the expected value of the product of multiple random variables.

We use the case where we have three random variables representing the multiplicative
uncertainties of three CERS, €;, €, and £5. The products used in the correlation matrix may
include the following terms: €, €,€3, £,2€,, €, 2€;€3, among others.

The expectation of any combination or exponentiation of products of &, &, or &; is derived
using a set of jointly dependent lognormally distributed PDFs defined by their respective
means and variances. In the case of the triple productZ = &;&;&5, the mean of the
underlying normal distribution formed by the triple product is:

E[ln(2)] = ZP;

and the variance is
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Var[in(Z)] = £ Q;* + Tisr Lk Px,x, @ Qs , Where

Px,x), = ﬁln [1 + Peer (Ve — 1/e% - 1)]

sy = e(EPHFEQ 4Tk kP, Q) ang 5-11
o2 = e(zEPi+E Q7% +Zisk Zi Pxx, QiQk) (eZ @+ Lk Tk Py %3 A0k _ 1) 512

Limitations of Statistical Simulations

Statistical simulations, due to their inability to perfectly sample correlated random
variables will produce some error, of course. To test these errors, we defined three
lognormally distributed random variables &, £;, and g;with a lognormal PDF, L{1,0.5),
and defined their inter-element correlation, pg, ., = 0.5. We then calculated the
expectations of the products discussed above using the analytic method and with a
100,000-trial statistical simulation. The results are shown in Table 5-4. Over the 10
different simulation runs, the average of the means (1.414) was less than that of the
analytic (true) result (1.424). Also, the average of the variances from the 10 runs (5.776)
was less than that of the analytic (true) result (6.000). The simulations produced a wide
range of variances represented by the standard deviation of the simulated variance results
(0.229).

Table 5-4 Ten Simulated Sample Runs of Variance of Triple Product of LN PDF

Simulation Simulation
Run E(Z) Var(Z) Run E(Z) Var(Z)

1| 1.409 5.435 6 1.416 6.100
2| 1412 5.534 7 1.410 5.593
3| 1418 5.923 8 1.411 B5.573
41 1417 6.053 ) 1.417 5.818
5| 1.415 5.880 10 1.413 5.853

Average 1.414 5.776 Analytic 1.424 6.000

Std. Dev. 0.003 0.229
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6 Mellin Transforms

6.1

A Mellin transform is a type of integral transform that allows us to find the moments of
user-specified random variables or functions of random variables, such as CERs. This is
particularly useful in uncertainty analysis because we often need to find the moments of 1)
the product of two or more independent random variables, and 2) transformations of
random variables (e.g., exponentiation).

As with anything that looks “too good to be true”, there are restrictions on its use. We will
first define Mellin transforms, show how to use them and provide an example. The Mellin
Transform™ % of a function f{X), where X is a positive random variable, is defined as:

My(s) = M[f(X);s] = fow x5~ 1f (x)dx, x > 0, where 6-1
My (s) is the Mellin transform of f(X), and
s is the order of the transform

As with the Fourier and Laplace transforms, there is a one-to-one correspondence between
My(s) and f(X). When f(X) is a PDF, we can see the relationship between the Mellin
transform of a PDF and the moments about the origin ' as:

o' = E[X°~1] = My(s) 62

Mellin Transform Properties

Mellin transforms allow us to calculate moments of results of operations on independent
random variables. Table 6-1 shows the Mellin transforms of simple operations on single
independent random variables.

Table 6-1 Operation Properties of Mellin Transform on a PDF

Property PDF RV Mellin Transform
a. Standard f(x) X M (s)
b. Scaling f(ax) X aI My (5)
b. Linear af (x) X aMx(s)
d. Translation x*f(x) X My(a+s)
e Exponentiation F(x® X aC DMy (s/a)

Table 6-2 shows the Mellin transforms of more complex operations on single and multiple
independent random variables.

* Giffin, W.C., Transform Technigues for Probability Modeling, Academic Press, 1975.
* Springer, M.D., The Algebra of Random Variables, John Wiley and Sons, 1979.
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Table 6-2 Mellin Transform of Products and Quotients of Random Variables

Random Variable PDF Given M,(s) =
a. Z=X f(x} Mx(s)
b. z=x f(x) My(bs —b+1)
c. Z=1/X fx) Mx(2 —5)
d. Z=XY fGg My (s)My(s)
e Z=X/Y fGx). g My (5)My(2 — 5)
f Z=aX’Y" .9 aS DM, (bs —b + DMy(cs —c + 1)

6.2

6.3

6.4

Mellin Transform of the Uniform Distribution
The uniform distribution, U (L, H), has a PDF defined by:

f)=1/(H-L; L<x<H,

and a Mellin transform defined by

HS_LS
M[f(x);s] = ﬁ

Mellin Transform of the Triangular Distribution
The triangular distribution, T(L, M, H), has a PDF defined by:

2(x-L)

HE-LM-D) 0<L<x<sM
FO= "G o w
(H-LYH-M) MSXS
and a Mellin transform defined by
L1 2 H(HS-M®)  L(M*-L5)
MIf s sl = [(H—L)s(s+1)]{ (H-M) M-1) }

Mellin Transform Example

In this example, we will apply Mellin transforms to a multivariate CER* with error:

Y = aX,’X,° &, where

Y is cost, a random variable (RV)

a, b, and c are constants, @ = 0.1,b = 0.95, and ¢ = 0.60
X, is a cost driver thatis a RV, X; = T(9,10,15)

X, is a cost driver that is a RV, X, = T(30,40,60)

“ The CER’s cost drivers and inputs are uncorrelated (all pij =0
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£ is the percent standard error of the CER, a RV, £ = N(1,0.3)

This CER has two cost drivers that are random variables (X; and X,) and a CER standard
percent error, &. We will split the problem into pieces; one piece will be the term f(x) =
aX,”X,°, and the other will be the error term, ¢.

Remember, when s = 2, we are calculating the first moment (mean) and when s = 3 we
are calculating the second raw moment (i.e., about the origin) and have to correct for the
mean to get the second moment about the mean.

To solve this problem, we will follow these steps:

1. Find the appropriate Mellin transforms of a PDF (Equation 6-6)

2. Calculate the Mellin transforms for each operation as shown in Table 6-1 and
Table 6-2.

3. Determine the mean and sigma values from the Mellin transform

In the first step, we need to find the Mellin transform of f(x) and & for orders s = 2 and
s = 3, then apply the rule from multiplying RVs f(x) and .

Let us begin with defining M [f(x); s] for X;, which is a triangular distribution, so:

M[X; ;5] = M[T(L,M,H);s] =

2 {H(HS—M’) _ L(MS—LS)}
[(H-L)s(s+1)] L (H—M) (M-L)

We must now find M [f (x); 2]and M[f (x); 3], where f(x) = aX,’X,¢. From Table 6-2,

M[f(x); s] = a® DMy, (bs — b + )My, (cs — ¢ + 1), where b=0.95 and c=0.6
MIf(x); s] = a® DMy, (0.95s — 0.95 + 1)My, (0.65s — 0.6 + 1)
M[f(x); s]= a®~D My, (0.95s + 0.05) My, (0.65 + 0.4)

H(H(1.95) _M(l.gs))

= = - 2 =)
For s = 2, My, (0.955 + 0.05) = My, (1.95) = R )
(M-L)
. — 2 15(15195-10195)  9(10195-9195))
MX, ;1951 = [(15—9)(1.95)(2.95)]{ 5-10) (10-9) } = 10035

Using the same formula, for order s = 2.95,
M[X, ;2.95] = M[T(9,10,15); 2.95] = 101.911.

Since My, (0.65 + 0.4), we have to find M'[X;; 1.6], and M'[X;; 2.2]. X, is a PDF defined
by a triangular distribution, T'(30,40,60), so

M[X,; 1.6] = M[T(30,40,60); 1.6] = 9.572, and M[X,;2.2] = M[T(30,40,60); 2.2] =
92.312.
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Now we can multiply the terms to find M[f{(x); 2]and M [f(x); 3]

M[f(x); 2] = aWMy, (1.05)My,(1.6) = (0.1)(10.035 )(101.911) = 9.606 , and
M[f(x); 3] = a@My, (3)My, (3) = (0.01)(9.572)(92.312) = 94.076.

The mean and sigma of f(x) are:

B = M[f(x); 2] = 9.606,
Var(f(x)) = MIF(x); 3]- (MIF(x); 21)? = 94.076 — (9.606)* = 1.8089, and

Of) = /Var(f(x)) = +/1.8089 = 1.345.

Finally, we have to calculate the Mellin transformation of £ to complete our example
problem. Unfortunately, the Mellin transform for a normal distribution is not defined over
the entire range, only from 0 to +co (i.e., non-negative values), so we must find a way to
overcome this limitation. But fortunately, we already know the mean and sigma of &£ and
can “back out” M (g; 2) and M (¢; 3).

We already know the mean and sigma of € by its definition as the multiplicative standard
error, N(1,0.3). Given this information,

M(e;2) =y, =1.0,and
Mle; 3] =Var(e) + (M[g,2])? = 6.2+ .2 = (1%) + (0.3%) = 1.09.

From Table 6-2, M'[Y¢; s] = M[Y;s]M[s; 5], so:

MIY; 2] = M[f(x); 21M[e; 2] = (9.606)(1) = 9.606, and
MIY; 3] = M[f(x); 3]M[e; 3] = (94.076)(1.09) = 102.543.

The exact mean and sigma values are:

Hrey = MI[Y;2] =9.606,

Ovey = JM[Y; 3]- (M[Y, 2])? = /102,543 — (9.606)2 = +/10.276 = 3.206.

The mean and standard deviation from a 100,000-trial statistical simulation using the
parameters specified in Equation 6-7 result in:

ﬁ(yg) = 9,60 ’ and 6'(y£) = 3,19

Since the Mellin transform method provides the exact value, the differences are due to
simulation errors. Indeed, a dump of the trial values for X4, X,, and & followed by a
calculation of their inter-element correlations reveals that p # I (i.e., the correlation matrix
does not equal the identity matrix) as shown in Table 6-3. This means some of the error in
the simulation is due to its inability to sample (un)correlated random variables.
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Table 6-3 Correlation Coefficients from 100,000-Trial Statistical Simulation

& X, X,

£ 1.0000 -0.0031 -0.0111
X1 | -0.0031 1.0000 -0.0038
X, [-0.0111 -0.0038 1.0000
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7 Propagation of Errors
Cost analysts often need to find the moments of the product of two uncorrelated random
independent variables such as a CER and its percent error.*’ For example,

Y = f(x)¢g; where

x is a random variable describing the input (e.g., weight)
f(x) is an estimating relationship with x as an independent variable
€ is a random variable describing the estimating error

The “Propagation of Errors” method allows us to calculate the mean and sigma values of
the product of two uncorrelated random variables A and B.* Proof of this is provided in
Appendix C — Derivations.

Hap = Hallp 7-1
0an =  (U405)? + (G45)? + (0405)? 7-2

For our example problem, we will break the CER and its error into two parts, A and B,
where A = f(x) and B = &. In this case,

laB = He(x)le 7-3
7-4

Oap = J (rwre)” + (orcome)” + (o)

Since the multiplicative error has a mean, i, = 1, and the standard deviation of the error is
predefined, the equation reduces to

Hap = Hr(x) 7-5

7-6
a1n = (1o + (ar)” + (Grces)’

Previously, we showed how to statistically sum random variables using FRISK. Now we
will show how to perform other operations such as multiplying random variables. This
type of operation is particularly necessary when we need to calculate the uncertainty of
CERs that have multiplicative standard errors. The propagation of errors allows us to do
this in a clean, straightforward manner.

“7 The random variables representing a CER and its multiplicative error should be uncorrelated.
8 Engineering Statistics Handbook, National Institute of Standards, Section 2.5.5
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Propagation of Errors Example

For our example, we will estimate the y, o and 70% percentile of total cost using the three
point estimates (originally from the FRISK example from Book (1994) in Table 4-5) and
estimating errors in Table 7-1. In this example, estimates are random variables defined by
triangular distributions, and CER errors are either normal or lognormal random variables
with g, = 1.

Table 7-1 Propagation of Errors Example

WBS Element, i Estimate, f(x); CER Error, &;
Antenna T{191,380,1151) N(1,0.20)
Electronics T(96,192,582) L{1,0.31)
Platform T(33,76,143) L{1,0.40)
Facilities T(9,18,27) N(1,0.20)
Power Distribution T{77,154,465) N({1,0.35)
Computers T(30,58,86} N(1,0.30)
Environmental Control T(11,22,66) L{1,0.30)
Communications T(58,120,182) N{1,0.30)
Software T{120,230,691}) L{1,0.30)

To demonstrate this method, we will perform an example calculation using the first WBS
element. The Antenna WBS element CER is defined by a triangular distribution,
T(191,380,1151). Using the calculations from our FRISK example in Table 4-5,
Urxy, = 574, and op(xy, = 207.62 . The Antenna CER has a standard error, £, defined by

a normal distribution, N(1,0.20), so p,, =1, and o, = 0.2. Using the propagation of
errors equations (7-5 and 7-6),

Hag = Hf(x), e, = (574)(1) = 574

Oap = Of e, =V [(B72)(0.2)] + [( 207.62)(D]Z + [( 207.62)(0.2)]2 =
V114812 + [207.62]2 + [41.52]% = v13179.04 + 43106.06 + 1724.24 = 240.85

This result is shown in Table 7-2. Completing these operations for all nine WBS elements
results in the other figures provided in this table. Note, the mean does not change between
By, and Pp(yye,, but the standard deviation o7y, is greater than gy, due to the effects
of the estimating error, d.,. Now that we have nine WBS elements expressed as random
variables with means and sigmas defined, we can use the FRISK method to statistically
sum them. Remember from Table 4-5, prorq = Xiq y(x), = 1756. We will assume a
single value for the inter-element correlations, p = 0.2, to calculate the total cost sigma,

2
Orotal = J Yroa(ora) 202520, O (e, Of (x)e; = 476.34.
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Table 7-2 Propagation of Errors Example Solution

W8S Element, i Rex)y, Stex), Oy, Riye, Ot(x)e;
Antenna 574 207.62 0.20 574 240.85
Electronics 290 105.08 0.31 290 142.07
Platform 84 22.63 0.40 84 41,51
Facilities 18 3.67 0.20 18 5.20
Power Distribution 232 83.86 0.35 232 120.37
Computers 58 11.43 0.30 58 21.10
Environmental Control 33 11.88 0.30 33 15.87
Communications 120 2531 0.30 120 44.66
Software 347 123.68 0.30 347 165.86
TOTAL (not necessarily the sum) 1756 364.93 1756 476.34
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8 Functional Correlation between WBS Elements

In Section 3.4.2 we stated that correlation can be induced by the functional relationships
among random variables in an estimating model such as a schedule network or a series of
cost estimating relationships. By definition, when an estimating relationship such as
Y = aX,"X, ¢ contains a random variable, its probability distribution (Y, a dependent
random variable) is dependent on the probability distributions of its inputs, X;, (the
independent random variables) and the estimating error, €. If the dependent variable (V) is
a positive function® of the independent variables (ie. Y = aXisz"'e), then the
independent and dependent variables will be positively correlated (i.e., 0 < pyy, < 1).
Likewise, if Y is a negative function of an independent variable, they will be negatively
correlated (i.e., —1 < py x; < 0). This type of correlation is called “functional correlation”
(Coleman & Gupta, 1994). There are many types of functional correlations, and if we are
to use MOM techniques to estimate the probabilistic costs of multiple WBS elements
(Table 8-1), it requires we have knowledge of these correlations. In this example, which
pertains to the first three CERs in Table 8-1, we are interested in the correlation between Y
and its independent variables, py x,.

Table 8-1 Functional Correlation Example Cost Model

i WBS Element, i CER, i Drivers X; &
1 Systems Engineering, Y, = 0.498%,%%¢, PMP . ();ilgz B, L{1,0.49}
Program Management ~ faTpo
Integration and Test p
Prime Mission Product oY Sum of Hardware and 0
{PMP) Software costs
2 Antenna Y, = 34.36X,,%%X,, %8¢, Aperture Diameter (m}, T(2,3,4) L(1,0.30}
Frequency {GHz) T(16,17,18)
3 Electronics Y; = 30.06X;%%¢, Frequency {GHz) T{16,17,18) L{1,0.40}
4 | Platform Yy = 26.91X,,°%X,,%%%e, | Aperture Diameter (m}, | T(2,3,4) L({1,0.38)
Number of Axes Constant=2
5 | Facilities Y, = 1.64X%%¢; Area (m?) T(18,20,22) 1(1,0.25)
6 Power Distribution Yz = 0-32X60'955 Electrical Power (W) T(1200,1425,1875) L(1,0.18})
7 | Computers Y, = 0.58X,%%¢, MFLOPS T(180,200,220) 1(1,0.31)
8 Environmental Control | ¥, = 1.94X,%%¢, Heat Load (W) T{1100,1200,1300) L(1,0.21}
9 | Communications Yy = 5.62X,%%¢, Data Rate (MBPS) T(25,30,35) L(1,0.28)
10 | Software Yio = 1.38X;0 %14 eksSLOC T(80,90,130) L(1,0.32}

Also, if two CERs are dependent on the same random variable, X, (such as CERs 2 and 3),
then those CERs will be functionally correlated to each other. Also, the common driver

* A positive fumction is one where Y increases with X.

© 2012 Covarus, LLC. All rights reserved.
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will be correlated to those CERs. We will need to know these correlations, particularly
since these variables are to be statistically summed.

Another case that is easy to envision is where one CER is a function using the sum of
multiple WBS elements as its cost driver (i.e., CER 1 in Table 8-1).>° We often refer to
these types of CERs as “cost-on-cost™ functions since the cost of one WBS element is a
function of the cost of other WBS elements (for example, a CER that estimates program
management costs and is dependent on the sum of hardware and software prime mission
product (PMP) costs). In this case, we will be interested in the correlation between the
cost-on-cost CER and each of the individual PMP costs.

These correlations are further complicated when correlated uncertainty terms are used in a
set of CERs (e.g., Y, = fo(X)e, and Y3 = f3(X)&;). This is a very complex type of
functional correlation since there are two dependencies involved.

Each of these cases involves a calculation of the correlation between different types of
relationships between random variables. We require a more formalized approach to
identifying types of functional correlations that exist in the WBS structure, or for that
matter a schedule network, and how directly the random variables are related to each other.
No less important is the “order”, or how closely related two functionally correlated random
variables are to each other. In a first order relationship, Y is clearly identified as a
function of X, such as in a CER. In a second order relationship, ¥ may be a function of
g(X) (i.e., the sum of multiple random variables), one of which may be X. The third type
of relationship is one in which two variables are correlated through functional relationships
of other variables that are correlated. Table 8-2 provides a framework for identifying the
type and order of functional correlations based on the mathematical solution to
calculating p.

Table 8-2 Formalized Types and Orders of Functional Correlations

Order 1 Order 2
Type | pPxy whereY = f(X) pxy where Y = f(g(X})
Type Il Pr., Where Y;=fi(X)and | p, , whereY; = f,(g,(X))}and
Y = £(X) Y, = f2(g2(X))
Type lll Pr.y, where Y1 = fi(X,)€q, Pr.y, WwhereY; = f1(g: (X1)€1),
Y = fo(X;) €2, Y, = f2(g2(X2)€2),
and pg, ¢, # O or py. x, * 0 and pg, ¢, # 0, 0rpx, x, #0

With the aid of this formalized framework for segregating the types of functional
correlations existing in an estimate, we can employ an organized method to find the

% CER 1 in the example model shown in Table 8-1.
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equations for the functional correlation for each type and order described above. The
method of calculating first order correlation coefficients contains the following steps:

1) Equate the correlation between two random variables in terms of Equation 4-26.
2) Determine the components of Equation 4-26.

a. Find the means of the two RVs

b. Find the variances of the two RVs

c. Find the product of the two RVs

d. Find the expectation of 2¢
3) Rewrite Equation 4-26 in terms of the components found in Steps 2a through 2d.

Second order correlation coefficients require an intermediate step whereby g(X) must be
calculated, followed by the calculations of px 4cx) and py 4¢x) for Type 1 correlations,
Py, gxy and py, goxy for Type II correlations, and py, gxye, and Py, gexye, for Type I
correlations.

Type 1I-1 Functional Correlation

In cost analysis applications, we are often faced with the problem of computing the Type I-
1 functional correlation between a CER and one of its drivers. We discussed this case
when introducing functional correlation, so we will provide a method of calculating py, v,

where Y = aX,’X, .

Following the process described above, Step 1: py y = %
1

Step 2a: E[X,] = py, , which is known since X, is a user-defined distribution

E[Y] = E[f (X1, X;)] = pr, which can be found through expectation methods or through
the use of Mellin transforms

Step 2b: Var(X;) is known since X, is a user-defined distribution

Var(Y) = (,ufae)z + (af)z + (afas)z ; where
0, is known by definition
yy was found in Step 2a
ar can be found through expectation methods or through the use of Mellin transforms

Step 2c: X, Y = (X))(aX,°X;%€) = aX,"*'X, ¢
Step 2d: E[X,Y] = E[aX,"*'X, €]

Since a is a constant and the terms X;”**, X, and ¢ are independent, then
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E[X,Y] = aE[X,"*|E[X, ]E[e]
If we can assume E[¢] = u, = 1, then E[X,Y] = aE [X1b+1]E[XZC].

The #* moment of a RV of a known distribution type (i.e., E[X*] where X is a uniform,
triangular, normal or lognormal distribution} can be calculated using Mellin transforms or
through expectation operations found in Appendix B — Expectation Operations.

Step 3: Combining the terms from steps 1 through 2d we have

_ aBlX;I(E[x,**1]-E[x,*]E[X,]) 8-1

leJ (eroe) +(ogY +(osae)’

Px.y

Equation 8-1 shows that as the magnitude of o increases, the magnitude of py , decreases.

8.1.1 Type I-1 Functional Correlation Example
For this example, we will use CER 6 from Table 8-1 to calculate the Type I-1 functional
correlation between Y, and its driver, X;. The CER Yj is defined as

Y6 = 0-3 2X60.9£6

_ E[XgYs]—E[Xg]E[¥e]

- JVar(Xe)var(Ys)
Step 2a: E[Xs] = ux,, which is found using Equation 4-1.

Following the process described above, Step 1: py,_y,

Since X, is defined by the triangular PDF, T(1200,1425,1875),

1200+1425+1875
E[Xe] = y, = ———— = 1500

E[Y,] can be found through expectation methods or through the use of Mellin transforms.
In this example, we will use expectation methods to compute E[Yg].

E[Ys] = E[0.32X,%%¢5] = 0.32E[X;*°]E[&6] , and since E[g¢] = 1, E[Y;] = 0.32E[X"?].

Since X is a triangular PDF, we must find the expectation of a triangular PDF raised to a
power, which is

K _ 2 pktz_gkiz gkt ke 2 HEHL_pghtl iz pki2
E[X ] . (H—L)(M—L){ k42 L k41 } (H—L)(H—M){ k+1 k+2 }
Substituting the parameters L, M, H and k using our example, E[Xso'g] = 721.626

So E[Y,] = (0.32)(721.626) = 230.920.
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Step 2b: Var(X,) is calculated using the square of one half of the population standard
deviation of the distributions parameters. This equates to

STDEVP(1200,1425,1875)\2

Var(Xy) = ( >

= 19687.5, s0 gx, = V19687.5 = 140.31

The variance of Y is calculated using the propagation of errors method, since the CER, fy,,
and its error are independent RVs.

2 2 2
Var(Y) = (,ufyﬁcrgs) + (afvs) + (afv5 aes) ; where
gg, = 0.18 (Table 8-1), and ey, = 230920 (found in Step 2a)

oy, can be found through expectation methods or through the use of Mellin transforms. In
6

this case, we will use the equation for the transformation of a triangular PDF from Section
4.3.3 to compute this value.

af Yg =

b 2 [ 1 M2c+2_j2c+2 LM2C+1_L2L'+1 + 1 HH2C+1_M2C+1 H26+2_M26+2] (ﬂf)z
(H-L) (M—L){ 2c+2 20+1 } (H—M){ 2c+1  2c+2 } “\b.

By substituting the coefficient b = 0.32 and the triangular distribution parameters, L, M
and H into this equation, we get Ofy, = 19.428.

So oy, = J (‘ufyﬁa'gs)z + (O'fys)z + (Ufyso'ss)z

oy, = [(230.920)(0.18)]% + [19.428]Z + [(19.428)(0.18)]? = 46.015

In Step 2c we calculate the product XYy through expansion.

XeYs = (X5)(0.32X,"%¢;) = 0.32X,1¢,

In Step 2d we calculate the expectation of this product.

E[XsYs] = E[0.32X," %26 = 0.32E[X,"°]E 6]

Since E[eg] = pg, = 1, then E[X4¥¢] = 0.32E[X¢"°).

Using the equation for the ¥" moment of a triangular distribution, we can compute E[X Y]

E[XsYs] = (0.32)(1090957.67) = 349106.45

Furthermore, the product E[X¢]E[Ys] = (1500)(230.920) = 346380.516.
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Step 3: Combining the terms from Steps 1 through 2d, we have:

__ E[XeYs]—-E[X]E[Ys] _ 349106.45—-346380.516

Pxe¥, = Oxc07 (14031)(19.428) 0.4222

Type 1-2 Functional Correlation

In this case, we wish to find the functional correlation pyy between two random variables
X; and Y where Y = f(g(X;))ey. We will assume f (W) is a CER, specifically a cost-on-
cost function of the summation, W = g(X;&;) = Y1 X;, of WBS elements where X; is
one of the summands. In this type of functional correlation, we assume W and &y are
independent random variables.

Y = (a+bWey, and W = g(X) = I}, X;
Following Step 1 of the process described above, we can express the correlation as:

_ EDGYI-EDGIEY] _ Bl (e(X)I-EIXIEL (gCr)]
Pry = Frarapyvar®  VarGVarG @)

_ E[xi(a+B[Ef, Xi] ey |-EIX{IE[(a+B[ZT, X1] ey

ox; \,Var[(a+b[z?=1xl]c)£]

Rewriting these terms, py y

In Step 2a, we must find the means of X; and Y.

E[X;] = Hy,» which is known since X; is a WBS element summand and can be calculated
using either expectation methods or through Mellin transforms.

E[Y] = E[(a + B[, X;19)&y] = E[as + b[E1-; X;1%&y]

This expression can be rewritten as:

ELY] = aE[e] + BE[(E[, X ey ]Eley] = a + BE[(E, X)°] , since E[y] = 1
1

E[(ZL, X;)¢] can be found for a lognormal PDF since E [X k] = e(kp"'iqzkz)

In Step 2b, we find the variances of X; and Y.

Var(X;) is assumed to be known, and Var(Y) is calculated using the propagation of errors
method.

In Step 2¢, we find the product X;Y through expansion.
X;Y = Xi(a + ch)Ey = aX;ey + inWCEY = aX;ey + bEyXiG%LlXi)c

We must move X;into the summation, Y. ; X; &;, which results in:
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1 c 11+ €
X,Y = aX;sy + bey (T, XieX;) = aXiey + bey (T Xi[l"'E])
Now we have separable terms from which to compute the expectation.

In Step 2d, the expectation is E[X;Y] = aX;ey + bey ( ?=1Xi[1+%])c. In the next step, we
face a conundrum. We already assume that £, and W are independent RVs as a condition
of the regression of the CER, f(W). We may also assume X; contains some multiplicative
error, &, so that that error must be independent of f(W)and &,. In practice, however, this
case is not always true, since sample correlations do exist between ¢ and &. We must
assume that independence overrides this situation and that X;, &y and &; are all independent
RVs. Given this, the expectation can be reduced to:

E[X,Y] = aE[X,JEle,] + bE[e1E |(Shs Xi[1+%])c] , and since E[g,] = 1,

[
E[X,Y] = apty, + BE [():?=1Xi[1+?1:]) ] which is solvable knowing ():g;lxi[“%]) is
lognormally distributed and that E[XX] = e(*32%*),

Since E[X;] = -y, and E[Y] = a + BE[(Z, X;)€], the product of the expectations of X;
and ¥ is EDXIE[Y] = sy (@ -+ BEICERy X)°T) = any, + biuy E[(TR X)°]

The term E[X;Y] — E[X;]E[Y] is reduced to
E[X;Y] - EGIEY] = apx, + BE| n,x[d) | - e, ~ buy ELCER, X0°)

ELY] - EDXEY] = b {E (2 X 4) | -y BIGE 071}

In step 3, we find the functional correlation pyy by combining terms into the expression
found in Step 1.

H 1x,[ c] -‘uxE[(zl_lxI)':]}
JVar(Xpyvar(n)

8.2.1 Type I-2 Functional Correlation Example
In this example, we show how to find the functional correlation between CERs 1 and
2, py, v,, in our example model. CER 1 is a cost-on-cost function of the summation of
WBS elements 2 through 10 (i.e., W = Y10, ¥;) , where the cost of WBS element 2 (i.e.,
Y,) is one of the summands. The CERs are:
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Y; = (04981, ¥:)*)e;, and ¥y = (34.36X5,°°X,,"8)€,, where
g and &pare multiplicative errors of the CERs defined by L(1,0.45) and L(1,0.3),
respectively.

In this type of functional correlation, we assume W (the sum of Y;) and &; are independent
lognormal RVs. Following Step 1 of the process described above, we can express the
correlation between CERs 1 and 2 as:

_ EMY]-E[V]E[¥]

Prir, = Jvar(¥)/Var(r)
Substituting the functional forms of CERs 1 and 2 into these terms results in:

_ E[YZ{I’ (Zi22 W)c}eY 1]'E[Y2] E[{b (Zi2 W)c}eYi]
Pry, =

0y, 075

8.2.1.1 Means of Correlated Random Variables
In Step 2a, we find E[Y;] and E[Y,], which are the means of WBS elements 1 and 2.

E[Y,] = uy,, which is calculated using expectation methods, is
E[Y,] = E[(34.36X,,%°X,,%%) e, | = 34.36E[X,,°°|E[ X2, %]

From the previous example, we calculated E[Y,] using the product of k** expectation of
the triangularly distributed independent variables X,;and X,;. The result is repeated here.

E[Y;] = (34.36)(1.728)(9.646) = 572.706

Using this method for the remaining CERs in WBS elements 3 to 10 by substituting their
respective PDFs and CER coefficients, we can calculate their means. We sum the means
of CERs 2 through 10 to get the mean of their sum, since E[}, ¥;] = ¥, E[Y;]. These results
are shown in Table 8-3.

Table 8-3 Means of CERs of WBS Elements 2 through 10

CER, b, My, By, Hy,
2 34.360 1.728 9.646 572.706
3 30.060 9.646 - 289.953
4 26.910 1.728 1.803 83.816
5 1.640 10.984 - 13.014
6 0.320 | 721.626 - 230.920
7 0.580 | 100.428 - 58.248
8 1.940 17.046 - 33.068
9 5.620 21.346 - 119.965
10 1.380 | 251.536 - 347.120

SUM - - - 1753.813
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The mean of CER 1 is defined as E[Y;] = E[(B(Z1, ¥)))ey, | = BE[(W€)ey, |, where W is
the RV of the sum of WBS elements 2 through 10.

This expression can be rewritten as E[Y; ] = bE[Wc]E[Eyl] = bE[W€] , since E[£y1] =1.

We can also assume that the sum, W, represents a lognormal distribution with the
parameters Py, and @y, that define W’s underlying normal distribution. Py and Q are
dependent on both the mean and variance of W (i.e., uy, and ay,2).

The term E[W*€] can be found for a lognormal PDF since E[W*¢] = e(cpw-l—:szcz)’ but Py,
and @y are functions of uy, and g,,. We must complete Step 2b in order to compute the
values of the following: oy,, for each Y;; uy and oy; Py and Qy; E[W€] and oyyc; and,
finally E[Y;] and oy, .

8.2.1.2 Standard Deviations of Correlated Random Variables
Each oy, for CERs 2 through 10 is calculated using the propagation of errors method. They
are reported as oy, in Table 8-4.

Table 8-4 Means and Standard Deviations of CERs of WBS Elements 2 through 10

CERI| b Pxiy Pxy, Hy, O Oxia Oxy, Or(xy) Oy,
2 | 34.360 1.728 | 9.646 572.706 03| 0.1186 | 0.1853 40.8333 177.0219
3| 30.060 9.646 - 289.953 0.4 | 0.1853 - 5.5711 116.1364
4 | 26.910 1.728 | 1.803 83.816 0.38 | 0.1186 | 0.0001 5.7539 32.4396
5 1.640 10.984 - 18.014 0.25 | 0.3589 - 0.5885 4.5442
6| 0320 721626 - 230.920 0.18 | 60.7123 - 19.4279 46.0150
7| 0580 | 100428 - 58.248 0.31| 3.5677 - 2.0692 18.1865
3 1.940 17.046 - 33.068 0.21 | 0.2321 - 0.4503 6.9596
9| 5.620 21.346 - 119.965 0.28 | 1.3077 - 7.3494 34.4464
10 1.380 | 251.536 - 347.120 0.32 | 32.7041 - 45.1317 120.7638
w - - - | 1753.813 - - - 331.911

We find z, in Table 8-3. The standard deviation of W is found through linear algebra using
the relationship gy, = /6y” pyoy. In this relationship, oy is the vector of ogyfor2<i<

10, oy T is the transpose of that vector, and py is the functional correlation between CERs
of WBS clements 2 through 10. The matrix py is a 9x9 element sub-matrix of the entire
10x10 functional correlation matrix. In this case, we need the lower 9 rows and columns
to calculate the first row and first column of the full 10x10 matrix.

In our example, all elements of py are Type III-1 or Type II-1 functional correlations, for
which we provide examples in other parts of this section.
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1 0.1969 0.2309 0.1924 0.1753 0.1927 01937 0.1893 0.17857
0.1969 1 01961 0.1979 0.1804 0.1983 0.1993 0.1948 0.1837
0.2309 0.1961 1 0.1946 01774 0.1950 0.1959 0.1915 0.1806
0.1924 0.1979 0.1946 1 01790 0.1968 0.1978 0.1933 0.1823
Py =|0.1753 0.1804 0.1774 0.1790 1 01794 0.1803 0.1762 0.1662
0.1927 0.1983 0.1950 0.1968 0.1794 1 0.1981 0.1936 0.1827
0.1937 0.1993 0.1959 0.1978 0.1803 0.1981 1 0.1946 0.1836
0.1893 0.1948 0.1915 0.1933 0.1762 0.1936 0.1946 1 0.1794
-0.1785 0.1837 0.1806 0.1823 0.1662 0.1827 0.1836 0.1794 1 -

Knowing the values of the 1x9 vector oy and the 9x9 matrix py , the standard deviation of
W is calculated through the linear algebraic relationship oy = /6y pyoy = 331.911.

Using uy, = 1753.813 and oy = 331.911, we can calculate Py, and Qy,, where:

I S G Y - w2\ _
Py =3in (EC—) = 7452, and Qy = /ln (1+22) = 0.18s.

Now that the parameters of the underlying normal distribution of W are known, we can
calculate values of E[W*] and subsequently E[Y; ] and oy, .

Firse, E[°] = e(e2730°) = (@045 (0901007)

bE[W€], then

= 829.654, and since E[Y;] =

E[Y;] = uy, = py,, = (0.498)(829.654) = 413.168.

We can express Y; as ¥; = (b(2 12, Y))ey, = (BWF)ey, = fu, &y,. Since we need to find
dy,, and it is formed by the product of f;, and its multiplicative error, we must first find
Of . then account for the multiplicative error. Since W is exponentiated by the
coefficient, ¢, we must calculate the standard deviation of fy, using W’s underlying

normal distribution (defined by Py, and Qy), then find the log transformation of the scaled
normal distribution. From this process, we obtain:

Of . = b J e(ZCPw%[CQW]")(e[cQW]Z _ 1) = (0.498) Je(z(0.9)(7.45z)+(o.5)[(o.9)(0.188)]2) (e[(0.9)(0.188)]z — 1)’ SO
1

oy, = 69.756.

Using the propagation of errors method, we can compute oy, knowing u Fury? Oy and g, .

Oy, = J(pfwia'ei)z + (afw1)2 + (afw1a'£1)z = 201.046.
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8.2.1.3 Expectation of Product of Correlated Random Variables
Our work is not complete since we still need to calculate the numerator of the correlation
equation in Step 1.

In Step 2c, we find the product ¥, ¥, to be V¥, = Y, (b(512, Y,)%)«,.
1, €
Moving the RV Y, into the summation results in ¥;Y, = b ( 10 YiYZE) £.

1\ €
In Step 2d, the expectation of the product Y;Y; is E[\;Y,] = E [b (21_2 YYZE) 81], which

reduces to E[Y;Y,] = bE[&]E [ 2, Y.Y,e ) ]

[
Since E[g,] = 1, we can further reduce this to E[Y; ¥,] = bE [( 10, Yin%) ] = bE[V*].

This is solvable knowing the following: the means and variances of the products, V; =
1
Y;Y,¢, are calculable; the products can be summed to form the random variable, V, where

. . (cPU+lecz)
V = ¥ V;; and the term V is lognormally distributed, so E[V] = e 2°U" /,

1
We start with calculating the moments of the product Y;Y,c. As an example, we will set

1
i =3 and find the mean and variance of V3 = Y3Y,c. Using the method described in
Section 5.3, we define the lognormal RVs, Y, and Y3, using the normally distributed RVs,
Z, and Z;.

V, = YBYZ% = o{Z+Z;/c)

1 1 1
Py =Pz, + ;Pzz and Qf = Q%s + ZPzz,z3;szQz3 +C—ZQ§2, where

In

1 2 2
= 1+ ( e —1 est—l)
pZz,Z3 Q22Q23 pYz,Y3

Using Equations 4-5 and 4-6 with values for yy,, ov,, gty,, and gy, from Table 8-4, we

obtain:
_1 by, * 1 (572.706)*
B, = 2 in (Hyzz+0'](2 ) n ((572 706)2+(177. 022)2) 6.305,
(177.022)2 _
\ll 1 + \ll (572.706)2) = 0302,

_ My, _1 (289.953)* _
P =m (—3) =2m( ) = 5595,

32 Uy, 2+0y,2 (289.953)2+(116.136)2
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ava (116.136)2Y _ . ,
\Iln 1 + \ll 1 + (289953)2) = 0.386, and the correlation between this

pair of normal RVs is calculated as;

1 2 2
Pzz = o g I [1 + Pry, (V e% — 1\1"’% - 1)]

Przs = 3o 0 [1 + (01960 (Ve©302 — 103897 —1)] = 0.2067

1
So the new distribution formed by the product Y;¥,c has an underlying normal
distribution, U5, where:
1 1

Py, =Pz + ;Pzz = 5.595 +E6'305 = 12.601, and

3 _ nz 1 1 _ 2 1 0.302\2 _
0%, = 03, + 20z,7,> 02,0z, += 03, = (0.386)? + 2(0.2067) - (0.386)(0.302) + (22) =
0.315

Then, the mean and variance of V; are found by transforming U; back to a lognormal
distribution, V3.

1
8(12.5014—2(0.315))

1
ty, = elPus*30h) = = 347348.652, and

oy, = J e(zpug+§of,3) (3053 — 1) = J e(2(12.601)+(0.5)(0315) (0315 — 1) = 1.953F + 05.

We need to repeat this procedure for all V;, so after computing the remaining V; terms, we
obtain the results in Table 8-5.

Since V is to be exponentiated, we will need to find both its mean () and standard
deviation ( o) in order to perform the exponentiation. The mean of V, uy, is the sum of
the elements Hy,s which is 2145735.39.

Table 8-5 Calculation of V; Distribution Parameters

i Ky, Oy, Pz, Qz | Pzz Py, Qu, Ry, Oy,
2| 572,706 | 177.022 | 6305 | 0.302 | 1.0000 | 13.310 | 0.638 | 739228.715 | 4.730E+05
3 289.953 | 116.136 | 5.595 | 0.386 | 0.2067 | 12.601 | 0.561 | 347348.652 | 1.953E+05
4 83816 | 32440 | 4359 | 0.374 | 0.2414 | 11.364 | 0.559 | 100760.716 | 5.647E+04
5 18,014 4544 | 2.860 | 0.248 | 0.1984 9.866 | 0.455 21360.402 | 9.737E+03
6 230.920 46.015 | 5423 | 0.197 | 0.1802 | 12,428 | 0.419 | 272559.191 | 1.142E+05
7 58.248 18.186 | 4.018 | 0.305 | 0.2000 | 11.023 | 0.497 69341.165 | 3.448E+04
8 33.068 6.960 | 3.477 | 0.208 | 0.1991 | 10.482 | 0.429 39108.488 | 1.678E+04
9 119.965 34.446 | 4.748 | 0.281 | 0.1959 | 11.753 | 0.478 | 142530.987 | 6.827E+04
10| 347.120 | 120.764 | 5.793 | 0.338 | 0.1863 | 12.798 | 0.519 | 413497.078 | 2.145E+05
hX 1753.813 | 331.911 - - - - - | 2145735.39 -
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The standard deviation of V, oy, is calculated through the linear algebraic relationship,

oy = +JoyT pyoy. To find this quantity, we need to know the values of the 9x9 correlation
matrix py, whose elements are py . = Py Moy jy, e This correlation matrix is formed

by computing the individual 9x9 elements as follows:

1 1 2
E[(Y,;YzC)(YjYzc)]—E[V,;]E[Vj] E[YinYz"]—#viﬂv,-

oy, ov; oy, ov;

pyiyz 1/c;YjYz 1/e =

Fortunately, we have already calculated the values of uy,and oy, (thus py, and oy as well)
2
in Table 8-5, but we need to know E [YJ}YZE] in order to find Py v, /ey e and complete

the calculation of g, = / ay” pyoy.

F4
The term E [YE]G-YZE] is calculated through the triple product of lognormal RVs with one

RV (Y;) raised to a power — a task that is non-trivial but essential. Fortunately, we can
solve this problem using our knowledge of the expectations of products of lognormal RVs.
The triple product is formed by summing the parameters P and Q of the underlying normal

2
distributions of Y;, Y}, and Y5, then transforming this sum back to a lognormal distribution

2
representing Y;Y;Yoe.

2
We represent the variable of the triple product of V.Y, andY,c as a lognormal
distribution, T ; ;, with the underlying normal distribution S;;; such thatT,;; = eS2ii,

83,17 is defined by mean Ps,;; and variance Qsz,i,,-z which are:
2
Psz,i,j = Pzi + sz +EPZZ’ and

2 _
Qsz,i,j -

inz + szz + (% sz)z +2 {Pzi,zj Qz,Qz; + Pz,2,0z, (% sz) +Pz,2,0z; (% sz)}, where

2
1+ pr,y, (J e%i — 1J % - 1)]

For one of the elements where i =3 and j = 4, P, ., = Pz, + P, + %Pzz, which becomes

—_ ; In
pzi'zj Qz ] Qz f

2
Ps,,, = 5.595 + 4.359 + —6.305 = 23.965.

The correlation coefficient of the normal distributions Z;and Z,is a transformation of
Py, v, which has already been calculated.

82
© 2012 Covarus, LLC. All rights reserved.



ANALYTIC METHOD FOR RISK ANALYSIS

N /oz_)_;
1+PY3.Y4( evss —1je*% —1 _(0.386)(0.374-)ln [1+

(0.1961)(/e(0386)2 _ 1,fg (03742 _ 1)] = 0.2078

= In
Pz5.2, Qz;0z,

We obtain py, ; and pz, ;, similarly.

Jo0Z _ ’Qz_)_;
1+PY2.Y3( ez —1je*s 1)1 = (0.302)(0.386) In [1+

(0.1969)(/e©3022 _ 1,/ (0:386)% _ 1)] = 0.2067

[,QZ, _ /QZ_)__;
1+PY2.Y4( evz —1je™ —1)| = (0.302)(0.374) In [1+

(0.2309)(/e©3022 — 1,f¢(0374)% _ 1)] = 0.2414

=—' In
p22,23 QZZ Qz 3

—_ ; In
pZZ,Z4 QZZ QZ4.

Using the values of Qg,, Qz,, Qz,, £z,z,> Pz,z, a0d Pz, z, We can get the parameters of
S234-

2 _
Qsz.3,4 -

stz + Qz.,2 + (% sz)z + 2 {Pza,z.,st Qz, + Pz,.7,0z, (% sz) +pz,2,0z, (% sz)}

2
Qs,,.2 = (0.386)% + (0.374)% + (%) +2{(0.2078)(0.386)(0.374) +
2(0.302) 2(0.302)\] _
(0.2067)(0.386) (T) + (0.2414)(0.374) (T)} = 1.027

2 1 2
The mean of T ; ; (also known as E [Yilf,-YzF]), is Bry; = e(Psz-ifJ’zQ‘z-iJ )

1
So in the case where i =3 and j =4, pr,., = e(Ps23473052347) = ¢(23.965+(05)(1.027))

which is E[Ty34] = ur,,, = 42744227758,

2
EI:Y3Y4YZGI_#V3#V4
Now we can calculate py, y 1/cy 3 1/c = B — which is
__ 42744227758—(347348.652)(100760.716) __ 0.5989

A A (1.953E-+05) (5.647E+04)

This process must be repeated for all i, j to compute py as:
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1 0.7036 0.7264 0.8180 0.8609 07682 08543 0.7877 0.73517
0.7036 1 05989 0.6578 0.6761 0.6292 0.6779 0.6394 0.6039
0.7264 0.5989 1 0.6704 0.6909 0.6401 0.6919 0.6510 0.6141
0.8180 0.6578 0.6704 1 0.7702 07067 07695 0.7203 0.6776
Py =]0.8609 0.6761 0.6%09 0.7702 1 0.7297 07992 07450 0.6993
0.7682 0.6292 0.6401 0.7067 0.7297 1 0.7302 0.6858 0.6462
0.8543 0.6779 0.6919 0.7695 0.7992 0.7302 1 0.7450 0.6999
0.7877 0.6394 0.6510 0.7203 0.7450 0.6858 0.7450 1 0.6577
-0.7351 0.6039 0.6141 0.6776 0.6993 0.6462 0.6999 0.6577 1 -

Performing the calculation, gy = +/ayT pyoy = 1137353.64.

Since we know uy and oy, we can calculate the parameters of the underlying normal
distribution P; and Q@ so we can calculate E[Y; Y5 ].

¢ 2
bE[Y; ;] = bE [(£1%, 1tit) | = BEIV<] = be(Putier™’) =

(0.9)(14.46)+%((0.9)(0.498))2)

(0.498)6( = 245930

8.2.1.4 Computing the Type I-2 Functional Correlation
In step 3, we find the functional correlation py, vy, by combining terms into the expression

found in Step 1.

_ Elv;%]-E[v1]E[Yz] _ 245930—(413.17)(572.71)

Prv = Fareovar() | (201.05)(177.02)

8.3 Type lI-1 Functional Correlation
In this case, we have two CERs Y¥; and Y, expressed as functions of the same random
variable, X.

= 0.2614

Y, = fiX)¢g = (a; + bjX )¢ ; where 8-2
a;, b;, and ¢; are coefficients of the CERs with (Var(-) = 0),

g; are multiplicative errors of the CERs with g, =1, and a

given value of g,

Prie; = 0, since CERs and their errors are assumed to be
independent.

We can find the Type II-1 functional correlation between these CERs since they share a
common variable, X, The correlation between these two CERs is py, v, , and based from
Step 1.

COV(Y]_ ,Yz) 8'3
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Clearly, we will need to find the formulae for Cov(Y;,Y,) andVar(¥;) to find py, v, .
Using Equation 7-6 from the propagation of errors method, the standard deviation of

Yiis oy, = JVar(Y;) , where (¥;) = (,uflasi)z + (uaiafl)z + (afiagl)z .

IfY; and Y, are CERs with multiplicative errors, then p;, = 1 and we know g, from the
percent standard error of the CER. Var(Y;) reduces to:

Var(¥)) = (#fia-‘—'i)z + (afi)z + (afia&'i)z 84

The terms py, o5, are computed from Equations 4-28 and 4-29 as follows:

Hr = @ + biE[XCl] 8-5
! 8-6

Oy, = b2Var(Xc) = b [Var(X<)

Var(%) = o2 (ai® + 2hE[X] + b2 E[X]? + 8-7

bi*Var(X ‘i)) + b2Var(X<)

Using the results from Section 4.3.3 and assuming X is a triangular distribution, X =
T(L,M,H), then:

0p =

b 2 1 M2C1+2 _LzCl+2 MzCl+1_LZCI+1 1 HZCl+1_MZCi+1 H2C1+2 M2C1+2 ”‘f —ay
- -L J+ G -y
W -1 [(M—L) { 2¢;+2 2ci+1 (H-M) 2¢+1 2¢+2

We need to calculate yy.and oy, .
ﬂyi = E[Yl] = E[fisi] = ﬂfiﬂei + Pfi,eia'fia'si
Since g, = 1 and py, ., 05,0, = 0, then py, = ly,.

The standard deviation of ¥; is calculated using the propagation of errors method:

Oy; = \lafiz +05%1s? + 05, 20,7 , and py, = uppg

The Type II-1 correlation between the CERs is:

Py Cov(¥1.Yz) _ _Cov(h¥z) _ EMY;]-EM]E[Y;] _ ElV1Yz]- gy, v,
Yz JVar(Yl)JVar(Yz) J oy, Ja.Yz Oy, Oy, Oy, Oy,
E[Y1Y2]_ Hy, Ky,
Pr,yv, =

2 2 2 2 2 2
i=1(\’dfi +g£i ﬂfi +O'fi D‘Ei )
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Using Step 2c¢,

1Y, = [(ay + bix)g ][(a; + bx2)e;] = (5101 + £1b1x) (£2a; + £20,x2)
Multiplication of terms produces:

V.Y, = a,036,8; + a1 by618,X°2 + ay b€, 82x°1 + £,6,b, byxC1x%2

Calculating the expectation of the terms in Step 2d:

E[Y;Y>] = E[a,a,&.8;] + E[abyg,85x°2] + E[aybye18,x1] + E[g16,b1 byx€1x¢2]
Separating constant scaling terms:

E[Y;Y:] = aya,E[e185] + a1 b, E[e165x°2] + ay b E[e,6,x1] + b b, E[e,6,x€1x€2]

Expectations with the product [&, &,] appear consistently, so we will define the product as
w, such that

E[e 8] = Elw] = pe Ue, + e ,00,0e, = 1 + Pg ¢, 0¢, O¢,, Which is a constant defined by
the CER.

So, E[V1Y3] = a,a,E[w] + a1 b, E[wx®2] + a,b, E[wxc] + by b, E[wx1te2].

We need to find E[wx*| = p,, ,x0,0,x + E[w] E[x].

Assume p,, ,k0,0,k = 0, 50 E[wx*] = (1 + pe, .,0.,0;,) E[x"] and

E[Y,Y.] = a,a,E[w] + a,b,E[w] E[x2] + a,b; E[w] E[x1] + b, b,E[w] E[x1¢2]
E[",Y;] = E[w](a,a; + a b, E[x2] + a,by E[x1] + by b, E[x17%2])

E[Y,Y;] = (1 + pe, 2,0, 06, ) (@105 + a1 b, E[x°2] + a,by E[x°1] + b, b, E[x1*¢2])

And we know E[w] = ( 1+ 981,820'510'82) and

2 {Mk+2_Lk+2 L Mk+1_Lk+1} 2 { H.k+1_M.k+1 Hk+2_Mk+2}

(H-L)(M—L) - (H—L)(H—M) k+1 K+2

Elx"] = w2 =

We can solve E[x¢], E[x°2], and E[x¢*°2] using formulas for E [xk] and substituting k
for ¢;,¢5,¢1+¢c,. Formulas for E[XX] for different distribution types are located in
Appendix A — Probability Distributions.

So if X is defined by a triangular distribution, then we have the following for Step 3:
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_ ( 1+p£1_£26810'22)(a1a2+a1b2 E[xc2]+a.zb1 E[x°1]+b1bz E[xcl"'cz])— Bry Bfy
Prvs MTey{ Jof2+ae 2us2+as20g 2
=1\ [Of; T Hfi"TTf;" g

Of course, not every function will have the form, ¥; = fi(x)g = (a; + b;jx%)g;, so we will
consider three simplified cases.

Case 1: ifc; = 1,and ¢, = 1then Y; = (q; + bix)g

Py _ ( 1+P£1.£2‘7810'52)(111‘12"'#::[“11’2 +azby | +b1bs E[x?])- Hpy B,
1Yz —
Hf=1(Jaflz+o'£izufiz+o'fizo-€iz)

Case 2: ifa; = 0, and a, = O then ¥; = b;xtig;

- — ( 1+p£1.£2 661 dEz)(ble E[x01+62])_ y’f]_ "’fz
! 11.,¥2
]'[§=1( ’crfi2+a'gi2yfi2+crfizagi2)

Special Case 3: if a; =0, and a; = 0; and o, = 0 and 6, = 0; then ¥; = b;xi, which
is the case from Garvey (2000).%!

_ (babz E[x1*42])- iy, 5,
Priy, =
172 9f1%f2

8.3.1 Common Predecessor Functional Correlation
In the case of a schedule network with parallel tasks, we are faced with the situation
whereby we must compute the functional correlation between two tasks T1 and T2 that
have the same predecessor, P, that has a finish date Fp. Assume the durations of T1 and
T2 (D, and D3, respectively) are correlated by pp p,. The start dates of T1 and T2 are Fy
and F; respectively. The finish dates of T1 and T2 are F; = Fp + D, and F; = Fp + D;.

The resulting standard deviations of the finish dates are op, = ’F PZ +D12 and op, =

IFPZ + D,2.

Using Step 1, the correlation between F; and F; is expressed mathematically as:

_ ElRF|-BIR]E|F]
PR, F, =

O'Fld'pz
Step 2a: if ug, = pp, + pp, and gp, = pp, + pp, , then

— 2
P’F']_MFZ - 'u'Fp + 'u'FpP'Dz +P'Fp‘uD1 + 'u'D1‘uD2 +pD1,D20-D10-D2’

! Garvey, P. R. (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineering
Perspective. New York, NY: Marcel Dekker.
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Step 2b: the standard deviations of F, and F; are

Op, = ’O'FPZ +0p,2 andof, = ’G'FPZ +ap,2.

Step 2c: The first expectation term requires expansion of the product F; F,, which is
F1Fy = (Fp + D)(Fp + D3) = Fp? + FpD3 + FpDy + DD,

Step 2d: then the product moment is

E[FF] = E[FPZ] + E[Fp]E[D;] + E[Fp]E[D,] + E[D,D;]

Since E[Fp?] = pp,2 + 05,2,

E[RF,] = pp,? + 07,2 + g, lip, + Urpbip, + ip, Bp, + Pp,.p,D, 0D,

Step 3: the correlation between the two finish dates is then

PFF;
_ Hrp? + 0p,% + pplip, + Heplip, + Bp, b, + Pp,p,0p,0D, — Hrp> — Hrpltn, — krpip, — Hp, M,

OF, OF,

Through cancellation of terms, we arrive at Equation 8-8 - a useful relationship in schedule
uncertainty analysis.

OFp>+PD1,D20D,1 0D, 8-8

pF:L,Fz = 3
’Jsz‘l'UD]_z 'UFP2+UDZZ

8.3.2 Type lI-1 Functional Correlation Example
For this example we will calculate the functional correlation between two CERs (Y,
and Y3) that share a common cost driver (X = X, = X3), which is defined as the frequency
of operation. The CERs are defined as:

Y, = 34.36X,,%°X,,%%¢, and ¥, = 30.06X,%%¢,.

They share the random variable, X, where X = T(16,17,18); and the CER uncertainties are
0, =0.3,0,, =04, and p, ., = 0.2. The other driver of CER ¥, is X;,, which is
defined by a triangular distribution T'(2,3,4).

When statistically summing these CERs in a WBS we need to find the functional
correlation, py, v, .

In the first step of the calculation process, we define the correlation between the CERs as
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_ E[Y3]-E[V]E[Y3]
Pry; = P

In Step 2a, we find the means of Y,and ¥;.

E[Y,] = 34.36E X2, |E[X25*?|E[;], and [Y5] = 30.06E[X5°8]E[e;]
Since E[g,] = 1and E[g5] = 1,

E[Y;] = 34.36E[X2,%°]|E[X2,%?], and E[¥3] = 30.06E[X5*?]

Using the relationship for the expectation of a triangular PDF raised to a power, k, and
substituting the parameters of the triangular PDF, we get

E[X5.°%] = 1.728, E[X,,%®] = 9.646, and through similarity E[X;%®] = 9.646
The means of ¥; and Y; are, therefore,

E[Y,] = (34.36)(1.728)(9.646) = 572.706, and

E[Y;] = (30.06)(9.646) = 289.953.

In Step 2b, we find the standard deviations of Y, and Y;. Using the relationship for the
variance of a triangular PDF raised to a power, k, and substituting the parameters of the
triangular PDF, we get

Var(X,,") = 001407, Var(X,,*®)} = 0.03435, and Var(X;*®) = 0.03435.

We need to combine the independent variables in CER ¥; to find Var( fxz)-

Var(fxz) =

(34.36)%[E?[ X2, ¥ |Var(X2a™®) + E2[X,,°°Var(X2,°®) + Var(X,,"* War(X2,%)]

This results in Var(fxz) = 1667.360. Combining Var(fxz) with the variance of the error
term using the propagation of errors method results in:

Var(Y;) = [Var(fy,) + E?(fx, )Var(e;) + Var(fy, )Var(e;)] = 31336.746
Similarly,
Var(Ys) = [Var(fy,) + E2(fx, )Var(es) + Var(fy, )Var(es)] = 13487.670.

oy, = v31336.746 = 177.0219 and oy, = v13487.670 = 116.136

In Step 2c, we find the product ¥>Y;, which is

89
© 2012 Covarus, LLC. All rights reserved.



ANALYTIC METHOD FOR RISK ANALYSIS

Y,Ys = (34.36X,,%5X2,%%¢,)(30.06X;%%;) = (34.36)(30.06)(X24>° ) (X2,"%) (£263)
Y,Y; = 1032.862(X5"%) (X557 (e283)
E[X,,"°] = 93.076
Following Step 2d, the expectation of this product is
E[Y,Y3] = 1032.862E[X;,°°|E[X;p ®]|E[€265], and E[e263] = 1 + p,., 1,0, O,
Using inputs and previously calculated values, this becomes
E[Y,Ys] = (1032.862)(1.728)(93.076)(1 + (0.2)(0.3)(0.4)) = 170106.250
The product E[Y,]E[Y,] is
E[Y,]E[Yz] = (572.706)(289.953) = 166058.082

Combining these values into py, y, results in

_ E[Y;¥3] —E[%;)E[¥5] _ 170106.250 —166058.082 __ 4048.168
P,y oy, 0y, (177.022)(116.136) 19959751

= 0.1969

8.3.3 Type lI-1 Functional Correlation between Multivariate Functions
What is the correlation between two CERs that have two RVs and share one RV in
common?

Y1 = fi(vwW)g = (a3 + byx1w¥)e; ,and Y, = foL{u, w)g = (@, + byx2u2)e, ;
where

a4, by, and c; are coefficients of the CERs with (Var(-) = 0),

g; are multiplicative errors of the CERs with u = 1, and

Ps.e = 0, since CERs and their errors are assumed to be independent.

— E [Yl YZ]_ H#y, Hy,

¥z Oy1 973

V1Y, = [(a; + byxrw)g][(a; + bx%2u2)g;] = (8,01 + £1b1x 1w ) (g0, +
&£,b,x2u%2)

Y,V = £,6,0,0; + £16,8,5,x2u% + £,6,a5b, X W + £, 8, b, byxC 1wt x 2yt
E[N1Y5] = a,a,E[e,6,] + E[e,61]a,b,E[x2uz] + E[e, &, |azb, E[x1w¥] +

E[e & ]b b, E[x“1wixczytz]
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E[EIEZ] = E[w] = lu'Slﬂﬁz + pﬁlﬁzdaldﬁz = 1 + p£1£20.£10-£2 2 and

E[rY,] =
E[wl{a,a, + a,b,E[x°2]E[u®2] + a,bE[x1]E[w®] + b, b, E[x 1+ E[w®]E [u®2]}

Oy; = \lafiz + 0g 2l + 07, 205% , and py, = pig,

iy, = a; + b E[xiw?1], and ps = a, + b E[x“2u]

o7, = by Var(x1wit), and oy, = by/Var(xc2utz)

Var(wfix%) = E[x*1w?%1] — (E[x1w®1])? = E[x%¢1)E[w?%] — (E[x%1]E[w®])?

af, = by E[x241]E[w?41] — (E[x“1]E[w])2

Var{(uf2w%) = E[x*2u?%] — (E[x2u%2])? = E[x?**2]E[u?32] — (E [x°2]E [u®2])?

0f, = byy/ E[x2¢2]E[u?42] — (E[x°2]E[u%2])?

Pr,yv, =
(1+p¢, 5, T, O, Ha1 @2 +a1 b, B[x°2)E[u2] +a, b, E[x1]E[w?1]+b, by E[x°1* 2| E[w?1]E[u2]}- uf, ur,

H§=1(Jafi2+agi2#fi2+afizaeiz)

If u and w are constants; and if u = 1 andw = 1, then

Pry, = (14pey e, 06, O, N1 @z +a1 b2 E[x°2](1)+az by E[x1](1)+b, b E[xC1°2] (1) (1)} wy, By,
Y2 T
]'[?=1(Jafi2+aei2ufi2+afizagi2)

Py y. = (14pey.e,0e, O, @102+, D2 E[x 2142 b1 E[xC1]+b B E[x112]}— s py,
Y2
n%=1(\ldfiz+°'€iz“fiz+°'fizd&iz)

same result as for the single variable CER cases.

Type 11-2 Functional Correlation

This type of functional correlation occurs when two nested functions share one or more
RVs in common. This occurs in a resource-loaded schedule where costs are derived from

particular task durations.

Consider a simple case of the cost of a project with three WBS elements where the total

cost is the value X,;.

Xror = X1 + X5 + X, where X is the cost of WBS element i.
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Now consider the schedule duration of the project, D, where its total duration is
Drot = Dy + D3 + Dy, where D; is the cost of task i.

We also know that the costs of WBS elements 1, 2, and 4 are their respective durations
multiplied by a rate, r;, where X; = D;r;.

Following Step 1 of the functional correlation calculation process, the correlation between
total cost and total schedule duration can be expressed as:

_ E[XTotDTot] B E[XTot]E[DTat]

PXrotDrot =

OX10t9Dr0t
In Steps 2a and 2b we calculate E[X7oc], [Drotl, 0%y, and op_, -
In Step 2¢ the product X7y:Dro: 18
XrotDrot = X1(Dy + D3 + Dy) + X5(Dy + D3 + Dy) + X4(Dy + D3 + D)
XrotDrot = X1D1 + X4D3 + X1 Dy + XD + X, D53 + XoDy + XDy + X, D3 + X, Dy,
In Step 2d, we calculate

E[XroeDrot] = pix,ttp, + bx,Up, + Hx, Hp, + Bx,Hp, t Ux,ip, T+ tx,ip, + Ux,Up, T+
Hx,Mp, T Hx Hp,

and

E[Xpot]E[Dyoe] = E[X,D,] + E[X1D;3] + E[X1D,] + E[X,D;] + E[X;D5] + E[X,D,] +
E[XyD,] + E[X,D3] + E[X4D,]

For each pair X; and D;, the term E [XiDj] = Ux;#p; + Px;p;0%,9p;

By inspection we see the only remaining terms in E[Xro:Droe] — E [X7otlE [Dror] Will be
the sum of all pairs of Px,p;0x,9p;- Let us assume for simplicity that py, D; = lfori=j

and pg,p; = 0 for i # j. This reduces the numerator of the correlation expression in Step
1to

E[X7otDrot]l — E[X70t)E[Drot] = px,0,9%,9p, + Px,,0,%%,%0,
Dividing by the product oy, .0p,,, We have

—_ Px,,0,9x, %D, + Px4,0,9%,9D,
P XtotDror —

%10t 9Drot
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Since X; = D;r;, we can reduce this correlation to a combination of rates and task durations

2 2
_ Px,,p,11%," + Px,.p,Ta0p,
P Xrot.DTor —

O%10t%Drot

We see from this example that if schedule durations in the critical path are uncorrelated,
they drop from the numerator of the expression of total cost and schedule correlation and it
becomes a sum of covariance terms.

Type 11I-1 Functional Correlation

Type II functional correlation exists between pairs of random variables such as two CERs
Y; and Y, that share a partially-dependent random variable such as their multiplicative
errors. In this case we wish to find

Py, v, » where Y, = (a; + b X,)ey, ¥; = (ap + b,X,")e; ,and p, ., # 0
The formula used to determine the correlation coefficient from Step lis

_ E[Y;Y,] — E[} ]E[Y;]
JVar(Y))Var(Y,)
_ E[(a, + b, X,")e,(a; + b,X;)e;] — El(a; + b X, )& JE[(a; + b X;%) ;]
VVar((as + by X,“)e)yVar((az + boX,%)e;)
_ E[(a, + b, X,")e1(a; + bX;)g;] — El(ay + b X, )& JE[(a; + bX,)e,]
bybyy/Var((X,*)e)y/ Var((X,%)ez)

Using Step 2a, from Equation 8-5, E[Y;] = q; + b;E[X 1]

Pxy

Step 2b, from Equation 8-6 shows, oy, = bj\/Var(X;"'g;). Since X;"! and &; are
uncorrelated, we use the propagation of errors method, which results in:

oy, = b/ [E2(X;War(g)] + [Var(X;)] + [Var(X,"Var(g;)]
Expanding the product of the variables (¥;Y;) in Step 2¢ results in:
V1Y = a18,8,8 + a1b,5,6X,°2 + aybig,6, X, + £,6,b1 b, X, 1 X,
Taking the expectation of the product in Step 2d,
E[11Y,] = a,a;E[e,6,] + a1 b, E[£,6:X,7] + azby E[€16,X,7] + by by E[ 162X, X, %]

E["1Y.] =
a,a,E[e16,] + a1 b, E[e; £,1E[X;%] + a by E[e; £,1E[X: 1] + by by E (&1 6,1 E [ X, | E[X, ]

Since E[&,&,] = pe ts, + P, e,0¢, O¢,» We can reduce this to Efe;&;] = 1+ p, ¢, 05 0,
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This results in the expectation term

E[YiYZ] = alaZ(l + pE]_,EZO—E:LO—Ez) + ale (1 + pE]_,Eza-SIO-Ez)E[chz] + azbi(l +
pS]_,Eza-Sj_o-Ez)E[XlCl] + b1b2(1 + p£1,£za£1a-£z)E[X1C1]E[XZCZ]

EM1]E[Y;] = (a; + b,E[X,"])(a; + b.E[X,7])
E[Y,JE[Y;] = a;a; + a1 b, E[X;?] + azb,E[X1 ] + b1 b, E[X, 1 ]E[X;]
Calculating the numerator of the correlation equation:
E[1;Y2] — E[Y2]E[Y;]
= a a,(1+ Psl,szae1aez) +ayby(1 + Pe1,s20's10sz)E[chz]

+ ab, (1 + ps1,£za'sla'ez)E [X:°] + b1b2(1 + p£1,szGsiasz)E[X1ci]E[X2cz]
— (a1a; + a1 b,E[X,°%] + a, b, E[X1°*] + by b,E[X,“1E[X,?])

Cancelling terms:

E[Y;Y;] — E[Y;]E[Y,]
= a,a;(3+p;, ¢,0¢,0:,) + Qb (F+p,, -, 0:, 0., )E[X,7?]
+ azb, ('1_+'P£1,£z Og, aEz)E [X1°1] + by b, ('1_+'p£1,£z T, O, )E [X:“1]E[X2°2]
— (Gxtigtarhr B 2 +agbE X = +brb B =R )
E[Y;Y,] — E[Y;]E[Y,]
=0, (Pel,sz Oz, a'sz) + a; b, (Psi,ez Og, O, )E [x;°]
+ a,b; (ps1,£za'sla'ez)E [X1°*] + by b, (psl,ez 0'510'52)E [X;“]E[X,]

E[Y,Y,] — E[Yz]E[Y>]
= (p‘,_LeZa'sla'eZ)(alaz + a, b, E[X,°2] + a, b  E[X; ]
+ by b, E[X;“]E[X;%])

Finally, using Step 3 we arrive at:

_ (Peye,)(@raz + a1 b,E[X,°2] + azby E[X, 1] + byb,E[X,“]E[X,])
1B/ [E2(X,5War(e)] + [Var(X,;D] + [Var (X;")Var(g))]

Pxy

Case 1: ifqg=1,then ¥; = (aq; + bix)g

(Pe1,ez)(a1az + ay by, + azbypy + b1bzﬂx1#xz)
[1 b/ [E2(X)Var(e)] + [Var(X)] + [Var(X;)Var()]

Pxy =

Case 2: ifa; = 0,and ¢; = 1 then ¥; = b;x¢;

94
© 2012 Covarus, LLC. All rights reserved.



8.6

ANALYTIC METHOD FOR RISK ANALYSIS

_ (PE1,sz)(b1bz#x1#xz)
[1 b/ [E2(X)Var(g)] + [Var(X)] + [Var (X)Var(g;)]

Pxy

Type 11I-2 Functional Correlation

Type III-2 functional correlation exists between pairs of RVs that are related to each other
through different functions of their dependent variables. One example of Type III-2
correlation is the correlation between two summary-level (parent) WBS elements that have
correlated lower-level WBS elements (i.e., their children). The WBS shown in Table 8-6
has costs that are correlated with p (a correlation matrix).

Table 8-6 Example WBS

WBS J/] a

1. 37.000 10.325
1.1 10.000 4.000
1.2 12.000 5.000
13 15.000 6.000
2. 36.000 10.555
2.1 18.000 7.000
2.2 6.000 3.000
23 12.000 5.000

The matrix, p, representing the correlation between each of the lower-level WBS elements
is shown below.

"1 02 02 02 02 021
02 1 02 02 02 02
“loz2 02 1 02 02 02
P=lo2 02 02 1 02 02
02 02 02 02 1 02
02 02 02 02 02 1

Using the values of o; of the lower-level WBS elements shown in Table 8-6, we are able to
compute the standard deviations of summary-level WBS elements a; , o5, and g7,,. The
correlation matrix above can be partitioned into four sub-matrices, or partitions. The
matrix shown in Figure 8-1 shows the partitions used to calculate o; (upper left) and o,
(lower right). The remaining two partitions represent the correlation between WBS
elements that are children of different parent WBS elements.
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Pij 11 12 13 21 22 23
1.1 1 0.2 0.2 0.2 0.2 0.2
1.2 0.2 1 0.2 0.2 0.2 0.2
13 0.2 0.2 1 0.2 0.2 0.2
21 0.2 0.2 0.2 1 0.2 0.2
22 0.2 0.2 0.2 0.2 1 0.2
23 0.2 0.2 0.2 0.2 0.2 1

Figure 8-1 Partitioned Correlation Matrix

The correlation coefficient between WBS elements 1 and 2 can be represented by p; 5.
This value is related to the lower left and upper right correlation coefficients in the
partitioned correlation matrix.

Remembering that o7, = Xig 62 + 2 Xio 41 Xi1 P}k 0) 0k, WE Can eXpress o, in two
ways. The first uses the variances and covariance of the summary elements,

Orot? = 02 + 0,2 + 2p; ,010,, and the second uses the variances and covariances of the
lower-level WBS elements,

2_ .. 2 2
Orot” = 011" + -+ 033° + 2(91.1,1.20'1.10'1.2 +-+ Pz.z,z.aaz.zaz.s)-
Since both equal oy,;, we can say
2 2 _ 2 2
01° + 03° + 2p1 2010, = 611“ + -+ 033° + 2(P1.1,1.201.101.2 + -+ Pz.z,z.aaz.zaz.s)

By solving for p, ,046,, we get the correlation between WBS elements 1 and 2:

_ (P1.1,1.201.101.z+'“+Pz.2,2.3 T22 02.3)"%[(0'1.12+“‘+0'2.32)—(0'12+0'22)]
P12 = m—— -

8.6.1 Type III-2 Functional Correlation Example
For our example, we will continue the calculation with values from Table 8-6.

If we calculate op,; using lower-level WBS elements we have or,:2 = 160 (or o7y =
17.550).

Finding the terms for the formula used to calculate the correlation coefficient between
WBS elements 1 and 2, we have:

(6112 + ++ + 053%) = 160, and (0,2 + 0,2) = 218, s0

(124402 3%) (012 +027) — (160—218) —
2 2

29,

(.01.1,1.20'1.10'1.2 Tt P2.2,2.302.20'2.3) = 74, and
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__ (9+(-29) _ 45
P12 = (10325)(10555) 108974

= 0.4129
Using this value, along with o, and o, we have ay,,2 = 0,2 + 0,2 + 2p, ,0,0,.

Orot? = (10.325)2 + (10.555)% + 2(0.4129)(10.325)(10.555) = 160, or 6, = 17.550.

8.7 Section Summary

Knowing how to compute functional correlations allows us to use MOM summation in a WBS
structure and to solve many of the problems germane to probabilistic schedule network analysis.
The functional correlation between elements of cost and schedule models allows the analyst to
determine their influence on the total variance of an estimate and to construct joint probability
density functions of pairs of modeled variables such as cost and schedule.
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9 Discrete Risks
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