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e G e Introduction

« Cost and schedule estimates are probabillistic in nature

« We do not know the exact cost or schedule duration of a
project until it is complete and we have collected “actual”
cost and schedule durations, so

« Discrete numbers are not a good representation of expected cost or
schedule duration — they are bound to be incorrect

« Until the project is complete, we must rely on estimates

« Estimates imply uncertainty, and the mathematics of
uncertainty is probability,

* ...S0 estimates must be expressed probabillistically (i.e., as

probabillity distributions)

« The difficult part is finding a solution to the mathematical problem of
the estimate!
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« A probabillity distribution completely defines a random
variable
« Continuous Probability Distribution (density)
» Discrete Probability Distribution (mass)
« Mixed (or mixture) Probability Distribution (mass and density)

Cost Estimate Probability Density Cost Estimate Probability Mass
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R Probability Distributions (2)

* Mixed (or "mixture”) distribution formed by convolution of
continuous and discrete distributions
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Dyt Risk, Uncertainty and the Bet (1)

* Uncertainty is defined by the estimate’s probability
distribution

 The “bet”, shown as “c’, is a discrete point estimate

« Risk and opportunity are defined by the areas of the
distribution to the left (opportunity) and right (risk) of the bet

Cost Estimate Probability Density

/ O Unfavorable
/ O Favorable

/ \

Point Estimate i

Density, p(X)
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Risk, Uncertainty and the Bet (2)
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Changing the bet or distribution will change the risk!
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 If we know the bet and components of the probability
distribution of the estimate, we can segregate risk drivers

A .
Risk Exposure

B Baseline Uncertainty

20% pAV

M Estimate Uncertainty

27% 33%

m Risk Probabilities

B Risk Impacts

DETERMINISTIC
ESTIMATE



CRGLEEI Joint Probability Distributions

* |f we have two random variables X and Y, we can define the
probabilities

P{X <x} = Fx(x) = fx Fx(z)dz
=
P < =RO)= | R

* The joint probabilities of P{Xx < x,Y < y} can be expressed as
the joint distribution function

v x
PIX<x,Y<yl=Fxyy(xy)= f f fxy(z,w) dzdw

« And the joint probability density function (PDF) is defined as

0% Fxy(x,y)
fﬂff(x! y) o axa},

10
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 This is a joint PDF of cost and schedule generated with
Excel

p(Cost, Schedule)

11
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 Moments
 Provide useful information about the characteristics of a random
variable, X, such as the measures of central tendency, dispersion

and shape

« Always define which of the three types of moments being used: raw moments,
central moments or standardized moments

« Raw Moments
« About the origin (i.e., zero)

« Central Moments
* About the mean, y, or first raw moment

« Standardized Moments
« Normalized by dividing by the ki power of the standard deviation,

 Qrder Statistics
« Maximum, minimum, first, last, etc.

12



caaie wa Raw Moments

« The k' moments about the origin are called “raw moments”
of a PDF, fy, and are defined as:

r Z x*f(x) iif X is discrete
X

lj x®f(x)dx ;if X is continuous
—o0

« The mean, u; , is the first raw moment of X about the origin,
and it is a measurement of the central tendency of the data

« We are more familiar with the mean being represented
as, i, so we will use this notation for the mean hereafter

13



Cea T Central Moments (1)

 Central moments of a distribution are the raw moments
about the mean, u

* The first central moment is, by definition zero, but the
second central moment is the variance,o?, which is a
measure of dispersion about u

« Definition of the k" central moments of discrete and
continuous random variables (RVs)

r z(x — WkEf(x) s if X is discrete

0% =4

L f (x — W f)dx ;if X is continuous

14
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« The first five central moments expressed in terms of the raw
moments are

=0

My =—pi +ph = b — pi" <— Variance, o2
M3 =207 — 3uph + 1

Mo = =3y + 605 1y — A +

is = 4u;° — 1044 >l + 1051 — Spiy + ps

15



e Standardized Moments (1)

« Standardized moments are the k" central moments, uy,
normalized by the k" powers of the standard deviation o*

(i.e., ﬁ)

« Skewness, U, is the measure of asymmetry of X and is
defined as the third standardized moment

skew(X) =909 = H—i
o

« Adistributionis a) symmetric if 9 = 0, b) left (i.e. negatively)
skewed if 9 < 0, and c) right (i.e., positively) skewed if

v >0
Right Skewed Left Skewed

9>0 J <0

N\

16



e Standardized Moments (2)

« Kurtosis is the fourth standardized moment

« Most textbooks define kurtosis of symmetric, unimodal distributions
as a measure of peakedness of a distribution X

« This is a correct definition, however a more descriptive definition of
kurtosis exists - the measure of the dispersion around the two
“shoulders” of a distribution located at u + o

+ The classical attribution of peakedness of a distribution vice its “fat-

tailedness” is not a good representation of the meaning of kurtosis

Ha
kurt(X) = p
* A more commonly used metric is the “excess kurtosis”,

which is kurt(X) — 3
U4

Kk =kurt(X) -3 =——3
o

17



e a T Expectation

The expectation,E[-], of a random variable is a powerful
expression

The expected value, or u, of a random variable is perhaps
the most important single parameter in applied probability

Itis written as E[X| = ux , and is the integral E[X] =
fjooo xfx(x)dx, where fy(x)is the PDF of X

« Same as the raw moment (the probability center of mass)

Another important parameter is o2, defined by the
expectation of the squared difference of the PDF and its
mean

« This quantity represents the moment of inertia of the probability
masses

Var(X) = 0? = E[(X — w?] = f (X — 1) 2y (x)dx

— o0

18



b(LIc;v;rAuTsH The Importance of E[']

+ Whatis most important about E[-] is its ability to determine
the raw moments and central moments of a random
variable, and thus the measures of central tendency,
dispersion and shape (i.e.,u, 04,9, k)

» If we can calculate the expectation, we can generate the
moments

« |If we know the moments we can figure out the approximate
shape of the distribution

19
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e Cost and schedule estimates rely on these operations of
random variables (X and Y)
* Which provide information used in uncertainty and risk analysis

Addition
Discrete Risks Subtraction

Probabilistic Branching

Multiplication
Division

Dependence
Correlation

Max and Min

Schedule Merge Points
Transformation

21
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xS Probability Tools

 When we perform a cost or schedule risk analysis, we need
to know the uncertainty of the individual estimates, how they
are correlated, and how to combine them
* In a work breakdown structure (WBS)
* In a schedule network

« We can employ statistical modeling technigues such as
statistical simulation or statistical analysis to find these
uncertainties and their properties

« Although the goal is the same, these techniques differ,
which we will discuss in more detall

23
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* The statistical simulation process follows these steps:

1.

a s~ N

Define numerical experiment (spreadsheet, schedule network, etc.)
Define PDFs for each random variable

Define correlation coefficients between random variables
Determine the number of experimental trials

For each trial:
1. Draw correlated random variable(s) from defined PDF(s)
1. Sample uniform distributions, U(1,0)

2. Transform each U(1,0) to the desired PDF based on an inverse
transformation of the cumulative distribution (CDF), CDF-1.

3. Correlate the set of PDFs
2. Compute the experimental result(s)
3. Save the experimental resuli(s)
At the end of the simulation, determine the statistics from the
experimental results

24
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Histogram of Transformed Random Numbers

¢ U n |f0 rm o 116 Moment Simulated Exact

p 0.488 0.500
—_— o 0.992 0.083
W, 0.053 0.000
K -1.222 -1.200
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« Among its benefits are...

its ability to provide the statistics of a simulated PDF formed by
complex mathematical modeling of random variables

Its relative ease of use

* Most of the time, statistical simulation obtains very close
results to [and Is easier to use than] statistical analysis

However, statistical simulation does have its drawbacks

Inability to sample uniformly

(in)ability to correlate two distributions exactly using Pearson
product-moment correlation coefficients

Inability to sample INDEPENDENT distributions (only uncorrelated)
Inability to correlating large numbers of random variables, and

Inability to provide reasonable results when the number of
simulation trials is too small to account for single or combinations of

low-probability events (the tails) "
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« Unlike simulation, statistical analysis relies on the exact
calculation of moments of the PDF

* We use moments as the basis of the analytical technique
proposed in this report

« Method of Moments

 Method of Moments (MOM) is a relatively easy-to-use, analytical
technique used to calculate the moments of probabillity distributions

* Relies on statistical calculations of moments to derive the statistics
of probabillity distributions such as WBS element cost estimates or
schedule durations

« With the widespread use of statistical simulation tools by cost and
schedule analysts, MOM has become a forgotten “art”

* One of the surviving MOM techniques is the Formal Risk
Assessment of System Cost Estimates (FRISK) method

Statistical Analysis

27
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the 1 and o of the PDF of total cost formed by the statistical
summation of PDFs of subordinate cost elements

* |t relies on the calculation of moments of WBS elements
defined as triangular distributions and statistically sums
them to find the parameters of an assumed lognormal PDF

» A very useful, quick-look tool that can be programmed in just
a few minutes

« The major drawback is the assumption of distribution
shapes

We can make provisions for this by examining higher moments such
as skewness and kurtosis

28
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Define numerical experiment; in this case, the summation of a WBS

Define triangular PDFs, T(L;, M;, H;) for each cost, X;, or random
variable to be statistically summed, by specifying the low (L;), most
likely (M;) and high (H;) values

Calculate the u; and ;2 for each T'(L;, M;,H;)

Sum the n means to calculate the mean of the sum of the PDFs

Define correlation coefficients, p; ;, for each pair of PDFs

Calculate the total variance of the sum of the PDFs

Assume the PDF of the total cost is a lognormal distribution, L(P, Q)
Calculate the lognormal parameters P and Q

Determine the percentile statistics L(P, @), using the inverse CDF
tables or the LOGINV function in Excel

29
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FRISK Example (1)

Here Is a set of example inputs

WBS Element, i L. M. H,
Antenna 191 380 1151
Electronics 96 192 5g2
Platform 33 76 143
Facilities 9 18 27
Power Distribution 77 154 465
Computers 30 58 86
Environmental Control 11 22 b6
Communications 58 120 182
Software 120 230 691
TOTAL 625 1250 ?EBE/

Point Estimate

This is the matrix of correlation coefficients between each

WBS element

02 1
02 02
02 02
02 02
02 02
‘0.2 0.2

0.2
0.2

0.2
0.2
0.2
0.2

0.2
0.2
0.2

0.2
0.2
0.2

0.2
0.2
0.2
0.2

0.2
0.2

0.2
0.2
0.2
0.2
0.2

0.2

0.27
0.2
0.2
0.2
0.2

0.2

30
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 These are the resulting moment calculations

Op(x), = / Or(x),” =

J[1912+38ﬂ2+11512—{191}{381{81}—{191}{1151}—{38{1}(1151}] — $207.62K
s = (Li+ My + Hy)/3 = 191+383ﬂ+1151 _ $574K
WBS Element,1 Estimate, f(x); M), Ofix),
Antenna T(191,380,1151) V' 57| VY 207.62
Electronics T(96,192,582) 290 105.08
Platform T(33,76,143) 84 22.63
Facilities T(9,18,27) 18 3.67
Power Distribution T(77,154,465) 232 83.86
Computers T(30,58,86) 58 11.43
Environmental Control T(11,22,66) 33 11.88
Communications T(58,120,182) 120 25.31
Software T(120,230,691) 347 123.68
TOTAL (Not necessarily the sum) 1756 364.93

31
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FRISK Example (3)

* From this information, we can plot the PDF and cumulative
density function (CDF) and report relevant statistics

Percentile Value

10%
20%
30%
40%
50%
60%
70%
80%
90%

mean
median
mode
std. dev.

1320.981
1446.051
1543.52
1631.993
1719.265
1811.205
1915.021
2044.1
2237.635

1756.000
1719.265
1648.086
364.9331

Probability density, p(x)

FRISK Example PDF

<

T
1@“

Cost, x

FRISK Example CDF /

—

/) -

1?75409%

e

__,(/1251:- B.05%

—r
500 1000 1500 2000 2500 3000 3500

Cost, x

7 Point Estimate

32



@ SEER
WG ALORGATH Agenda

Covarus

Business - Math - Science

e |ntroduction
« Mathematical Problems in Cost and Schedule Estimates
* Probability Tools

* Products of Random Variables
* Expectation Methods
* Propagation of Errors

* Functional Correlation

» Discrete Risks

 Max and Min of Random Variables

« Parametric Estimate Example Problem

* Resource-Loaded Schedule Example Problem
e« Summary

* Future Research

33



coaie ey Product of RVs

* One of the most difficult parameters to estimate is the
variance of the product of two dependent RVs (Z =
XY; pxy # 0)
« The mean of Z is found by this (fairly straightforward) equation
Uz = UxHy + PxyOxOy
« The variance is not
« We had to research the variance of the product of normal
and lognormal RVs which provided inconsistent formulae

+ We then derived the equation from scratch to see where the
inconsistencies arose

« Comparison with statistical simulation tool showed inconsistent
results (from the simulation tool) so we had to discover why...

34



DL Variance of a Product of Two RVs (2%

* From Goldberger
Var[XY] = pyryzoy20y2 + oy’ py” + oy’ + oy’ oy” — [2pgy0xoviigily +
2
(Pxvoxoy)’]

* |fthey are truly independent, then

2

Var[XY] = oluy? + 0,0 1" + 0y 20,7 | and gy = o/ 03202 + 0y 202 + 020y 2

» If they are not, which is often the case, then we have
problems
* The first problem is finding the value of the term px*y20x2 0=
« Whatis the covariance of the squares of two RVs?
* pyzpe0y0y = Cov(X%Y?) = E((X?Y?)?) — E(X?) E(Y?)

* When the two RVs are normally-distributed then the problem is
easier to solve

35



e atenaT ‘ Product of Two Normal PDFs

« |f XandY are bivariate normally distributed then the third
moments vanish and the term E((X2Y?2)?) — E(X?) E(Y?)
reduces to ax“ay?2 + 2Cov(x,y)*

« This means Var[XY] = ox?uy? + oy2ux? + ox2oy? +

2
2px yOxOyixiy + (pxyoxoy)
« We compared the results to a statistical simulation and
obtained these results — a good match

Analytic Simulation

mean Sig mean Sig
X 1.0000000 0.5000000 1.0000115  0.5000028
Y 1.0000000 0.5000000 1.0000026  0.4999844

XY 1.1000000 0.8789198 1.1038594  0.8839102

36



I Product of Two Lognormal PDFs

* This is a more germane problem since products of RVs
appear in factor CERs and they are typically the products of
lognormal RVs

« Alognormal distribution of the prime mission product (PMP) which is
the assumed lognormal distribution of the sum of hardware and
software costs, and

« a cost factor with a lognormal error term

« This is a very difficult problem, believe it or not

* We could find very little literature that provided the variance of the
product of two bivariate lognormal distributions

* We had to solve the problem explicitly
« The solution lies in dealing with the lognormal distributions

as exponentiated normal distributions then using MOM on
the normal parameters

37
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* The easiest example to test is the square of two lognormal

variables, L(1,1)

This is a highly-skewed distribution

Since uy = 1 and gy = 1 the math is very simple
The covariance is the product of the standard deviations,
Pxx0x0x = 1
The mean of the square of the distributions is
Uz = Uxtx + pxxoxox = (1)(1) + (D)) = 2

The “flaw of averages”

38
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 Remembering that - 1 1 2
Var|[XY] = px2y2 0520y + %fﬁ?z + 07y + "-Il(?g&'z — [204vox Oy gty T
(px xﬂ&')z]
* Var[X?] = E[X*] - E[X*|E[X?] — — E(Xz)= ;
* The expectations of Xare _ Eg%i .
« SoVar[X?]=64— [2%2] =60 "
E(X")= 64

« and oy =+/Var[X?%] = V60 = 7.745966692

« Comparing these results to a statistical simulation we get
similar means but different sigmas (due to sampling of the

tails) Analytic Simulation
mean sigma mean sigma
ZL 1.0000000 1.0000000 0.9998327 0.9963679

L2 2.0000000 7.7459667 1.9924044  7.0635770

39



e ‘ The Variance of Products of RVs

« We can accept Goldberger’s formula because it is not
distribution-specific (i.e., it is not relevant to only bivariate

normal distributions)

« This was a great discovery that allowed further work to be
accomplished in the area of functional correlation, which we

will discuss later

40
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e Propagation of Errors

« The “Propagation of Errors” method allows us to calculate
the mean and sigma values of the product of two
uncorrelated random variables A and B

Hap = HalB
oap = v (Ua0p)? + (04up)? + (0403)?
« Used to find moments of the product of two random
iIndependent variables such as a CER and its percent error

 The moments of the product AB do not rely on the shape of
the distributions A and B, only their moments

42
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« Whatis it?

Functional correlation is the correlation induced by the functional
relationship between RVs

« Who cares about it?

It is transparent in statistical simulations by their very nature

By defining a mathematical problem such as a schedule network or
a cost estimate, the user only needs to correlate user-defined PDFs

In an analytic approach itis VERY important because the analyst
must account for the relationships between RVs

* When does it occur?

When one RV is a function of another RV: Y=f(X)
When two RVs share a common RV: Y, =f,(X), Y,=f,(X)

When two RVs share a dependent term: Y ,=f,(U)*e,, Y,=f,(V)" e,
where p.. .» #0 (i.e.. their errors are correlated)

44
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* These three types of correlations can be cast into three
categories or types
« Direct (nested) dependence of RVs
« Shared dependence from use of the same RVs
« Shared dependent RVs

« They can also be categorized in terms of how deeply they
are related (their “order”)

Order 1 Order 2
Type | Pxy Where ¥ = f(X) Pxy Where ¥ = f(g(X))
Type Il Pv,v, Where Y, =f (X)and| p, , whereY; =f (g.(X)) and
Y, =) Y, = £(g,(X))
Type lli Py, v, WhereV; = f; (X;)é&, Py, v, Wherel; = f, (g1 (X;)€1),
Y, = f,(X,)&a, Y, = 2(g:(X5)€2),
and p;. ., # 0orpy, x, #0 andpg, -, # 0,0r px, x, # 0

45
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1. Equate the correlation between two random variables
E[XY] — UxHy

Corr(X,Y) =p,, =

OxO0y

2. Determine the components
a) Find the means of the two RVs
b) Find the variances of the two RVs
c) Find the product of the two RVs
d) Find the Expectation of 2c

3. Rewrite equation in terms of the components found in
Steps 2a through 2d

This is why we call it Pearson “product moment” correlation

46
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« Type -1 Functional Correlation Example, Y; = (a; + b;x)s;
« Giventwo CERs, Y; = (1 + 1.5x)g; ,and Y, = (2 + 3x)¢,
« IfX=T(2,34), 0., =0.2,0,, =03, and Pere, = 0.2, then

i, === =3, and oy = 0.408248 and Var(X) = 05?=0.16667
( 1 + p81,820810€2)(b1b2 E[xC1+C2]) — ,’lf»l ufz
Py.y, =

i2=1 (\/afiz T afizufiz + inzafiz)

« Using values from above

_(1.012) ((1)(2)+3[(1)(3)+(2)(1.5)]+(1.5)(3) (9.16667))—60.5

Pyiy, = (1.2649)(3.5391)
(140.012)(2+3[3+3]+41.25)—60.5

(1.265)(3.539)
~ (1.012)(2+18+41.25)-60.5 _ 61.985-60.5 _ 1.485

Py,y, = 4.4766 44766 44766 _

a7
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 Functional correlation between two tasks T1 and T2 that
have the same predecessor,P, that has a finish date Fp

« Assume the durations of T1 and T2 (D, and D-, respectively) are
correlated by p D1.Ds

« The start dates of T1 and T2 are F; and F, respectively
 The finishdatesof T1and T2are F{ = Fp+ Dyand F, = Fp + D,

« The correlation equation relies on the finish date of the
predecessor, the covariance of the durations and the sigmas
of F; and F,

2
OFp"tPp,p,9D19D;

PrF, =
LE2 \[O’FP2+O'D12\[O'FP2+O'D22
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Discrete Risks

* Discrete risks should be included in a risk estimate

« But it depends on the estimating methods used and their underlying
data (i.e., more data results in estimates with more included risks)

Under booking

Potential Risks

Historical Data
from Analogous
Programs

Additional
Schedule
Risks

| Double

Additional
Cost
Risks

booking

~ Triple
booking

50




Sk Single Risk Case

 When we combine a single discrete risk with an estimate
represented by a continuous PDF, c, we get a mixed (or
mixture) distribution

» Discrete risk is defined by probability p, and impact D,

p(x)

} }
He H¢+ Dy X

« The resulting mixed distribution is a probability-weighted
distribution of the two risk states
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ceaie e Multiple Risks Case

* |If we have n risks, then we will have 2" possible risk states

« This forms a much more complicated distribution

* The continuous distribution C is defined by a normal
distribution,N(1,0.2), and the three discrete risks are defined by

R;(P;, D;): R,(0.4,1), R,(0.3,2), and R5(0.2,3)

PDFs of Continuous (C) and Mixed (M) Distribution

S ———C

H
:A= Hm
AAVVIN

0.000 2.000 4.000 6.000 8.000 10.000 12.000

Rs
X

M

B
o
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e e Moments of Mixed Distribution

« Fortunately, the report provides a method of calculating the
moments of the mixed distribution

iy = 1.0 4 (0.4)(1.0) + (0.3)(2.0) + (0.2)(3.0) = 2.6

2N -1

oy = Z P(Si){(crﬂsi)z + [Ds, - 5#]2} = 1.6460
\ i=0

« Comparison with Simulated Results

« Minor differences due to simulation's inability to exactly draw
correlated random variables

Exact Simulated
Wy = 2.6000 fiyy = 2.6004
oy = 1.6460 gy = 1.6495
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« Assume a cost estimate, C, has a normal distribution with u. = 4.0
and o, = 0.4082 and the following three risks (R(prob., impact))
are identified: R,0.50, 2), R20.25,3) R5(0.10,5)

 Then the mixed PDF looks like this:
* And as we increase o, we instantly get:

N . N
1
oDF MQG_‘/ _MM_‘/ oDF

PDF
0.400 0.250 0.180
0.350 0.160
0.300 - 0.200 /\/‘\ 0.140 //\\
0.120
0250 __ 0150 — 0.100 / \
X 0.200 = I \ =0 / \
Q o 2 0.080
0.150 0.100 / \
A / \/\ 0060 7 AN
0100 \J/\ 0.050 0.040 / AN
0050 V \/\A \\ 0:020 / \
0.000 T T ' ! 0.000 T T , ) 0.000 T T T ]
0.000 5.000 10.000 15.000 20.000 0.000 5.000 10.000 15.000 20.000 0.000 5.000 10.000 15.000 20.000
X X X
- \Al A marm AlhAarnmAas vial-a D D D Av AadAlvAarmAa~vrA thama Aansilhoy
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e Many Discrete Risks

 The case where there are many discrete risks is VERY
Interesting

* The mixed distribution appears to be a much better
representation of fat-tailed distributions

* And better yet, we can calculate the moments of the mixed
distribution

« And we can determine the contributions of the estimate’s underlying
distribution and the discrete risks forming it
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* Absolutely necessary when performing analytic schedule
risk assessment (SRA) due to mathematics of merge points
of parallel tasks

 We know the exact PDF and moments of the max of two
correlated Gaussian distributions but VERY little work can
be cited that solves the problem of the max of correlated
non-Gaussian distributions

« The author’s recent SSCAG paper was a big step forward, but it
does not have the capability of dealing with highly correlated RVs

« We are still working on more solutions

* For the time being, we know how to compute the max and
min of two Gaussian distributions and limited cases of all
others
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e The first two moments of the maximum of two lognormal
distributions (used to compare max finish dates in a
schedule network)

« Correlation and overlap of distributions cause the mean to shift
E[X] =

" ‘ (P1—P2J+(§12—pf21@2 @ [ ,—Py)+(022-pQ4 Q)

E[x?] = (o +uD)® (%) + (o7
8=.,Q2+Q7—2pQ,Q, where the correlation between
their underlying normal distributions is

“—In|1+p,, (\/[e‘i‘f—l][e@%—ll)]:and

= [
p Q1Q2 n

p, » = Pearson correlation between lognormal distributions of

tasks X; and X,
P,, P,, Q,.and Q, are parameters of the lognormal distribution
defined in Equations 4-5 and 4-6.
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Example Cost Model

« Consider this simple parametric cost model (p; .j = 0.2)

WES CER,i Drivers . £;
Element, i
1 Systems Engineering, ¥, = 0.498%, "¢, PMP itou . L(1,0.49)
Program Management ~L .m
Integration and Test v
(SEITPM)
Prime Mission Product | ¥:2. ¥, sum of Hardware and — 0
(PMP) Software costs
2 | Antenna Y, = 34.36X,,"°X., s, | Aperture Diameter (m), | T(2,3,4) L{1,0.30)
Frequency (GHz) T(16,17,18)
Electronics Y, = 30.06X,"%¢, Frequency (GHz) T(16,17,18) L(1,0.40)
4 | platform Y, = 26.91X%,."°X,, "%, | Aperture Diameter (m), | T(2,3,4) L(1,0.38)
Number of Axes Constant =2
5 Facilities Y, = 1.64%. "% =, Area (m?) T(18,20,22) L(1,0.25)
6 Power Distribution ¥; = [),32}{5':"955 Electrical Power (W) T(1200,1425,1875) L{1,0.18)
7 | Computers V. = 0.58%."% &, MFLOPS T(180,200,220) L(1,0.31)
3 Environmental Control | ¥, = 1.94X,"*=, Heat Load (W) T(1100,1200,1300) L(1,0.21)
g Communications Y, = 5.62X,"" ¢, Data Rate (MBPS) T(25,30,35) L(1,0.28)
10 | Software Yo = 1.38X,, %2, Effective Source Lines T(80,90,130) L{1,0.32)
of Code, eKSLOC
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« We will apply the FRISK method to solve this, but we must
first:

* Find the distributions of the WBS elements
* Find the correlation matrix between the WBS elements

* Finding the distributions of WBS elements 2-10 using
expectation methods is the easy part

WEBS Analytic Simulation
# 1l (4] 1 o
2 572.706 177.022 572.676 176.900
3 289.953 116.136 289.962 116.172
4 83.829 32.484 83.824 32.463
5 18.014 4.544 18.014 4.543
(] 230,920 46.015 230.911 45.977
7 58.248 18.186 58.244 18.172
8 33.068 6.960 33.068 6.959
9 119.965 34.446 119.962 34.420
10 347.121 120.764 347.121 120.787
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* Finding the distribution of WBS element 1 (the cost-on-cost
function) is not so simple

* First we have to determine the functional correlations between WBS
elements 2-10, find the moments of that sum (the prime mission
product, or “PMP”), then calculate the moments of WBS element 1
using expectation methods

* The functional correlation matrix (FCM) has these types of

correlations
Pyin 1 2 3 4 5 6 7 8 9 10
1
Cost-on-cost )32:5 1
Shared variables e [ T
s{ 12 | w1 | ot | el
Correlated errors —g—z 1 -1 | -1 | 1i-1
/S T T I BT R
8 12 | mer | ower | ower | ol | omer | ol
of 12 | w1 [ w-r | ower | omet | omer | w1 | okt
R REN R EEE N
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« After computing the FCM sub-matrix of the PMP elements,
we can use the FRISK method to find the mean and
standard deviation of PMP

« We then use that to find the moments of WBS element 1

Analytic Simulation
WBS
# L o i o
1 413.170 201.048 413.090 200.916
2 572.706 177.022 572.676 176.900
3 289.953 116.136 289.962 116.172
4 83.829 32.484 83.824 32.463
5 18.014 4.544 18.014 4.543
(7 230.920 46.015 230.911 45.977
7 58.248 18.186 58.244 18.172
a8 33.068 6.960 33.068 6.959
9 119.965 34.446 119.962 34.420
10 347.121 120.764 347.121 120.787

« Then we can statistically sum all of the WBS elements
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* Next we have to find how WBS element 1 is functionally
correlated tolthezrest of the WBS elements (:;:.hown below)

By 3 4 5 6 71 8 10
1
2| 0.2614
3 0.2098| 0.1969
4| 0.1454] 0.2306| 0.1959
5 0.1156] 0.1924] 0.1979] 0.1944
6| 0.1426 0.1753| 0.1804| 0.1772| 0.1790
7| 0.1273] 0.1927| 0.1983] 0.1947| 0.1968| 0.1794
8| 0.1184| 0.1937| 0.1993| 0.1957| 0.1978| 0.1803] 0.1981
9 0.1393| 0.1893| 0.1948] 0.1912| 0.1933| 0.1762| 0.1936| 0.1946
10| 0.2085] 0.1785| 0.1837) 0.1804| 0.1823] 0.1662| 0.1827 0.1836| 0.1794

 Now that we have the moments of each WBS element and a
full FCM, we can calculate the statistics of the total using
FRISK (whew!)

Analytic Simulation

[ V] [ V]
Total 2166.995 443.915 2166.873 443.511
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« We can now plot the CDF, show percentiles, and each WBS
element’s contribution to the variance of the total

Percentile Total Cost, Y Total Cost CDF
10% 1637.140582 1
20% 1789.878287 | | //
30% 1908.780462 0.7 //
40% 2016.616222 %2?
50% 2122.909227 | | £, o102 048
60% 2234 804788 03 //
70% 2361.059157 | | 7 /
80% 2517.905056 0 : ‘ / ; ; ‘ ‘ ‘
BD% 2?52.81 4[}45 0 500 1000 1500 c::f(;K 2500 3000 3500 4000
WBS cTv Contribution to Variance
1 SEITPM 32% SETPM | ! ! !
2 Antenna 27% Antenna | l
3 Electronics 14% Electronics : l
4 Platform 3% Platform |
5 Facilities 0%  Facllities
6 Power Distribution 4% Power Dclf)tr:k:ifrz .
7 Computers 1% Environmental Control :
8 Environmental Control 0% Communications
9 Communications 3% Software | !
10 Software 15% 00% 10.0% 20.0% 30.0% 40.0%
Sum 1.0000
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e x e Schedule Distribution

 We also modeled the schedule as a PDF based on a
fictitious schedule estimating relationship (SER):p = 0.21x,?%¢,,.

 The schedule will now be correlated to the cost of the
program through the dependent variable, X, which is
“effective source lines of code”
* The moments are pu, = 52.823, and gy, = 24.935

Schedule CDF

e

Pro

Schedule Duration, months
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« The joint PDF of cost and schedule is modeled as a
bivariate lognormal distribution; where cost and schedule
are linked by a Type |l-2 functional correlation, py, = 0.0364

+ The value Py calculated from a 100,000-trial statistical simulation is
0.0366, which indicates excellent agreement with the analytic result
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D Resource-Loaded Schedule

 NASA provided a resource-loaded schedule with which to
perform a demonstration of the analytic method

* This consisted of a MS Project file
« The MS Project file was exported to MS Excel for analysis

« Two problems needed to be solved in order to perform an
analytical assessment on the resource-loaded schedule:

 How to deal with calendar days (contiguous) versus working days
(non-contiguous) in the analysis

« How to formulate the schedule into a linearized sum of durations
« How to calculate the correlation between cost and schedule
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 \When a duration of a task causes it finish to occur on the
following day, schedule programs can quickly determine
which WORKDAY the task will finish

« Simple addition of durations that result in finish dates (that
are otherwise consecutive calendar days) will provide
Incorrect dates (non-working days)

* In aresource-loaded schedule, we are interested in
schedule finish dates that are calculated in the correct
calendar days, but we need the number of workdays to
allow for resource loading

« We performed the schedule analysis using addition and
subtraction of days (to simplify the resource-loading math)
then converted the schedule results to account for working
days using the “WORKDAY” function in Excel
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* Probabilistic task durations were calculated based on the
parameters specified in the MS Project file

« The distributions consisted of additive and multiplicative
distributions that were either triangular, normal, lognormal or
discrete

 Three of the duration PDFs were correlated
 Two of the durations were defined as discrete risks

« Using the methods outlined in the report, we could quickly
and easily determine the moments of these durations

 We discuss the issue of how to model the schedule network
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 The schedule network looks like this:

ID |Task Name Duration anuary 11 ebruary 1 ugus ebruary mber1 arch11l eptember21
‘ 8/26 | 11,'hﬁ ni,'za [ sjzus Iv\ 8/25 | 11,'24r ﬁr\; | /25 |AI g3724 [11/23 \k 20 \ 5/24 | 23 11,'22 [ i;1'21 [ 522 | 8_.'21 11/20

1 |JACS Analysis File 840 days| W@

2 Milestone Summary 840 days| @ '

3 Project ATP 0 days| ~@-10/1

4 PDR 0 days @44/26

5 CDR 0 days @410/24

3 Rocket delivery 0 days @412/18

7 Project Support Costs hammocktask 840 days v

8 Support Start 0 days 10/1

9 Support Finish 0 days $412/18

10 Preliminary Design 150 days| Wy 4/26

11 Requirements definition and documentation 100 days ==l

12 Preliminarydesign activities 50day:

13 Detailed Design 390 days : iy 10/24

14 Initial detailed design 80 days

15 Design GN&C 160 days

16 Trade studies and analysis 60 day:

17 Design pyrotechnics 100 day:

18 Design propulsion system 160 days

19 Design structures and mechanisms 120 days

20 Finalize integrated design 90 day:

21 Development and Unit Testing 150 days

22 Fabricate rocket Components 120 days

23 Fabricate and unit test structure (includin 120 days

24 Fabricate and unit test engine 120 day:

25 Develop andtest flight software for GN&C 150 day:

26 Integration and Testing 170 days 2/4

27 Integrate rocket components 40 days

28 Test frame, fuel system and engine 35days

29 Testguidance system 60 day:

30 Finalintegration and testing 70day:

31 Delivery 10 days 12/18

32 Delivery 10 days

33 |Risk Register 400 days

34 Risk 1-TI-Additional Purchase 0days

35 Risk 2 -Duration - Additional Studies Required 0 days $-11/8

36 Risk 3 -Tl and Duration - Delay from AdditionalSoi 0 days
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 We reduced this to a “linearized schedule” representing the
duration of the project
e D= D11 + DlZ + D14 + D[15,19] + DZO + D[23,29] + D30 + D32, where

D[1s,19] =
maX(D15, D16 + D35 + D17, Dl6 <+ D35 + D18' D16 -+ D35 -+ Dlg), and

Di23,29 =
m[ax{rlzax[max(Dz& D34) + D37, Da5 + D36l + Dyg,max(Dy3,Day) + Doy,
« The finish (F;) dates of these tasks were computed by adding the
ATP date to the sum of durations up to that of the particular task of
interest
» Since tasks 11, 12 and 14 were serial and task 14’s finish
date was lognormal, these finish dates were all lognormally
distributed — which was a blessing and a curse
« We know how to combpute max(A.B)where A and B are normal. but
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Schedule Network Model,

Slide 3 of 3

* In two Instances (i.e., at merge points) we had to calculate

the max finish date of tasks:
« One where durations were correlated
* One where durations were assumed independent

* In both cases, we had to determine the functional correlation
of the finish dates of the merging tasks because they shared
the same predecessor

« The variance of the finish date of the predecessor linked their finish

date variances

 When compared to a 100,000 trial statistical simulation the

results were an excellent match

Analytic Simulation

mean sigma mean sigma
max(15,17,18,19) | 01/10/14 16.02| 01/10/14| 16.0638
max(23,24) 08/08/14 19.69| 08/08/14| 19.75134
max(27,36) 09/28/14 20.78| 09/27/14| 21.55239
max(28,29) 11/30/14 21.67| 11/28/14| 22.43632
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* Once we knew the moments of the finish dates of the tasks,
calculating the finish date statistics of the project was fairly
simple

« Comparing the results of our analytic approximation to a
100,000-trial statistical simulation we see very good
agreement as well.

« Differences in the statistics are due to sampling errors in the
simulation (for wd statistics) and due to conversion of the analytic
results into calendar dates (for cd statistics).

Finish Date | Analytic Approach [ Statistical Simulation

g, (wd) 02/20/15 02/18/15
of, (wd) 23.09 23.74
pr (cd) 02/05/16 01/24/16

o (cd) 32.34 33.17
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* The schedule duration was modeled using a single
lognormal distribution and a mixed distribution representing
the inclusion of discrete risks

PDF of Program Duration
0.02 -
0.018
0.015
0.014 - m
5 o /—\\
= noas ﬂl s | e normal
0.006 hdized
0.004 -+
0.002
0
750 500 850 900 950 1000
Duration (wd)
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gk 2 Criticality Index (1)

« The criticality index (Cl) was computed based on the
probability a particular task is on the critical path

* In other words, The Cl is the probability that one task’s finish date is
greater than others, or Prob(X>Y)

« This can be re-written as Prob(Y<X)=Prob(Y-X<0)

+ So we want to find the area of the PDF of Y-X from -co to O
* Its mean will be E[Y — X] = E[Y] — E[X]
« lItsvariance will be Var|Y — X] = Var[X] + Var[Y] — 2Cov(X,Y)
+ Since all of our merging tasks had lognormally distributed
finish dates, this was a fairly simple task

* |t allowed us to calculate the CIl of each schedule element
and linearize the schedule a little more
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 CIl of tasks In NASA schedule network

Task ID | Upuration | ODuration| M Start O Start K Finish OFinish c
10 213.50 4.88 | 10/01/12 0.00 | 05/02/13 4.88 100%
11 142.33 4.37 | 10/01/12 0| 02/20/13 4.37 100%
12 71.17 2.18 | 02/20/13 4.37 | 05/02/13 4.88 100%
14 115.73 6.98 | 05/02/13 4.88 | 08/26/13 8.52 100%
15 231.47 13.97 | 08/26/13 8.52 | 04/14/14 16.36 0%
16 86.80 5.24 | 08/26/13 8.52 | 11/21/13 10.00 100%
17 144.67 8.73 | 11/26/13 17.57 | 04/20/14 19.62 0%
18 231.47 13.97 | 11/26/13 17.57 | 07/16/14 22.45 100%
19 173.60 10.48 | 11/26/13 17.57 | 05/19/14 20.46 0%
20 130.20 7.86 | 07/16/14 22.44 | 11/23/14 23.78 100%

23 159.60 14.55 | 11/23/14 23.78 | 05/01/15 27.88 | 16.62%
24 159.60 14.55 | 11/23/14 23.78 | 05/01/15 27.88 | 16.62%
25 220.50 10.50 | 11/23/14 23.78 | 07/01/15 25.99 | 66.76%

27 56.00 8.40 | 05/06/15 27.58 | 07/01/15 28.83 | 33.24%
28 50.63 5.03 | 07/01/15 28.83 | 08/20/15 29.26 0%
29 86.80 8.63 | 07/16/15 29.10 | 10/10/15 30.35 100%
30 100.80 10.34 | 10/13/15 30.35 | 01/22/16 32.06 100%
32 14.00 4.20 | 01/22/16 32.06 | 02/05/16 32.34 100%
34 0.00 0.00 | 05/01/15 27.88 | 05/01/15 27.88 0%
35 5.60 14.45 | 11/21/13 10.00 | 11/26/13 17.57 100%

36 10.50 16.12 | 07/01/15 25.99 | 07/12/15 30.58 | 66.76%
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* The results of the CI analysis showed which tasks needed
to be considered in the linearized schedule

 Those tasks with CI=0 were eliminated
 Qur linearized schedule becomes

D =Dy +Dyy + Dy + Dyg + D35 +Dyg + Dyg+ Dppgag) + Dog +
D3 + Dy, Where Dip556) = max [max(Dys, Day) + Dz, Das + Dyl
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« The cost of WBS elements were linked to task durations in
the schedule network

* Individual lowest-level WBS element Costs,X;, are defined
by the combination of TD* and TI* costs as follows:

(TDiETDi)(TIiETii) = Duration’l-sTD!.RateisT,i ,if Tl is multiplicative
o [(TDI-STD!.)(TII)] +& = (Duration’,-sTDiRatei) + &y, ,if Tl is additive
where:
ery; is the TI PDF

erp, is the TD PDF

Duration’; is the probabilistic task duration in wd.
Rate; is the nominal cost per wd.

* The individual task costs were statistically summed to their
respective summary-level WBS elements using Method of
Moments (FRISK)

* Time-dependent (TD) and time-independent (TI) i



AAAAAAAAA Discrete Risks
_ by ¢ h
V= aXi Xy ¢ where
Y Is cost 3 random variahle (RV)
WBS MC mean ME S|gn4a MOM Cost mean MOM Cost sigma

$8,793,49121 _ n nr SL00/000.00 \ £y $8,783,507.27
beﬁ)ddlebhh (kamed sbpldi== U, 70, sgldbloboee 1).0U  s4768,647.61

$7,376,313.44

1 s4,80p,000.00

L" - $7,829.138,10.
(, mn (d
$0.00 $0.00
X Pl:3n nct dnmiothetipe o RYfoRs.z T/Q 1
IIGH IVl LITGAL I & TY Y Ill \ ) U,J.U}

OLE cost dniver thatisa RV, X, = T(3
¢ 15 the percent standard error of the CE

)40,60)

R aRV,e=N(103)
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2 Probabilistic Weighting

- To create the mixed distribution of the project cost, fy_(x),
we combine the continuous and discrete distributions

fx,,(¥) = Xi=ops, fxs,(x) , where

fx, (x) represents the probability-of-occurrence-weighted sum of the
iIndividual states’ PDFs

ps, = the probability of occurrence of state S;
fxs (x) =the PDF of state S;

State Prob. Px Ox

So 0.49 $152,860,068.75 | $4,272,695.15
S, 0.21 $163,193,402.08 | $4,394,482.83
S, 0.21 $168,860,068.75 | $4,519,136.03
Ss 0.09 $179,193,402.08 | $4,634,452.08
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« The analytic results of the total cost were compared to those
from a 100,000 trial statistical simulation, and the results
agreed rather well

Computed Values Difference
Analytic Staitistical Simulation [Additive Percent
Mean $160,810,256.90 | $160,756,334.56 ($53,922.34) -0.034%
Sigma $9,765,611.10 | $10,053,584.87 ($287,973.77) -2.949%

« The PDFs of the lognormal approximation and the exact,
mixed distribution are

PDF of Program Cost

5E-08
4E-08 /\“

[AN

2E-08 \ = Lognormal

e i€ d
1E-08
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100 120 140 160 180 200
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et ‘ Joint Cost-Schedule PDF

* The joint cost-schedule PDF was developed using the
marginal distributions of cost and schedule using the
analytic results provided earlier

« The joint PDF was modeled as a bivariate lognormal
distribution

« This required knowing how the marginal distributions of cost and
schedule were correlated

* Fortunately, the correlation terms were vastly simplified by the
structure of the schedule

_ E[XD]-E[X]E[D] _ E[XD]—uxup: where X = ¥ ¢ X;, the sum
= — &j=LLWBS“1»

© Pxp = 0X0Dr OxODpr
of the costs of the lowest-level WBS elements, X;
« XD =

(X X)) (D11 + Dya + Dy + D(1519) + D3¢ + D2329) + D30 + D3;)
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* The resulting calculations show py p = 0.5322

* The results from the 100,000-trial statistical simulation show py , =
0.5597 , which is very similar

* The resulting joint PDF is pictured below
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* The mixed distribution provides more graphical information

Bivariate Lognormal Mixed Bivariate Lognormal

A S

« The joint probability of meeting the point estimates of cost ($151M) and
schedule (840 wd) is about 1.3%
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e |ntroduction
« Mathematical Problems in Cost and Schedule Estimates
* Probability Tools

* Products of Random Variables
* Expectation Methods
* Propagation of Errors

* Functional Correlation

» Discrete Risks

 Max and Min of Random Variables

« Parametric Estimate Example Problem

* Resource-Loaded Schedule Example Problem
« Summary

* Future Research
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e Summary

Analytic technigues like MOM can be used in a variety of
cost and schedule estimating problems

By their nature, they require more work up-front to create,
but they provide the exact moments and do it instantly

« The payoff is when we reuse the models
There have been gaps in the literature surrounding several

aspects of MOM for which we have provided solutions, but
we are confident there will be others!

In the near future, expect to see analytic techniques applied
more and more to cost and schedule risk analysis problems

88



@ SEER
WG ALORGATH Agenda

Covarus

Business - Math - Science

e |ntroduction
« Mathematical Problems in Cost and Schedule Estimates
* Probability Tools

* Products of Random Variables
* Expectation Methods
* Propagation of Errors

* Functional Correlation

» Discrete Risks

 Max and Min of Random Variables

« Parametric Estimate Example Problem

* Resource-Loaded Schedule Example Problem
e« Summary

* Future Research
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« Evaluating Statistical Simulations
« How do we know our simulations are accurate? Test them.
« Using Estimating Methods

* Do CERs provide better estimates over other methods when discrete risks
are considered? | think so.

« Basis of Estimate Credibility

« Multiple actuals provide a better case for an estimate, and should instill
more confidence in a bid. How do we prove this?

« Developing Cost Models

« Can we perform errors-in-variables (EIV) regression as easily as regression
of discrete variables? | think so!

« Improving Cost and Schedule Risk Tools
« How can MOM be effectively used in our cost models? MOM, MOM/sim.
Hybrids?
« Time-Phasing a Resource Loaded Schedule

« How do you include time-phasing in a resource-loaded schedule? Very
possible to do. 90
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