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Agenda 

• Motivation 

• Bayesian Statistics 

– How can it help us? 

– How is it applicable? 

– What is it? 

– Handling of different kinds of information 

• Example & Discussion 

• Concluding Remarks 
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Actual cost data 
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grounding in reality 

Tend to be ad-hoc 
adjustments 
made to cost 

modeling 

In the end, a cost 
assessment that captures 

all relevant sources of 
information is desired 

Uniqueness of 
concept can be 

problematic when 
using historical 

cost data 

Expertise and actual data, working together, is key to the cost estimation process. 
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Bayesian Statistics – How Can It Help Us? 

•	 A “full” probability model 

–	 A way to use all available sources of information from the start of the 

analysis
 

–	 A way to incorporate all relevant sources of uncertainty 

•	 Incorporates engineering, scientific and financial expertise to 

capture unique aspects of the concept in the probability model; not 

limited to just the data 

•	 Balances expert opinion with the evidence as realized by the data 

•	 Avoids ad-hoc adjustments to model output that degrades the 

interpretation of the probabilistic cost assessment 

•	 Small datasets: even one data point can provide useful information! 

The Bayesian approach can provide our probabilistic assessments with a more 

meaningful interpretation. 
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Bayesian Statistics – How Is It Applicable? 

Scientific Analysis
 

•	 Unlikely that a new instrument will be 
developed if it does not decrease a 
measurement’s uncertainty enough to 
draw significant conclusions 

•	 Bayesian analysis will adjust the belief 
of a prior hypothesis 

•	 Bayesian analysis can reinforce a 
current hypothesis, entertain other 
hypotheses, or lead to new hypotheses 

Cost Analysis
 

•	 While expertise can evaluate unique 
aspects of a mission, they may contain 
biases (optimistic mean, uncertainty) 

•	 While historic data is grounded in reality, 
analogies can be rough, producing wider 
uncertainty than may be appropriate 

•	 Bayesian analysis will balance – be a 
compromise between – the hard data 
and institutional expertise 
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Bayesian Statistics – What Is It? 

Bayesian Classicalist 

Data 
Fixed as observed. Provides the 

evidence for things unknown. 

A random variable, observed 

with error. 

Distribution Unobservables that require Unknown but have “true” fixed 

Parameters probability distributions. values that we estimate. 

𝐶𝑜𝑠𝑡 = 𝛽0 × 𝑉𝑎𝑟1 
𝛽1 × 𝑉𝑎𝑟2 

𝛽2 × 𝜀 

Fit to Data 

Prior = Pr(β) based on 

formal studies of concept, 

NASA/JPL Knowledge Base 

Bayesian 

Classicalist 

Data Likelihood = Pr(Data|β) 

How the historical data 

supports the expert knowledge 

Posterior = Pr(β|Data) 

= Likelihood x Prior / Pr(Data) 

We use this to predict – the 

Expertise calibrated to the Data 
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Bayesian Regression – What Is It? 
Β

0
|D

at
a

Β1|Data

Data

Study

New Concept 
Variable x~

Cost of New Concept: 
y~|x~, Data

Graph is notional. Σ, θ not illustrated for presentation purposes.

Pro
b. D

ensit
y

C
o

st

Variable (e.g. Mass)

Bayesian Regression informs 

the relationship amongst 

variables (the parameters) 

and how they move with Cost 

The values of different 

variables do not matter as 

much as the relationships they 

share. 

In case you were wondering: 
 
p(y~ | X~, Data) = ∫β ∫Σ ∫θ [ p(y~ | β, Σ, θ, X~, Data) p(β, Σ, θ | X~, Data) ] dθ dΣ dβ
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Treating Different Kinds of Information 

•	 All types of information (historical actual data, studies, expertise) 

need to be assessed for its proper role in the model 

•	 Many ways to do this: 

–	 Do nothing: let the data do the work 

•	 Good, if the data is good and very relevant 

•	 To much weight given to actuals if they are not 

extremely similar to what is being estimated
 

–	 Pseudo-observations: Each study that forms the 

prior distribution is treated as x number of actual 

observations (typically 0<x≤1) 
•	 This is the path taken in the example to follow (x=0.5) 

–	 Prediction strength: Weight different pieces of 

information to maximize prediction strength of 

model 

–	 Hierarchical modeling and many other techniques 

Database 
Information 

In
te

gr
it

y 

Relevance
 

Treat all information going into the model according to its relevance and 

integrity. 
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An Example: Early Concept Formulation 

• Goal: Evaluate feasibility of a given mission 

concept 

– What cost family does it belong to? 

• JPL has a cost & technical database of actual 

historic data as well as an inventory of concept 

studies 

• Regression models assembled for Spacecraft 

and I&T costs 

– Earth Orbiting model example shown here 

– Uses a conjugate prior model: 

•	 (β, Σ, θ | Data) drawn from a Normal-Inverse-Wishart 

distribution 
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An Example: Earth Orbiting Spacecraft CER 

*Reported Cost, Actual: The actual cost documented as of Launch or later. 

Reported Cost, Study: The documented cost estimate (w/o reserve). 

•	 All information (Actuals & 
Studies) used to build 
CER 

•	 Only actual data used to 
validate CER 

–	 Bootstrap Cross-validation 
used to derive “PE” = 
Prediction Error 

•	 Significant Cost 
Drivers/Predictors: 

–	 Phase E/F Duration (PhEF) 

–	 Payload Cost (PLCost) 

–	 Coefficients shown in 
equation are the means of 
posterior probability 
distributions (next slide) 
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An Example: Earth Orbiting Spacecraft CER 

Bayesian analysis will balance – be a compromise between – the hard data 

and institutional expertise
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Concluding Remarks 

•	 Bayesian Regression gives a very flexible and versatile framework to 
capture uncertainty 
–	 Informs the relationships between variables 

•	 Balances, via compromise, differences between “prior information” 
and data 

•	 Can provide our probabilistic models a more meaningful interpretation 

•	 The Prior Distribution 
–	 Does not need to be feared as a “feeling-based” subjective element that skews the 

analysis 
•	 More objective priors can be developed from relevant data and past studies 

–	 Every credible cost assessment will (and does) rely in part on the injection of expert 
opinion due to the uniqueness of missions and areas where our data is inadequate 

•	 Future work: 
–	 Generalizing outside the Gaussian framework 

–	 Explore hierarchical modeling and other ways of weighting information 

–	 Other Bayesian methods of model checking (e.g. Bayes’ Factor) 
–	 Visualization and Model Adaptability 

Bayesian methods provide many new perspectives, allowing us to leverage critical 

sources of information: expertise and data, in a sound probabilistic framework. 
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Backup Slides 

• Bayes’ Theorem and its Statistical Interpretation for this Application 

• Covariance structure between Regression Coefficients 

• Bayesian Universe: Observables vs. Unobservables 

• Bayesian Formulas and the Likelihood Function 

• CER Development Process 

• CER Conjugate Prior Model 

• Abstract 
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Bayesian Statistics – What Is It (in Math Terms)? 

For any events A and B in a probability space, 
Mathematically: 

Pr(A | B) = Pr(B | A) x Pr(A) / Pr(B) Bayes’ Theorem 

A→ set of parameters, Parms
 
B → Data = {y1, y2, …, yn}
 

Likelihood PriorPosterior 

Statistically: p(Parms | Data) = p(Data | Parms) x p(Parms) / p(Data) 

y = Xβ + θ: Linear model
 
β: Regression coefficients,
 
Σ: Covariance matrix of the βs
 
θ: Our fundamental model 

variability not accounted for by Xβ
	

For Our 
p(β, Σ, θ | Data) = p(Data | β, Σ, θ) x p(β, Σ, θ) / p(Data) 

Application: 

We integrate with this to get p(y~ | X~, Data), the probability of a 

new concept’s cost (y~), given it’s predictors (X~) and the Data.  
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An Example: Earth Orbiting Spacecraft CER 

𝑆/𝐶 𝐶𝑜𝑠𝑡 ~ 𝛽0 × 𝑃𝐿𝐶𝑜𝑠𝑡
𝛽1 × 𝐸𝐹𝐷𝑢𝑟𝛽2 

•	 Significant difference 
between how Studies 
and Actuals regard 
mean impact of cost 
driving variables 

•	 Covariance structure 
similar between Actual 
data and Studies 

•	 Difference in mean 
values of parameters 
adds to the total 
posterior variance 

–	 Posterior covariance not 
shown for presentation 
purposes 
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Bayesian Statistics – What Is It? 

Bayesian Classical 

Data 
Fixed as observed. Provides the 
evidence for things unknown. 

A random variable, observed 
with error. 

Distribution Unobservables that require Unknown but have “true” fixed 
Parameters probability distributions. values that we estimate. 

Observables 

Unobservables 

The Bayesian 
Universe 

β 

Θ 
γ 

Parameters, Variables, Data, etc. 

Distance 
Metric 

“Study” 
Data 

“!ctual” 
Data Model 

Form 

Cluster 
Algorithm 

User 
Inputs 
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Bayesian Statistics – What Is It? 

•	 Mathematically: Bayes’ Theorem 

–	 For any events A and B in a probability space, 

Pr(A | B) = Pr(B | A) x Pr(A) / Pr(B) 

•	 Statistically: In the above, let 

–	 Let A be a set of parameters, denoted by β and θ, depending on the context 

–	 Let B be a set of data, denoted Data = {y1, y2, …, yn} 

–	 Use probability density function notation since we are using random variables 

p(β, θ | Data) = p(Data | β, θ) x p(β, θ) / p(Data) 

–	 Once the data is observed, we can write p(Data | β, θ) as the “likelihood function”, a 
function of β, θ, denoted L(β, θ | Data) 

–	 p(Data) is a normalizing factor (constant) in the calculations, so, for this 

presentation we remove it and write: 
 

p(β, θ | Data) α L(β, θ | Data) x p(β, θ) 

•	 Do not mean to downplay the importance of p(Data) 

–	 Plays a very interesting role in Bayesian analysis, especially for evaluating the 

evidence when comparing models
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• Information – Actual historic data and 
concept Study information – assessed 
individually and collectively 

• Model CERs developed with all data, 
validated on actuals only 

Cluster 
Analysis 

Principal 
Components 

Analysis 

Group Info 
(Homogeneity) 

Assess Info in 
Database 

Available 
Categorical 

Fields 

Available 
Quantitative 

Fields 

Identify Key 
Variables 

Principal 
Components 

Analysis 

Pairwise OLS 
Regression 

Gaussian 
Conjugate 

Prior Model* 

Architect 
Model 

Calculate CERs 
& Validate 

Significance 
tests, Normality 

check 

Bootstrap 
Cross-

validation 

Bayes Factor 

Variogram 
Assessment 

An Example: CER Development Process 

* Normal-(Inverse) Wishart conjugate prior model. This model was chosen for simplicity of application and fidelity 
for cost estimation during early formulation. 
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Example CER: Conjugate Prior Model 

•	 Conjugate Prior Model: Where the Prior Distribution and Posterior 

Distributions have the same distributional form, just different parameters. 

•	 For our application we assume a Multivariate Normal likelihood model (in 

log-log space) for simplicity of application and fidelity for cost estimation 

during early formulation. 

•	 Our conjugate prior model is a Normal-Inverse-Wishart distribution 

–	 Assumes both mean and covariance structure of regression coefficients are 

unknown. 

–	 Use Inverse Wishart distribution to simulate Sum of Squares matrix (which 

gives covariance matrix) 

–	 Then simulate regression coefficients using Multivariate Normal Distribution, 

given the Covariance matrix 

Source: https://en.wikipedia.org/wiki/Conjugate_prior 

22 
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Abstract 

•	 Assessing cost and feasibility of NASA space mission concepts at 

early design phases requires not only relevant flown mission data, but 

also strong engineering, scientific and financial expertise to guide 

the concept into what is many times new territory. 

•	 Presented here is a Bayesian method for developing Cost Estimating 

Relationships that leverages both of these critical sources of information 

(i.e. expertise and data). 

•	 This is done within a flexible modeling framework, allowing for real-time 

probabilistic cost assessments. 

•	 We discuss how this method treats different kinds of information 

available and how to interpret results. 

•	 Practical application of this method is also discussed, within the context 

of assessing mission feasibility, before commitments are made, 

proposals submitted and projects implemented. 
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