Estimating Cost-To-Go Without Stable EVM Data

Peter C. Frederic, Tecolote
Ronald K. Larson, NASA

June 2013

The opinions expressed herein are solely those of the authors.
The opinions expressed herein are solely those of the authors.
Disclaimer – this presentation is not about interpretation of EVM data nor is it meant to be dismissive of EVM as a field of endeavor; we attempt only to provide an approach for estimating cost-to-go when a program’s EVM system has not stabilized despite significant work technical work accomplished and significant money spent.

Initial independent estimates for development programs typically created using parametric methods.

In early stages, cost-to-go estimate by simply subtracting sunk cost from the parametrically-estimated total.

As progress accrues, it is necessary to understand progress to-date in order to estimate cost-to-go.

Stable EVM data in a mature project provides measurement of work accomplished.

If EVM data not stable (at the total program level), an alternate approach is required.

The opinions expressed herein are solely those of the authors.
EAC experienced early growth, but stabilized.

The opinions expressed herein are solely those of the authors.
The Nominal Approach

\[EAC = ACWP_{\text{CUM}} + \frac{(BAC - BCWP_{\text{CUM}})}{CPI} \]

or

\[EAC = ACWP_{\text{CUM}} + \frac{(BAC - BCWP_{\text{CUM}})}{(CPI \times SPI)} \]

Where

- \(EAC \) = Estimate At Completion
- \(ACWP_{\text{CUM}} \) = Actual Cost of Work Performed (Cumulative)
- \(BAC \) = Budget At Completion
- \(BCWP_{\text{CUM}} \) = Budgeted Cost of Work Performed (Cumulative)
- \(CPI \) = \(\frac{BCWP_p}{ACWP_p} \) = Cost Performance Index over some period of time “p”
- \(SPI \) = \(\frac{BCWP_p}{BCWS_p} \) = Schedule Performance Index over some period of time “p”
- \(BCWS \) = Budgeted Cost of Work Scheduled

This can be applied at any WBS level for which EVM data is available

The opinions expressed herein are solely those of the authors.
A More Independent Approach

EAC = ACWP_{CUM} + (1 - BCWP_{CUM} / BAC) \times TC_{I}

Where

EAC = Estimate At Completion
ACWP_{CUM} = Actual Cost of Work Performed (Cumulative)
BCWP_{CUM} = Budgeted Cost of Work Performed (Cumulative)
BAC = Budget At Completion
TC_{I} = Independently estimated Total Cost

This can be applied at any WBS level for which EVM data is available.

The opinions expressed herein are solely those of the authors.
The opinions expressed herein are solely those of the authors.

The Off-Nominal Situation

- EAC has grown as fast as work has been accomplished!
- Estimated portion of EVM data (BAC, EAC) clearly unreliable
 - Must use independent estimate of total, not EVM EAC
 - Need to account for progress achieved without EVM BAC

EVM Data

- BCWP
- ACWP
- BCWS
- EAC

Fiscal Years

$
Possible Causes

- **Performance requirements growth**
 - Should be reflected in changes in cost-driving performance parameters

- **Design requirements growth**
 - Should be reflected in changes in cost-driving design parameters

- **Execution requirements growth**
 - Unforeseen additional tasks required to complete the development
 - May not be captured in typical cost-driving parameters

- **Poor understanding or/or definition of the effort required, resulting in really bad early cost estimating**

- **Requirements growth results in ECPs and contract modifications and is incorporated in performance measurement baseline**

- **Regardless of cause of cost growth, BAC and EAC can’t be trusted if growth has not stabilized**

The opinions expressed herein are solely those of the authors.
The opinions expressed herein are solely those of the authors.

The Solution

Key facts

- Sunk costs are auditable… they are what they are… however, they may not represent actual work accomplished
- The purpose of schedule milestones is to measure progress
- If definitions of key milestones are consistent with historical projects, then key milestones can be assumed to represent a consistent portion of overall work

Three step process

1. Look at historical data for similar projects and determine typical portion of work represented by key milestones
2. Look at schedule for current project and calculate completion factors based on when current milestones were or will be accomplished
3. Apply incompletion factors to independently estimated totals to estimate cost-to-go
Average percent spent at CDR: 39.3%
The opinions expressed herein are solely those of the authors.
<table>
<thead>
<tr>
<th>Name</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>System CDR</td>
<td>5/1/17</td>
<td>5/1/17</td>
</tr>
<tr>
<td>Launch Date</td>
<td>9/29/23</td>
<td>9/29/23</td>
</tr>
<tr>
<td>Instrument</td>
<td>10/1/13</td>
<td>6/1/21</td>
</tr>
<tr>
<td>Design</td>
<td>10/1/13</td>
<td>8/31/15</td>
</tr>
<tr>
<td>Instrument CDR</td>
<td>8/31/15</td>
<td>8/31/15</td>
</tr>
<tr>
<td>Fabrication and Assembly</td>
<td>9/1/15</td>
<td>4/30/20</td>
</tr>
<tr>
<td>Integration and Test</td>
<td>5/1/20</td>
<td>6/1/21</td>
</tr>
<tr>
<td>Spacecraft</td>
<td>10/1/13</td>
<td>8/13/21</td>
</tr>
<tr>
<td>Design</td>
<td>10/1/13</td>
<td>9/29/17</td>
</tr>
<tr>
<td>Spacecraft CDR</td>
<td>9/29/17</td>
<td>9/29/17</td>
</tr>
<tr>
<td>Fabrication and Assembly</td>
<td>10/2/17</td>
<td>7/9/20</td>
</tr>
<tr>
<td>Integration and Test</td>
<td>7/10/20</td>
<td>8/13/21</td>
</tr>
<tr>
<td>Space Vehicle Integration and Test</td>
<td>8/16/21</td>
<td>12/13/22</td>
</tr>
<tr>
<td>Ship and Launch Prep</td>
<td>12/14/22</td>
<td>3/9/23</td>
</tr>
</tbody>
</table>

The opinions expressed herein are solely those of the authors.
Sample Actual and Estimated Costs by WBS

<table>
<thead>
<tr>
<th>WBS</th>
<th>CDR Date</th>
<th>Spent Before CDR</th>
<th>ACWP</th>
<th>EAC</th>
<th>TCi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>8/31/2015</td>
<td>155.0</td>
<td>178.0</td>
<td>203.0</td>
<td>237.0</td>
</tr>
<tr>
<td>Spacecraft</td>
<td>9/29/2017</td>
<td>122.0</td>
<td>112.0</td>
<td>170.0</td>
<td>184.0</td>
</tr>
<tr>
<td>Space Vehicle Integration and Test</td>
<td>N/A</td>
<td>N/A</td>
<td>10.0</td>
<td>65.0</td>
<td>70.0</td>
</tr>
<tr>
<td>Launch</td>
<td>N/A</td>
<td>N/A</td>
<td>0.0</td>
<td>90.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>N/A</td>
<td>N/A</td>
<td>300.0</td>
<td>528.0</td>
<td>591.0</td>
</tr>
</tbody>
</table>

The opinions expressed herein are solely those of the authors.
Application of Incompletion Factors

<table>
<thead>
<tr>
<th>WBS</th>
<th>CDR Date</th>
<th>Spent Before CDR</th>
<th>Percent Complete Based on CPR Date</th>
<th>ACWP</th>
<th>TCi</th>
<th>Independent Cost To-Go</th>
<th>Value of Work Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>8/31/2015</td>
<td>155.0</td>
<td>45.1%</td>
<td>178.0</td>
<td>237.0</td>
<td>130.0</td>
<td>107.0</td>
</tr>
<tr>
<td>Spacecraft</td>
<td>9/29/2017</td>
<td>122.0</td>
<td>36.1%</td>
<td>112.0</td>
<td>184.0</td>
<td>117.6</td>
<td>66.4</td>
</tr>
<tr>
<td>Space Vehicle Integration</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>10.0</td>
<td>70.0</td>
<td>60.0</td>
<td>10.0</td>
</tr>
<tr>
<td>and Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Launch</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>300.0</td>
<td>591.0</td>
<td>407.7</td>
<td>183.3</td>
</tr>
</tbody>
</table>

- Calculate completion factors based on when current milestones were or will be accomplished
 - “a/c” represents effort completed relative to CDR, e.g. a/c = 112.0 / 122.0 = 91.8%
 - Historical effort represented by CDR is 39.3% of total effort, so overall Percent Complete is 91.8% * 39.3% = 36.1%.

- Apply incompletion factors to independently estimated totals to estimate cost-to-go
 - multiply inverse of Percent Complete times the independent total cost: (100% - 36.1%) * 184.0 = 117.6

The opinions expressed herein are solely those of the authors.
Conclusions

- It is possible to make sound estimates of costs to-go without stable EVM data
- Higher fidelity historical schedule data allows for higher fidelity estimating of progress based on milestone dates