Historical Perspectives of NASA Missions

NASA Goddard Space Flight Center, Code 400
Cindy Fryer, Chief Resource Analysis Office (RAO), Code 405
Paul Guill, Lead Mathematical Modeling
Dori Cates
Devon Greene

COST, Inc.
Donald H. Strope

August 13, 2014
Table of Contents

1 Introduction
2 Time Series
3 Satellite Characteristics
4 Cost
5 Schedule
6 Reliability
7 Conclusion
Contents

1. Introduction
2. Time Series
3. Satellite Characteristics
4. Cost
5. Schedule
6. Reliability
7. Conclusion
Earth Science
 - Land surface, atmosphere, oceans & climate

Space Science
 - Heliophysics, astrophysics & lunar excluding the Small Explorer Program (SMEX)
Ground Rules & Assumptions

- Database excludes Hubble Space Telescope (HST)
- Database excludes planetary missions (lunar missions are included)
 - Slides 26 & 27 include all NASA SMD missions
- Costs are for Phase C/D except where designated as life cycle cost
 - Excludes: formulation, Phase C/D for ground systems/mission operations, prime contractor fee, Phase E and launch vehicle
- Costs normalized to out-of-house rate and are in constant year millions
- Satellite refers to the instrument payload (WBS 5), spacecraft bus (WBS 6) and systems I&T (WBS 10)
- Bus costs include the cost of the spacecraft bus and systems I&T
- Meteorological and operational missions in a series are included in cost and mass, but schedule represents only the first build
3 Satellite Characteristics
Average Number of Instruments per Satellite

<table>
<thead>
<tr>
<th>Launch Decade</th>
<th>Earth</th>
<th>Space</th>
<th>SMEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980s</td>
<td>2.1</td>
<td>5</td>
<td>4.3</td>
</tr>
<tr>
<td>1990s</td>
<td>2.2</td>
<td>4.9</td>
<td>3.5</td>
</tr>
<tr>
<td>2000s</td>
<td>1.8</td>
<td>3.6</td>
<td>4.1</td>
</tr>
<tr>
<td>After 2010</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Average Percentage Distribution of Satellite Cost

<table>
<thead>
<tr>
<th>Type</th>
<th>Launch Decade</th>
<th>Instruments</th>
<th>Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth</td>
<td>1980's</td>
<td>52%</td>
<td>48%</td>
</tr>
<tr>
<td></td>
<td>1990's</td>
<td>65%</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>2000's</td>
<td>56%</td>
<td>44%</td>
</tr>
<tr>
<td></td>
<td>After 2010</td>
<td>43%</td>
<td>57%</td>
</tr>
<tr>
<td>Space</td>
<td>1980's</td>
<td>59%</td>
<td>41%</td>
</tr>
<tr>
<td></td>
<td>1990's</td>
<td>62%</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td>2000's</td>
<td>62%</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td>After 2010</td>
<td>61%</td>
<td>39%</td>
</tr>
<tr>
<td>SMEX</td>
<td>1980's</td>
<td>77%</td>
<td>23%</td>
</tr>
<tr>
<td></td>
<td>1990's</td>
<td>67%</td>
<td>33%</td>
</tr>
<tr>
<td></td>
<td>2000's</td>
<td>61%</td>
<td>39%</td>
</tr>
<tr>
<td></td>
<td>After 2010</td>
<td>53%</td>
<td>47%</td>
</tr>
</tbody>
</table>
Instrument Payload Cost per Kilogram Time Series

Historical Perspectives

August 13, 2014
Satellite Cost per Kilogram & Satellite Mass

Satellite Cost per Kilogram

- **Earth**: $0.32
- **Space**: $0.32
- **SMEX**: $0.39

Satellite Mass

- **Earth**: 1429 kg
- **Space**: 264 kg
- **SMEX**: 1910 kg

Mission Class
- Earth
- Space
- SMEX
Cost per Kilogram & Mass Comparison

Cost per Kilogram

- **Satellite**
 - Earth: $0.32
 - Space: $0.32
 - SMEX: $0.39

- **Bus**
 - Earth: $0.23
 - Space: $0.32
 - SMEX: $0.4

- **Instrument Payload**
 - Earth: $0.37
 - Space: $0.4
 - SMEX: $0.4

Average Mass

- **Satellite**
 - Earth: 1429 kg
 - Space: 1910 kg
 - SMEX: 264 kg

- **Bus**
 - Earth: 1074 kg
 - Space: 1063 kg
 - SMEX: 167 kg

- **Instrument Payload**
 - Earth: 354 kg
 - Space: 847 kg
 - SMEX: 97 kg
Average Mission Schedule by Decade
Start of Phase A to Launch
Life Cycle Average Monthly Satellite Burn Rate
Start of Phase A to Launch
Number of Launches & Hardware Failures
NASA SMD Missions

Failures represent failures of the spacecraft bus or instrument payload.
Hardware Failures: Planetary & Non-Planetary
NASA SMD Missions

All Decades (1980-2014)

<table>
<thead>
<tr>
<th>Mission Type</th>
<th>Total</th>
<th>Planetary</th>
<th>Non-Planetary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

1990's

<table>
<thead>
<tr>
<th>Mission Type</th>
<th>Total</th>
<th>Planetary</th>
<th>Non-Planetary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

2000's

<table>
<thead>
<tr>
<th>Mission Type</th>
<th>Total</th>
<th>Planetary</th>
<th>Non-Planetary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Hardware Percentage Failure Rate
Planetary & Non-Planetary Missions

1990's

- 27% Planetary Failures
- 6% Non-Planetary Failures

2000's

- 8% Planetary Failures
- 0% Non-Planetary Failures
Mission Reliability Classification & NASA SMD Budget
NASA SMD Budget from 1996 to 2013

Number of Missions

Launch Year

1980
1990
2000
2010

Cindy Fryer
Historical Perspectives
August 13, 2014 29 / 31
Conclusion

- Last 30+ years have been relatively stable in terms of cost & schedule
- SMEX program began prior to “Faster, Better, Cheaper” initiative, which was coined by Administrator Goldin
- SMEX missions stand out as being “Faster” and “Cheaper” thus making them “Better”
 - No judgement has been made on the value of science return
- SMEX program continues to be successful with low reliability missions (Class C and D) and few failures
- “Faster, Better, Cheaper” appears to be successful with lower reliability missions