Human Exploration & Operations Progress and Plans on the Journey to Mars

NAC HEO Committee
March 2016
Human Exploration of Mars Is Hard

Common Capability Needs Identified from Multiple Studies

- **800-1,100 Days**
 - Total time crew is away from Earth – for orbit missions all in Micro-g and Radiation

- **44 min**
 - Maximum two-way communication time delay – Autonomous Operations

- **500 Days**
 - Long Surface Stay

- **130 t**
 - Heavy-Lift Mass

- **Multiple**
 - Launches per mission

- **11.2 km/s**
 - Earth Entry Speed

- **Reliable In-Space Transportation**
 - Total continuous transportation power

- **20-30 t**
 - Ability to land large payloads

- **20 t**
 - Oxygen produced for ascent to orbit - ISRU

Surface Operations

Dust Toxicity and Long Range Exploration
Mars is Achievable If We Take the Long View

- **Space Launch System**
 - Engines
 - Stages (including EUS)
 - Boosters

- **Orion Crew Vehicle**

- **Ground System Development and Operations**

- **Commercial Crew & Cargo Vehicles**

- **Asteroid Redirect Mission**
 - Capture mechanism
 - Solar electric propulsion
 - Spacecraft bus and solar arrays

- **ISS Experiments & Research**

HEOMD has more space systems development ongoing today than at any time since Apollo!
Transition from ISS to Cislunar Space: Framework

Today

Phase 0: Exploration Systems *Testing on ISS*

Ends with testing, research and demos complete*

Asteroid Retrieval Crewed Mission Marks Move from Phase 1 to Phase 2

Phase 1: *Cislunar Flight Testing* of Exploration Systems

Phase 2: *Cislunar Validation* of Exploration Capability

*There are several other considerations for ISS end-of-life

Mid-2020s

2030
What We’ve Learned Thus Far and Still Need to Learn

Orbital Environment and Operations
- **Learned:**
 - Deep space navigation
 - Orbit transfer near low-gravity bodies
 - Gravity assist
 - Aero-braking
 - Gravitational potential
 - Mars's moons' characteristics
 - ISRU potential
- **To Learn:**
 - Return flight from Mars to Earth
 - Autonomous rendezvous and docking
 - ISRU feasibility
 - Resource characterization of Mars’s moons
 - High-power SEP

Capture, EDL, and Ascent at Mars
- **Learned:**
 - Spatial/temporal temperature variability
 - Density and composition variability
 - Storm structure, duration, and intensity
 - 1 mT payload
 - ~10 km accuracy
- **To Learn:**
 - Ascent from Mars
 - Large-mass EDL
 - Precision EDL
 - Aero-capture
 - Site topography and roughness
 - Long-term atmospheric variability

Surface Operations at Mars
- **Learned:**
 - Water once flowed and was stable
 - Global topography: elevation and boulder distributions
 - Remnant magnetic field
 - Dust impacts on solar power/mechanisms
 - Radiation dose
 - Global resource distribution
 - Relay strategies, operations cadence
- **To Learn:**
 - Landing site resource survey
 - Dust effects on human health, suits, and seals
 - Rad/ECLSS in Mars environment
 - Power sufficient for ISRU
 - Surface navigation
“In preparation for the 2017 transition of Administrations, the Council recommends that NASA further develop their plan for future Human Exploration, such that it:

(1) Provides a consistent vision across all elements of the program;

(2) Allows selection of technology investments on a timely basis;

(3) Enhances advocacy and continuity of support that transcends Administrations; and

(4) Provides the ability to respond to changes in the external environment (e.g., funding changes or technology breakthroughs).”
Capabilities for Pioneering Space: Steps on the Journey to Mars

<table>
<thead>
<tr>
<th>Mission Capability</th>
<th>ISS</th>
<th>Cis-lunar Short Stay (e.g. ARM)</th>
<th>Cis-lunar Long Stay</th>
<th>Cis-Mars Robotic</th>
<th>Mars Orbit</th>
<th>Mars Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working in Space and On Mars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Situ Resource Utilization & Surface Power</td>
<td>Exploratory ISRU Regolith</td>
<td>Exploratory ISRU & Atmosphere</td>
<td></td>
<td>Exploratory ISRU & High Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habitation & Mobility</td>
<td>Long Duration with Resupply</td>
<td>Initial Short Duration</td>
<td>Initial Long Duration</td>
<td>Resource Site Survey</td>
<td></td>
<td>Long Duration / Range</td>
</tr>
<tr>
<td>Human/Robotic & Autonomous Ops</td>
<td>System Testing</td>
<td>Crew-tended</td>
<td>Earth Supervised</td>
<td>Earth Monitored</td>
<td>Autonomously Rendezvous & Dock</td>
<td>Earth Monitored</td>
</tr>
<tr>
<td>Exploration EVA</td>
<td>System Testing</td>
<td>Limited Duration</td>
<td>Full Duration</td>
<td>Full Duration</td>
<td>Full Duration</td>
<td>Frequent EVA</td>
</tr>
<tr>
<td>Crew Health</td>
<td>Long Duration</td>
<td>Short Duration</td>
<td>Long Duration</td>
<td>Dust Toxicity</td>
<td>Long Duration</td>
<td>Long Duration</td>
</tr>
<tr>
<td>Environmental Control & Life Support</td>
<td>Long Duration</td>
<td>Short Duration</td>
<td>Long Duration</td>
<td>Long Duration</td>
<td>Long Duration</td>
<td>Long Duration</td>
</tr>
<tr>
<td>Radiation Safety</td>
<td>Increased Understanding</td>
<td>Forecasting</td>
<td>Forecasting Shelter</td>
<td>Forecasting Shelter</td>
<td>Forecasting Shelter</td>
<td>Forecasting & Surface Enhanced</td>
</tr>
<tr>
<td>Staying Healthy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascent from Planetary Surfaces</td>
<td></td>
<td>Sub-Scale MAV</td>
<td></td>
<td>Sub-Scale MAV</td>
<td>Human Scale MAV</td>
<td></td>
</tr>
<tr>
<td>Entry, Descent & Landing</td>
<td></td>
<td>Sub-Scale/Aero Capture</td>
<td></td>
<td>Sub-Scale/Aero Capture</td>
<td>Human Scale EDL</td>
<td></td>
</tr>
<tr>
<td>In-space Power & Prop</td>
<td>Low power</td>
<td>Low Power</td>
<td>Medium Power</td>
<td>Medium Power</td>
<td>High Power</td>
<td></td>
</tr>
<tr>
<td>Beyond LEO: SLS & Orion</td>
<td>Initial Capability</td>
<td>Initial Capability</td>
<td>Full Capability</td>
<td>Full Capability</td>
<td>Full Capability</td>
<td></td>
</tr>
<tr>
<td>Commercial Cargo & Crew</td>
<td>Cargo/Crew</td>
<td>Opportunity</td>
<td>Opportunity</td>
<td>Opportunity</td>
<td>Opportunity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EARTH RELIANT | **PROVING GROUND** | **EARTH INDEPENDENT**
Capability Development Risk Reduction

<table>
<thead>
<tr>
<th>Mission Capability</th>
<th>ISS</th>
<th>Cis-lunar Short Stay (e.g. ARM)</th>
<th>Cis-lunar Long Stay</th>
<th>Cis-Mars Robotic</th>
<th>Mars Orbit</th>
<th>Mars Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Situ Resource Utilization & Surface Power</td>
<td></td>
<td>Exploratory ISRU Regolith</td>
<td>Exploratory ISRU & Atmosphere</td>
<td>Exploratory ISRU</td>
<td>Resource Site Survey</td>
<td>Operational ISRU & High Power</td>
</tr>
<tr>
<td>Habitation & Mobility</td>
<td>Long Duration with Resupply</td>
<td>Initial Short Duration</td>
<td>Initial Long Duration</td>
<td></td>
<td></td>
<td>Long Duration / Range</td>
</tr>
<tr>
<td>Human/Robotic & Autonomous Ops</td>
<td>System Testing</td>
<td>Crew-tended</td>
<td>Earth Supervised</td>
<td>Earth Monitored</td>
<td>Autonomous Rendezvous & Dock</td>
<td>Earth Monitored</td>
</tr>
<tr>
<td>Exploration EVA</td>
<td>System Testing</td>
<td>Limited Duration</td>
<td>Full Duration</td>
<td>Full Duration</td>
<td>Full Duration</td>
<td>Frequent EVA</td>
</tr>
<tr>
<td>Crew Health</td>
<td>Long Duration</td>
<td>Short Duration</td>
<td>Long Duration</td>
<td>Dust Toxicity</td>
<td>Long Duration</td>
<td>Long Duration</td>
</tr>
<tr>
<td>Environmental Control & Life Support</td>
<td>Long Duration</td>
<td>Short Duration</td>
<td>Long Duration</td>
<td></td>
<td>Long Duration</td>
<td>Long Duration</td>
</tr>
<tr>
<td>Radiation Safety</td>
<td>Increased Understanding</td>
<td>Forecasting</td>
<td>Forecasting Shelter</td>
<td>Forecasting Shelter</td>
<td>Forecasting Shelter</td>
<td>Forecasting & Surface Enhanced</td>
</tr>
<tr>
<td>Ascent from Planetary Surfaces</td>
<td></td>
<td></td>
<td>Sub-Scale MAV</td>
<td>Sub-Scale MAV</td>
<td></td>
<td>Human Scale MAV</td>
</tr>
<tr>
<td>Entry, Descent & Landing</td>
<td></td>
<td></td>
<td>Sub-Scale/Aero Capture</td>
<td>Sub-Scale/Aero Capture</td>
<td></td>
<td>Human Scale EDL</td>
</tr>
<tr>
<td>In-space Power & Prop</td>
<td></td>
<td>Low power</td>
<td>Low Power</td>
<td>Medium Power</td>
<td>Medium Power</td>
<td>High Power</td>
</tr>
<tr>
<td>Beyond LEO: SLS & Orion</td>
<td></td>
<td>Initial Capability</td>
<td>Initial Capability</td>
<td>Full Capability</td>
<td>Full Capability</td>
<td>Full Capability</td>
</tr>
</tbody>
</table>

EARTH RELIANT PROVING GROUND EARTH INDEPENDENT
System Maturation Teams

SMTs comprise technical experts from across Centers and Programs

<table>
<thead>
<tr>
<th>System Maturation Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomous Mission Operations (AMO)</td>
</tr>
<tr>
<td>Communication and Navigation (Comm/Nav)</td>
</tr>
<tr>
<td>Crew Health & Protection and Radiation (CHP)</td>
</tr>
<tr>
<td>Environmental Control and Life Support Systems and Environmental Monitoring (ECLSS-EM)</td>
</tr>
<tr>
<td>Entry, Descent and Landing (EDL)</td>
</tr>
<tr>
<td>Extra-vehicle Activity (EVA)</td>
</tr>
<tr>
<td>Fire Safety</td>
</tr>
<tr>
<td>Human-Robotic Mission Operations (Robotics)</td>
</tr>
<tr>
<td>In-Situ Resource Utilization (ISRU)</td>
</tr>
<tr>
<td>Power and Energy Storage (Power)</td>
</tr>
<tr>
<td>Propulsion</td>
</tr>
<tr>
<td>Thermal (including cryo)</td>
</tr>
<tr>
<td>Discipline Team - Crosscutting</td>
</tr>
<tr>
<td>Avionics</td>
</tr>
<tr>
<td>Structures, Mechanisms, Materials and Processes (SMMP)</td>
</tr>
<tr>
<td>Dormancy Operations</td>
</tr>
</tbody>
</table>
System Maturation Team Data Hierarchy

- System Maturation Teams (e.g. Propulsion) – divided into Capability Areas
 - **Capability Areas** (e.g. High Thrust Propulsion) – divided into Gaps
 - **Gap** (e.g. Pump-Fed LOX/CH4 In-Space Engine) – defines a capability advancement over the current state of the art along with mission criticality and mission need date; gap is closed by performing multiple Gap Closing Tasks
 - **Gap Closing Tasks** (e.g. Power Pack Development) – defines task duration and phasing, cost and funding status, and development testing locations (ISS or cis-lunar)
2017 Astronaut Selection Timeline

18,300 Applicants
(3x more than received in 2012)

- Dec 14 2015: Vacancy Announcement opens in USAJOBS
- Feb-Sep 2016: Qualifications Inquiry form sent to Supervisors/References and civilian applicants contacted by mail to obtain an FAA medical exam
- Oct-Dec 2016: Highly Qualified applications reviewed to determine Interviewees
- Feb-Apr 2017: Interviewees brought to JSC for initial interview, medical evaluation, and orientation
- May 2016: Finalists determined
- June 2017: Astronaut Candidate Class of 2017 announced
- August 2017: Astronaut Candidate Class of 2017 reports to the Johnson Space Center
THE JOURNEY TO MARS HAS ALREADY BEGUN.