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• Motivation

• Bayesian Statistics

– How can it help us?

– How is it applicable?

– What is it?

– Handling of different kinds of information

• Example & Discussion

• Concluding Remarks
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Gather Data

CADRe
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Motivation – A Cost Estimation Scenario

Expertise and actual data, working together, is key to the cost estimation process.
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Motivation – A Cost Estimation Scenario

Expertise and actual data, working together, is key to the cost estimation process.

New 

Mission 

Concept

Formulate Cost 

Recommendation 

for New Mission 

Concept

CADReCADRe

=

CADRe

Rover Pwr 

Analog 

Module B

Rover Pwr 

Analog 

Module A

Descent 

Pwr Analog 

Module B

Descent 

Pwr Analog 

Module A

Cruise Pwr 

Analog 

Module B

Cruise Pwr 

Analog 

Module A

SDST

DIMU

Rover 

Compute 

Element B

Instruments

Rover Power 

Assembly

RTG

Li/Ion

Batteries

Rover Motor 

Cntl Assy

Rover 

Shunt Rad

 B NSI’s

Rover

Cruise Stage Descent Stage

Cruise 

Power 

Assembly

Cruise 

Shunt 

Rad

Thermal 

Batteries

Radar

Descent 
Motor 
Cntl 
Assy

MLE’s

Pyro Thermal 

Batteries

RIMU A

Cruise Prop Descent Prop

EDL 1553 Bus

Rover 1553 Bus

X-Band

Rover 

Compute 

Element A

Loads / Relays

Analog / Temps

X 10

Power

Rover 1553

EDL 1553

Analog

Digital

SDST
X-Band

Telecom
Electra

UHF B
UHF A

Solar 

Array

Rover Pyro 

Fire Assy A

Rover Pyro 

Fire Assy B

Loads / Relays

Analog / Temps

 A NSI’s

Loads / Relays
Analog / Temps

Loads / Relays

Analog / Temps

Star 

Scanner

Sun 

Sensor B

Sun 

Sensor A

 NSI’s
Descent Pyro 
Fire Slice A

Descent Pyro 
Fire Slice B

 NSI’s

Loads / Relays
Analog / Temps

Loads / Relays
Analog / Temps

Cameras (6)

Cameras (4)

Arm/

Enable
BCB

RIMU B

Descent 
Power 

Assembly

MEDLI

Heatshield

Bridge

Bridge

Cold 

Encoder
Motors

(ECR 105563)

Review Modeling 

Assumptions / 

Results with Experts, 

Team, Project, etc.

Develop, Calibrate & 

Run Cost Models

Perform Build-up 

“Grassroots” Estimate

Uniqueness of 
concept can be 

problematic when 
using historical 

cost data



JPL Innovation Foundry

Gather Data

CADRe

4

Motivation – A Cost Estimation Scenario

Expertise and actual data, working together, is key to the cost estimation process.
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Motivation – A Cost Estimation Scenario

Expertise and actual data, working together, is key to the cost estimation process.
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Motivation – A Cost Estimation Scenario

Expertise and actual data, working together, is key to the cost estimation process.
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concept can be 

problematic when 
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• A “full” probability model

– A way to use all available sources of information from the start of the 

analysis

– A way to incorporate all relevant sources of uncertainty

• Incorporates engineering, scientific and financial expertise to 

capture unique aspects of the concept in the probability model; not 

limited to just the data

• Balances expert opinion with the evidence as realized by the data 

• Avoids ad-hoc adjustments to model output that degrades the 

interpretation of the probabilistic cost assessment

• Small datasets: even one data point can provide useful information!

7

Bayesian Statistics – How Can It Help Us?

The Bayesian approach can provide our probabilistic assessments with a more 

meaningful interpretation.
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• Unlikely that a new instrument will be 
developed if it does not decrease a 
measurement’s uncertainty enough to 
draw significant conclusions

• Bayesian analysis will adjust the belief 
of a prior hypothesis

• Bayesian analysis can reinforce a 
current hypothesis, entertain other 
hypotheses, or lead to new hypotheses

8

Bayesian Statistics – How Is It Applicable?

Scientific Analysis Cost Analysis

• While expertise can evaluate unique 
aspects of a mission, they may contain 
biases (optimistic mean, uncertainty)

• While historic data is grounded in reality, 
analogies can be rough, producing wider 
uncertainty than may be appropriate

• Bayesian analysis will balance – be a 
compromise between – the hard data 
and institutional expertise



JPL Innovation Foundry

Bayesian Statistics – What Is It?

𝐶𝑜𝑠𝑡 = 𝛽0 × 𝑉𝑎𝑟1
𝛽1 × 𝑉𝑎𝑟2

𝛽2 × 𝜀

Fit to Data

Bayesian

Classicalist

Bayesian Classicalist

Data
Fixed as observed. Provides the 

evidence for things unknown.

A random variable, observed 

with error.

Distribution 

Parameters

Unobservables that require 

probability distributions.

Unknown but have “true” fixed 

values that we estimate.

Data Likelihood = Pr(Data|β)

How the historical data 

supports the expert knowledge Prior = Pr(β) based on 

formal studies of concept, 

NASA/JPL Knowledge Base
Posterior = Pr(β|Data)

= Likelihood x Prior / Pr(Data)

We use this to predict – the 

Expertise calibrated to the Data

9
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Bayesian Regression – What Is It?

Bayesian Regression informs 

the relationship amongst 

variables (the parameters) 

and how they move with Cost

The values of different 

variables do not matter as 

much as the relationships they 

share.

In case you were wondering:

p(y~ | X~, Data) = ∫β ∫Σ ∫θ [ p(y~ | β, Σ, θ, X~, Data) p(β, Σ, θ | X~, Data) ] dθ dΣ dβ

Β
0

|D
at

a

Β1|Data

Data

Study

New Concept 
Variable x~

Cost of New Concept: 
y~|x~, Data

Graph is notional. Σ, θ not illustrated for presentation purposes.

Pro
b. D

ensit
y

C
o

st

Variable (e.g. Mass)



JPL Innovation Foundry

• Many ways to do this:

– Do nothing: let the data do the work

• Good, if the data is good and very relevant

• To much weight given to actuals if they are not 

extremely similar to what is being estimated

– Pseudo-observations: Each study that forms the 

prior distribution is treated as x number of actual 

observations (typically 0<x≤1)

• This is the path taken in the example to follow (x=0.5)

– Prediction strength: Weight different pieces of 

information to maximize prediction strength of 

model

– Hierarchical modeling and many other techniques

11

Treating Different Kinds of Information

Database 
Information

In
te

gr
it

y

Relevance

Treat all information going into the model according to its relevance and 

integrity.

• All types of information (historical actual data, studies, expertise) 

need to be assessed for its proper role in the model
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• Goal: Evaluate feasibility of a given mission 

concept

– What cost family does it belong to?

• JPL has a cost & technical database of actual 

historic data as well as an inventory of concept 

studies

• Regression models assembled for Spacecraft 

and I&T costs

– Earth Orbiting model example shown here

– Uses a conjugate prior model:

• (β, Σ, θ | Data) drawn from a Normal-Inverse-Wishart

distribution

12

An Example: Early Concept Formulation
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• All information (Actuals & 
Studies) used to build 
CER

• Only actual data used to 
validate CER

– Bootstrap Cross-validation 
used to derive “PE” = 
Prediction Error

• Significant Cost 
Drivers/Predictors:

– Phase E/F Duration (PhEF)

– Payload Cost (PLCost)

– Coefficients shown in 
equation are the means of 
posterior probability 
distributions (next slide)

13

An Example: Earth Orbiting Spacecraft CER

*Reported Cost, Actual: The actual cost documented as of Launch or later.

Reported Cost, Study: The documented cost estimate (w/o reserve).
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An Example: Earth Orbiting Spacecraft CER

Bayesian analysis will balance – be a compromise between – the hard data 

and institutional expertise
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• Bayesian Regression gives a very flexible and versatile framework to 
capture uncertainty
– Informs the relationships between variables

• Balances, via compromise, differences between “prior information” 
and data

• Can provide our probabilistic models a more meaningful interpretation

• The Prior Distribution
– Does not need to be feared as a “feeling-based” subjective element that skews the 

analysis
• More objective priors can be developed from relevant data and past studies

– Every credible cost assessment will (and does) rely in part on the injection of expert 
opinion due to the uniqueness of missions and areas where our data is inadequate

• Future work:
– Generalizing outside the Gaussian framework

– Explore hierarchical modeling and other ways of weighting information

– Other Bayesian methods of model checking (e.g. Bayes’ Factor)

– Visualization and Model Adaptability

15

Concluding Remarks

Bayesian methods provide many new perspectives, allowing us to leverage critical 

sources of information: expertise and data, in a sound probabilistic framework.
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• Bayes’ Theorem and its Statistical Interpretation for this Application

• Covariance structure between Regression Coefficients

• Bayesian Universe: Observables vs. Unobservables

• Bayesian Formulas and the Likelihood Function

• CER Development Process

• CER Conjugate Prior Model

• Abstract

16
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Bayesian Statistics – What Is It (in Math Terms)?

Mathematically: 

Bayes’ Theorem

Statistically:

For Our 

Application:

For any events A and B in a probability space,

Pr(A | B) = Pr(B | A) x Pr(A) / Pr(B)

p(Parms | Data) = p(Data | Parms) x p(Parms) / p(Data)

A → set of parameters, Parms

B → Data = {y1, y2, …, yn}
Likelihood

p(β, Σ, θ | Data) = p(Data | β, Σ, θ) x p(β, Σ, θ) / p(Data)

PriorPosterior

y = Xβ + θ: Linear model

β: Regression coefficients, 

Σ: Covariance matrix of the βs

θ: Our fundamental model 

variability not accounted for by Xβ

We integrate with this to get p(y~ | X~, Data), the probability of a 
new concept’s cost (y~), given it’s predictors (X~) and the Data.
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• Significant difference 
between how Studies 
and Actuals regard 
mean impact of cost 
driving variables

• Covariance structure 
similar between Actual 
data and Studies

• Difference in mean 
values of parameters 
adds to the total 
posterior variance

– Posterior covariance not 
shown for presentation 
purposes

18

An Example: Earth Orbiting Spacecraft CER

𝑆/𝐶 𝐶𝑜𝑠𝑡 ~ 𝛽0 × 𝑃𝐿𝐶𝑜𝑠𝑡𝛽1 × 𝐸𝐹𝐷𝑢𝑟𝛽2
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Observables

Unobservables

The Bayesian 
Universe

β

Θ

γ

Parameters, Variables, Data, etc.

Distance 
Metric

“Study” 
Data

“Actual” 
DataModel 

Form

Cluster 
Algorithm

User 
Inputs

Bayesian Statistics – What Is It?

Bayesian Classical

Data
Fixed as observed. Provides the 
evidence for things unknown.

A random variable, observed 
with error.

Distribution 
Parameters

Unobservables that require 
probability distributions.

Unknown but have “true” fixed 
values that we estimate.

19
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• Mathematically: Bayes’ Theorem

– For any events A and B in a probability space,

Pr(A | B) = Pr(B | A) x Pr(A) / Pr(B)

• Statistically: In the above, let

– Let A be a set of parameters, denoted by β and θ, depending on the context

– Let B be a set of data, denoted Data = {y1, y2, …, yn}

– Use probability density function notation since we are using random variables

p(β, θ | Data) = p(Data | β, θ) x p(β, θ) / p(Data)

– Once the data is observed, we can write p(Data | β, θ) as the “likelihood function”, a 
function of β, θ, denoted L(β, θ | Data)

– p(Data) is a normalizing factor (constant) in the calculations, so, for this 
presentation we remove it and write:

p(β, θ | Data) α L(β, θ | Data) x p(β, θ)

• Do not mean to downplay the importance of p(Data)

– Plays a very interesting role in Bayesian analysis, especially for evaluating the 
evidence when comparing models

20

Bayesian Statistics – What Is It?
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• Information – Actual historic data and 
concept Study information – assessed 
individually and collectively

• Model CERs developed with all data, 
validated on actuals only

Cluster 
Analysis

Principal 
Components 

Analysis

Group Info 
(Homogeneity)

Assess Info in 
Database

Available 
Categorical 

Fields

Available 
Quantitative 

Fields

Identify Key 
Variables

Principal 
Components 

Analysis

Pairwise OLS 
Regression

Gaussian 
Conjugate 

Prior Model*

Architect 
Model

* Normal-(Inverse) Wishart conjugate prior model. This model was chosen for simplicity of application and fidelity 
for cost estimation during early formulation.

Calculate CERs 
& Validate

Significance 
tests, Normality 

check

Bootstrap 
Cross-

validation

Bayes Factor

Variogram 
Assessment

An Example: CER Development Process

21
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• Conjugate Prior Model: Where the Prior Distribution and Posterior 

Distributions have the same distributional form, just different parameters.

• For our application we assume a Multivariate Normal likelihood model (in 

log-log space) for simplicity of application and fidelity for cost estimation 

during early formulation.

• Our conjugate prior model is a Normal-Inverse-Wishart distribution

– Assumes both mean and covariance structure of regression coefficients are 

unknown.

– Use Inverse Wishart distribution to simulate Sum of Squares matrix (which 

gives covariance matrix)

– Then simulate regression coefficients using Multivariate Normal Distribution, 

given the Covariance matrix

22

Example CER: Conjugate Prior Model

Source: https://en.wikipedia.org/wiki/Conjugate_prior
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• Assessing cost and feasibility of NASA space mission concepts at 

early design phases requires not only relevant flown mission data, but 

also strong engineering, scientific and financial expertise to guide 

the concept into what is many times new territory. 

• Presented here is a Bayesian method for developing Cost Estimating 

Relationships that leverages both of these critical sources of information 

(i.e. expertise and data). 

• This is done within a flexible modeling framework, allowing for real-time 

probabilistic cost assessments. 

• We discuss how this method treats different kinds of information 

available and how to interpret results. 

• Practical application of this method is also discussed, within the context 

of assessing mission feasibility, before commitments are made, 

proposals submitted and projects implemented.

23

Abstract


