Measuring HCHO Oxidation Provides An Estimate of Ozone Production Rate for Urban and Regional Smog

Chatfield, R.B., NASA Ames Research Center, MS 245-5, Moffett Field, CA 94035 USA
Ren, X., RSMAS, Univ. of Miami
Brune, W., Pennsylvania State Univ.
Schwab, J., ASRC, SUNY Albany
Queens College and PMTACS Measurement Teams

Abstract:
Several indicators of smog ozone generation can be surprisingly well estimated using easily measured non-radical species like nitrogen oxides (NO\textsubscript{x}), formaldehyde (HCHO), photolysis rates (UV), and temperature (T) using statistical relationships that exhibit some generality. We report an adaptation of an analysis developed for rural air to the atmosphere sampled in central Queens, NYC, with considerable freshly emitted pollutants. Direct measurements of the radicals [H\textsubscript{2}O\textsubscript{2}] and [OH] were available at this site, allowing direct estimation of \(P_o(O_3) = k[\text{H}_2\text{O}_2][\text{NO}] \), \(L(N\text{O}_2) = k[\text{OH}][\text{N}_\text{O}_2] \), and the ratio of these rates (termed a production efficiency of O\textsubscript{3}) in terms of non-radical species which are more easily measured. These provide approximations to the chemical ozone gross production rate, the loss of NO\textsubscript{2} by photochemistry, and an estimate of ozone production efficiency. In our analysis, \(R^2 \) for the estimated principal ozone O\textsubscript{3} production rate (involving H\textsubscript{2}O\textsubscript{2}) was in the range 0.48 to 0.74. Simple relationships appear to hold for high-NO very polluted cases. More complex relationships are found for intermediate polluted situations, where variations in volatile organic carbon (VOC) mixes or lack of an HCHO near-steady-state appear to complicate the relationships. T is a remarkably informative variable in this surface-level urban environment. Remaining variability in the statistical estimates of \(P_o(O_3) \) and \(L(N\text{O}_2) \) may be characterized in terms of gain factors, each varying slowly over periods of days. An understanding of these gain factors promises a more complete analysis of the \(P_o(O_3) \)/\(L(N\text{O}_2) \) and production efficiency. Additionally, the method again suggests a quantitative and very local application of descriptions of "VOC limitation" or "NO\textsubscript{x} limitation" in photochemical smog relationships which allows us to explore for unexpected sources or photochemical behavior at field sites that need measure only HCHO, NO\textsubscript{x}, and UV radiation. Complete meteorology-driven simulations are not replaced, but can be evaluated on their characterization of peroxy radicals. This may be valuable considering the complexity of sources, VOC reactions, and precise transport necessary capture peroxy concentrations by first-principles calculation.

Introduction
Understanding the origin of high levels of boundary layer smog ozone is a concern for health and agricultural economic reasons; concern has risen sufficiently to motivate a new, lower regulatory standard (US EPA1987, 2008). Lofting and long-distance transport of ozone and its precursors are also of concern with respect to ozone's role as a greenhouse gas and an intercontinental pollutant (Bey et al., 2002.)

The processes determining levels of smog ozone are complex, involving the chemical production, destruction, surface uptake, and transport of ozone, complicated all the more by similar processes determining the levels of its precursors. The non-linear
relationships change over time. The chemical production term for ozone is perhaps the most difficult to describe from first principles, since it depends on the production rate and levels of peroxy radicals, both HO_2 and organic peroxy radicals.

The ozone gross production rate is described by the dominant terms for the rate

$$
\text{HO}_2 + \text{NO} \rightarrow \text{OH} + \text{NO}_2
$$

(R1)

$$
P_{\text{O}_3}(\text{O}_3) = k_{\text{HO}_2 + \text{NO}} [\text{HO}_2] [\text{NO}] + \sum_{i=1}^{n} k_{R \text{HO}_2 + \text{NO}} [R_i \text{O}_2] [\text{NO}]
$$

where the number n of organic peroxy radicals can run to hundreds and thousands, some with very minor roles. The “principal” production rate $P_{\text{O}_3}(\text{O}_3)$ due to HO_2 radicals is very typically about 60% of the total production rate $P(\text{O}_3)$, according to calculations we have made with simple photochemical box models using a variety of condensed reaction mechanisms. Peroxy radicals can be measured only in specialized field campaigns, due to the technology required (Eisele et al., 1997, Brune et al. 1998). They are commonly estimated by calculation, but this involves many long, branching, and intricate reaction chains beginning from primary VOC’s as they are initiated by attack by OH radical, O_3, or less commonly, photolysis or N_2 attack. The number of reactions required to describe the concentrations of all secondary organic compounds runs potentially to tens of thousands of reactions (e.g. Jenkin et al. 1997, MCM v3.1, http://mcm.leeds.ac.uk/MCM/home.htt), with most kinetic rate processes determined by analogy with the relatively few reaction rates that have been measured with agreed-upon accuracy [Atkinson et al., 2005, Atkinson and Arey, 2003, Atkinson et al. 2006]. Beyond the uncertainties in the reactions and their rates frequently lie more uncertainties about quantitative VOC emission descriptions. As we noted, these interact with uncertainties in the transport of primary and secondary VOC’s and reactive nitrogen oxides.

Almost as difficult to calculate completely as the ozone chemical production is the rate of another reaction involving HO_2 and NO_x:

$$
\text{OH} + \text{NO}_2 \rightarrow \text{HNO}_3 \quad \text{(predominant product)}
$$

(R2)

which is given by

$$
R_{\text{OH+NO}_2} = k_{\text{OH}+\text{NO}_2} [\text{OH}][\text{NO}_2]
$$

This term controls the removal of NO_x from the system, which in turn controls the reaction of peroxy radicals that allows further production of ozone.

In Chatfield et al (2009a), we suggested a diagnostic method for understanding smog. Using special-campaign information in which HO_2, NO, and accompanying species were measured, we found remarkably simple functional empirical relationships, and that functions of the simply measured variables were a good quantitative guide to the ozone production rate due to HO_2. The variables were $[\text{NO}]$ and the product $j_{\text{HCHO}} \cdot \text{HCHO}$. A function of these two variables reproduced the chemical production of O_3, in a “contour plot” method reminiscent of the “empirical kinetic model approximation” method used in the 1980’s (Dodge 1977, Shafer and Seinfeld, 1985), and of several portrayals since (e.g., Sillman and He, 2002). HCHO is our reasonable choice to trace organic oxidation and the production of HO_2 radicals because it is a near-terminal breakdown product in reaction chains involving a very large number of VOC emissions. Also, it is
short-lived enough to give a good local gauge of VOC oxidation activity over the previous few hours.

The method is best explained if we may assume that HCHO is not too far from a quasi-steady state slowly evolving with accompanying VOC’s and also the photolytic radiation that produces it and help destroy it. We expected that urban emission would not have built up secondary HCHO, and that primary (or extremely rapidly produced) HCHO would be high enough that the technique would work in regions of large fresh urban emissions. Formaldehyde destruction rates vary strongly with UV radiation; indeed HCHO can persist at night away from surface. If one uses the product $j_{\text{HCHO}} \cdot [\text{HCHO}]$, where the photolysis rate is the photolysis of formaldehyde to radicals, one introduces a timescale. This particular photorate is chosen since it is more energetic UV, and so it imitates the effects of the softer-UV photolysis to H$_2$ and CO, and also the formation of OH by harder UV processes, e.g., the formation of OH from O(1D) or the photolysis of higher aldehydes and peroxides. It was chosen to be intermediate. All photo rates tend to be closely linked, varying mostly in form due to ozone column and aerosol effects. Measurements of UV and can relatively easily produce estimates of this rate $j_{\text{HCHO}} \cdot [\text{HCHO}]$. Remarkably, similar relationships involving $j \times \text{HCHO}$ and NO (as we shall abbreviate them below have shown some usefulness at high pollutant concentrations typical of New York City. These indications are appealing, since it does seem that $j \times \text{HCHO}$ should indicate VOC oxidation, but that the amount of HCHO should also depend somewhat on the VOC mix: i.e., toluene might produce one formaldehyde per 7 carbon atoms oxidized, isoprene might produce two to three for 5, ethane one or two for 2, etc. We almost always observe complex mixes of VOC’s (Blake, INTEX-NA, VOC’s at NYC), which should tend to produce some universality in the HCHO yield; still, some variation in the yield is to be expected. Kleinman (2004) points out that formaldehyde photolysis relates to two, partially distinguishable roles, as an indicator of fresh HO$_2$ radicals and also as an indicator of general VOC oxidation, which also converts OH to HO$_2$ (and RO$_2$) radicals without creating new HO$_2$.

Our approach to an empirical description concentrates on a local description rather than the time-integrated ozone production from a strong source. Two previous approaches describing integrated production are particularly useful as they develop themes that are also useful here. One approach relied more on kinetic models applied in idealized situations (a single typical VOC-NO$_x$ mix characterizing a city or region) (Kleinman, 2004; Kleinman et al., 2000). Another approach relied more on by-products of ozone production (e.g., H$_2$O$_2$ and HNO$_3$), and has been used to characterize the fate of HO$_2$ radicals, based on correlations of HO$_2$ and OH radical reactions directly involved with ozone production and those that produce these radicals. (Sillman and He, 2002).

For this sampling site the estimation works well in the broadest view, but can be improved for more detailed analysis. The goodness of fit that we find using our procedure proves to hide some complications that are revealed when we restrict our consideration to situations with pollutant levels of NO less than 8 ppb. We will concentrate on the more difficult complex dataset, and find succeeding levels of approximation to the principal ozone production rate. Certain consistencies persist when the best fits vary systematically
based on just one parameter that varies over the period of one or two days independent of the other pollutant measures. We seek some explanation for this variation. Similar slow variability is found in fits made to the NO$_2$ disappearance rate $R_{\text{OH+NO}_2}$. There are separate parameteric variations controlling $R_{\text{OH+NO}_2}$, and these seem to follow some measures of VOC reactivity revealed by measurements of hydrocarbon species.

Sampling Location and Instrumentation

Sampling was conducted from a small scaffolding tower located at Queen’s College, which centrally located within Flushing, New York City; the PM2.5 Technology Assessment and Characterization Study (PMTACS) study concentrated on aerosols deriving from the city and regionally upwind. The gas-phase species concentrations were characteristic of the strong local sources, but were lower when east winds brought air from the Atlantic. The site has commercial, residential and industrial sources, and is ringed by heavily trafficked freeways and arterials. Relatively high levels of NO$_x$ and anthropogenic VOC’s characterized the area. Further details given in the Ren et al. (2003a) publication describing radical measurements.

Ren et al. (2003a) detail the laser-induced fluorescence measurements of both HO$_2$ and OH that were used to quantify ozone production using the Pennsylvania State GTHOS (ground-based radical-measurement instrument). NO, NO$_2$, CO, O$_3$, SO$_2$, CH$_4$ and other species were measured by the New York City using one of their PAM (Photochemical Assessment Monitoring Station) sites (US Environmental Protection Agency — EPA, 1994). Formaldehyde was scrubbed from ambient air into water and then react to produce 3,5-diacetyl-1, dihydrolutidine under the care of co-author James Schwab. Other carbonyls were also measured every third day with three-hour integrated sampling. VOC’s were measured every hour, but at a distance 2.5 km away at Queensborough Community College. Histograms of pertinent variables to this paper are shown in Figure 1(a). Figure 1(b) describes an interesting subset defined and used in a later section on “moderate pollution.” Ren et al (2003b) describe techniques to check the appropriateness of the VOC measurements and also the estimation of photolytic dissociation rates based on a multiwavelength shadowband UV radiometer. That paper makes comparisons of measured and model-estimated HO$_2$ and OH. Some considerations of simulated and observed radical concentrations should be borne in mind while considering our work, although, from a broader perspective, the implications are still not completely clear. The simulations followed HO$_2$ and OH concentrations well over most hours of the days July 10 to August 2, 2004. Ren et al. (2004) note however systematic differences between modeled and measured radical ratios.

Modeled HO$_2$/OH ratios exceeded measured HO$_2$/OH ratios substantially in conditions when NO was below 1 ppbv, but exceeded them above when NO was 8 ppbv. Ren et al. (2003b) summarize the situation: “This difference is consistent with measured OH being greater than modeled OH at low NO, while measured HO$_2$ is much greater at high NO.” Other papers by these authors find similar but not identical variations in other, cleaner-air sampling conditions.
Organic Reactivity, NO, and Empirical Estimates of $P_0(O_3)$

Following ideas from work on regional smog ozone (Chatfield et al., 2009), we sought relationships between [NO], our measure of organic reactivity $j \times $ HCHO and $P_0(O_3)$. Unless otherwise noted, the photolysis rate used j is always the photolysis rate of HCHO to radicals, and responds to hard-UV radiation, but not as hard as for $O(1D)$ from ozone. There we found adequate a very simple relationship $\text{constant} \times (j \times $ HCHO $\times $ NO)$, where $a \sim 0.4$, and the product j HCHO \times NO was below ~0.4 ppb hr$^{-1}$ and the production of O$_3$ from HO$_2$ was below ~10 ppb hr$^{-1}$. It seemed reasonable that organic reactivity and nitrogen oxides might influence $P_0(O_3)$ differently at higher concentrations, so we sought a more general relation:

$$P_0(O_3) = C \times (j \times $ HCHO)$^a \times $ [NO]b$

or,

$$\log P_0(O_3) = \log C + a \log (j \times $ HCHO) + b \log $ [NO]$$

The latter form allows a simple linear regression, and is a good form, since residuals are most nearly normally distributed.

This formulation has proved reasonably successful when considering both polluted and very polluted situations, and should allow a simple asymptotic understanding in any case. If $j \times $ HCHO is considered to reflect the oxidation rate of volatile organics, the formula should be most appropriate when HCHO is in an evolving steady state with organic precursors and its OH and photolytic sinks; this is conveniently estimated using the sink terms, $t = 1 / (k_{\text{OH+HCHO}}$[OH] + $j_{\text{HCHO>rad}} + j_{\text{HCHO>H2}})$ where the j’s are appropriate photolysis rates and $k_{\text{OH+HCHO}}$ is the rate coefficient for reaction with hydroxyl. All these sink terms are at maximum near midday. To allow for a close, not greatly time-delayed, relationship between radicals and $P_0(O_3)$, we made empirical statistical models of the data observed between 10 AM and 4 PM local daylight time (approximately 9 AM and 3 PM sun time). Since pollution levels, especially [NO], were occasionally extremely high, it seemed appropriate to consider two situations, “All Pollution,” and “Moderate Pollution.” Recognizing the variability of pollution situations (NO amounts, VOC amounts and speciation), we separated the “Moderate Pollution” case with the hypothesis that it might serve as a guide to other moderately polluted situations. “All Pollution” cases were hypothesized to be more appropriate for the Queens, NYC sampling situation, but perhaps a useful glimpse at fresh, less-diluted situation.

Results and Discussion: $P_0(O_3)$ Including Heavily Polluted Situations.

We begin with an example in which the empirical technique appears to explain the observed variance very well. Somewhat counter-intuitively, highest correlations of observed and modeled $P_0(O_3)$, occur when we parameterize the whole dataset rather than examine subsets. This urban dataset has a large variance and the contrast between very high ozone production rates and moderately high rates dominates the fitting procedure and the correlation of observations and empirical fit. The first test included all pollution samples at the Queens College site during photochemically active hours (10 AM to 3 PM). The NO mixing ratio reached a maximum of 25 ppb! Clearly very recent pollution was
being sampled, and it is doubtful that the time from formaldehyde emissions to sampling was large compared to the photochemical equilibration time (lifetime) of the species. Nevertheless, the estimated empirical fit was good, with

\[a = 0.419 \pm 0.006 \] for HCHO activity
\[b = 0.548 \pm 0.006 \] for NO
\[c = -0.42 \pm 0.07 \]

Multiple \(R^2 \) (for log-concentration quantities) = 0.73
\(R^2 \) (for concentration-unit quantities) = 0.71 based on 4911 samples.

All estimates were formally determined to a \(p \)-value of \(< 2 \times 10^{-16} \). Contour-plots of the dependence of \(P_\text{O}(O_3) \) on the defining chemical variables is shown in Figure 2. These estimates for \(a \) and \(b \) are relatively close to estimates made for airborne sampling of urban, rural, and some remote boundary layers in separate Central-US/East-Coast and California sampling (Chatfield, et al., 2009). The figure shows three depictions of the relationship to \(j \times \text{HCHO} \) and NO, a two-d surface, a contour plot showing the same relationship, and a graph drawn when all three quantities are expressed in terms of \(\log_{10}(\text{quantity}) \).

The use of log values for predictors and predicted \(O_3 \) greatly simplifies the estimation of the relationships as well as their display. It is advisable to use log values in the regressions, since the log-based residuals to the regressions we perform behave approximately normally, while the non-log quantities yield residuals that are proportional to the predictors and predicted values. This may indicate that the “measured” \(P_\text{O}(O_3) \), or perhaps the predictor variables, have errors that are proportional to their value. If this is indeed the case, then there is a limit to the expected goodness of fit we should expect from any statistical fits, a limit due to large variance of \(P_\text{O}(O_3) \) (or contributing variables) that is beyond what may be expected from statistics. The relationships are also expressible as sensitivities:

\[\frac{\partial \log P_\text{O}(O_3)}{\partial \log (j \times \text{HCHO})} \]
\[\frac{\partial \log P_\text{O}(O_3)}{\partial \log \text{NO}} \]

The slope of the isopleths in the log-log plots also summarizes the ratio of the sensitivity to NO and HCHO activity. Diagonal 1:1 lines on the log-log plots in this report indicate equal exponents or equal sensitivities for the control variable selected. Spacing of the contours is an indicator of the power law followed.

Comparing the linear and log depiction of \(P_\text{O}(O_3) \) the log depiction is more intuitive and easy to read. However, the prominent feature of a central mound indicating “most efficient mixtures for ozone production” seems to disappear. This is only appearance. While equal horizontal increments in figure 4(a) can be interpreted as equal additions or subtractions of ppb, equal increments in figure 4(b) are equal relative changes in concentration (i.e., 50% reduction). (In this discussion, it is assumed that physical conditions for the UV-dependent \(j \) will remain the same for changes in organics that lead to increments in HCHO.) In other words, the “optimum corner region” for strong increase or decrease in ozone production should depend on the relative costs of reducing either VOC’s or NO.

The use of the power law formulation is not derivable from the mathematics of the chemical kinetic system, but it has some advantages. The formulation describes with one parameter per control variable the common observations about smog ozone, which is that
instantaneous ozone production responds positively to increased precursor, but does so at an ever decreasing rate. Most other simple functional forms do not have these properties. (We ignore NO “titration” of ozone since it simplifies the discussion, and an “oxidant” quantity, \(O_3 + NO_2 + O(\lambda P) + O(\lambda D) + 2 NO_3\), is conserved. Oxidant is instead considered to be destroyed by reactions like \(OH+NO_2\) or \(O_3+HO_2\) or \(O(\lambda D)+H_2O\).) Another advantage of the formulation is the simplicity of the log-log graph system that results, which directly expresses sensitivities. Usually we found that more complex formulations did not add significance with added parameters. However, the use of a simple log formulation leads to somewhat different values of the exact parameters for observation datasets that contain very high pollution, high pollution, and regional dilute pollution. (Parameter estimates did vary in important subsets of this in the Queens dataset, as seen below. The relationship of these must be left to future work.

Once these valuations are set, a log or a non-log diagram can be used to make a simple estimate of an optimal control strategy, at least based on these local observations. True determinations of the control strategy of course depend on the effect of upwind nitrogen oxide emissions on NO, of VOC emission mixtures on HCHO. Indeed they depend on the integral production of ozone over all areas influencing observed concentration at a particular point and time. We will return to interpretation later.

\[P_0(O_3)\] in More Complex, Less Heavily Polluted Situations

When we look at a significant subset of the same Queens dataset, the goodness of fit decreases and the relationships parameterizing ozone production become more complex. For example, we restricted NO to lower concentration \((\leq 7 \text{ ppb})\). Since the emissions have had some reaction time, there should be greater likelihood that HCHO has come closer a production/loss quasi-steady state, and also there has been more mixing of multiple VOC types to a more “typical urban mix”; both considerations would suggest that statistical fits would be more accurate. Instead, there appear to be multiple similar relationships that suggest a remaining, elusive parameter. Figure 3 shows a series of correlation plots for successively more complex statistical relationships that are modifications of the basic power-law formula we have used so far. The first panel describes a correlation plot based only the formaldehyde activity and NO. Succeeding graphs describe possible estimation improvements which are introduced in later sections.

We summarize our findings in Table 1. This table allows for relationships with previously described VOC activity and NO, but adds temperature, and also a “specific situation” which is characterized a slow (several-day) variability with time.

Table 1 shows that, at first glance, ozone production is only modestly well predicted by our VOC-activity and NO variables.

\[R^2 = 0.41\] is indicated for a relationship based on VOC activity and NO alone, as used above. Despite this low correlation coefficient, there is remarkable uniformity on individual days and even on periods of a few days, as the first panel of Figure 3 shows.
Apparently ozone production relationships vary day by day, but have similar linear relationships with different slopes from day to day. Differing slopes of the non-log quantities tend to follow different near-horizontal “layers” corresponding to the addition of different values of \(\log(\text{slope}) \) under the conditions of Figure 3.

High temperatures have long been associated with high ozone concentrations and by extension high ozone production (Leighton, 1961). Chamber studies suggest that this is more important in cases of higher NO\(_x\) additions compared to VOC additions (Carter et al., 1997). The Queens study fits this description. We considered the relationship

\[
P_0(O_3) = c \cdot (j \times [\text{HCHO}])^a \cdot [\text{NO}]^b \cdot 10^{d(T/298)}
\]

The temperature effect \(10^{d(T/298)} \) was chosen as the numerically most tractable: Arrhenius formulations \(\exp(-T_{\text{arr}}/T) \) and power formulations like \(T^d \) yielded products of huge and tiny numbers, while there was no gain in explanatory power.

Figure 3 (second panel) indicates how much correlation graphs tend to narrow when temperature is added. However, the upper end of the log plot splays wider than in the first panel, showing rather poor fitting at high values of \(P_0(O_3) \) that has a large effect in limiting the explained variance of the physical (non-log) quantities to about 0.57.

Figure 4 (a) shows the relationship which includes \(T/298 \). Figure 3 (third panel) indicates how much correlation graphs tend to narrow when temperature is added. However, the upper end of the log plot splays wider than in the first panel, showing rather poor fitting at high values of \(P_0(O_3) \) that has a large effect in limiting the explained variance of the physical (non-log) quantities to about 0.57. Analyses of the residuals for the first relationship (without \(T \)) suggested that a higher exponent, \((j \times [\text{HCHO}])^{0.42} \) to \((j \times [\text{HCHO}])^{0.47} \) would fit better at higher concentrations.

Let us consider why including temperature helped. It is important to remember how regression studies act when explanatory variables are somewhat correlated. Importance in the regression may appear to shift from one variable to a new variable when the latter is added. For example in Table 1 below, when temperature is added, the coefficient \(b \) for NO rises from 0.41 to 0.58, while \(a \) for HCHO activity drops from 0.35 to 0.18. Figure 3 (e) shows the clear but complex relationship between temperature and the logarithm of HCHO activity. The correlation of \(j \) with \(j \times \text{HCHO} \) is about 0.5. The correlation coefficient between \(T \) and \((j \times \text{HCHO}) \) is −0.4, but the graph implies a greater degree of relationship. Dropping data from just one day near the beginning of measurements would likely yield regressions with \((j \times [\text{HCHO}]) \) exponents more like the all-data case and rural measurements.

One reasonable explanation is that days with different temperatures may have other variations in chemical composition. Another possible reason is that \(T \) may more accurately reflect HCHO effects at the points that determine the recycling radicals \(\text{HO}_2 \) and \(\text{OH} \) measured at the trailer. Even more likely, very fresh emissions contain higher aldehyde products, or fresh alkenes or similar compounds that have yet to be processed to produce the high quantities of HCHO that they would have in a few-hours steady state. If other sources of \(\text{HO} \), and so \(\text{HO}_2 \), dominate the composition in certain cases, and temperature is linked to these variables temperature may dominate reactivity, and \((j \times \text{HCHO}) \) may help describe the activity of species emitted earlier.
In any case, the estimated effect of T is quite strong, as Figure 5(a) indicates. The combined effect of $j \times \text{HCHO}$ and T is close to the effect of NO over the range of values observed at Queens College.

There is some information from another sampling expedition for which we have made a preliminary analysis. Sampling during the California-ARCTAS intensive study included many airborne passes over Los Angeles or other South Coast cities. (ARCTAS: Arctic Research of the Composition of the Troposphere from Aircraft and Satellites; the California investigations were added into this airborne intensive after the name was fixed.) We used this Southern California geographical location and a condition that NOx be above 2 ppb to define a somewhat analogous urban mix. Approximately six samples out of 150 showed a dramatically different pattern from the rest and were excluded. In this sample, the fitted relationship was

$$P_o(O_3) = 10^{^{-0.51}} (j \times \text{[HCHO]})^{0.69} [\text{NO}]^{0.29}$$

Temperature did not add any explanatory power. (The NO and HCHO were measured by respective Weinheimer and Fried groups, and photolysis by the Shetter group (Singh et al., 2009)). While the airborne samples deserve more detailed study, the exponent for the VOC reactivity, is greater than several other estimates, 0.36 for the corresponding unelaborated response for Queens moderate pollution, 0.47 for moderately high pollution, and 0.42 for all Queens samples. Figure 5(b) shows a non-parametric local Krig-ing fit (R routine krig.image in the fields package). The 0.4 power law looks generally appropriate, although there is lots of variation, presumably reflecting the fresh emissions. By comparison, rural North American analyses gave an exponent of 0.4. We find these power-law estimates remarkably similar given the different instruments and sampling situation.

A note on the confidence intervals described. Essentially, selected subsets omitting cases are used to examine the coherence of a day-by-day progression in the linear relationship in a method called generalized cross-validation (Wood, 2007).

Day-by-Day Non-Predictive Analyses of $P_o(O_3)$

Figure 3 shows a comparison of observed and predicted ozone production as a function of sampling day. The striking thing to note is that different near-linear relationships are observable for different days. This led us to a final statistical fit, one which takes us beyond an obvious predictive capability. Based on our observations of different slopes on different days, we allow a slow progression with time, with the variability limited by the analysis method of mgcv.

$$P_o(O_3) = c (j \times \text{[HCHO]})^a [\text{NO}]^b 10^{^{d(T/298)}} f_{\text{spline}}(t), \text{ i.e.,}$$

$$P_o(O_3) = 10^{-0.54} (j \times \text{[HCHO]})^{0.28} [\text{NO}]^{0.60} f_{\text{spline}}(t)$$

Table 1 $P_o(O_3)$ for Moderately Severe Pollution Precursor Conditions

<table>
<thead>
<tr>
<th>C</th>
<th>10^C</th>
<th>± 0.14</th>
<th>± 0.12</th>
<th>± 0.12</th>
<th>± 0.63</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.16</td>
<td>16.2</td>
<td>0.54</td>
<td>13.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The fitting parameters for the regression fit shown are shown in Table 1, yielding
\[P_2(O_3) = 10^{-13.1} \left(j \times [HCHO] \right)^{0.17} [NO]^{0.64} 10^{12.82 \left(T / 298 \right)} f_{\text{spline}}(t) \]
where \(t \) is measured in days and \(f_{\text{spline}}(t) \) is a spline function estimated to minimize the residuals but simple enough to satisfy the generalized cross-validation condition. An additive model in the package mgcv was used (Wood, 2007). Figure 3 shows a much better fit that we obtain when we use day number as a regression variable, in a method that recognizes this slow variation. To what extent does this represent “over-fitting”? The function described has three maxima and the statistical fit routine describe it as having about 9 degrees of freedom (eq. dof) over 23 days. This number of degrees of freedom is still much less than the number of days of observations and extremely small compared to the number of observations (4261 observations made over). Sequential concentration observations during the day show much more variability than this. Even accounting for some correlation of the observations in time, the information from the data greatly outweighs the number of parameters to be fit. We have examined the variation, and it has no clear relation to wind direction or classifications of hydrocarbon compounds (e.g., very reactive organics), and the correlation with the \((T/298) \) is low. Unfortunately, there is currently no way of describing the spline function for future observations, so predictivity has been lost for this particular parameterization. We include the analysis here so as to stimulate future investigations that may explain this uniformity and so to understand the underlying chemistry better.

Several attempts were made to explain the slow variation \(f_{\text{spline}}(t) \). They are somewhat instructive in what hypotheses they discourage. It was natural to seek relationships with hydrocarbon reactivity and tendency to produce \(HO_2 \) or \(RO_2 \) radicals. We sought this with a partial least squares (L1 or “lasso” variety) regression fit. Groups of variables, components, were sought that were most strongly related to the function \(f_{\text{spline}}(t) \). (The procedure resembles principle components analysis, except that orthogonal groups are found and ranked according to their contribution in explaining \(f_{\text{spline}}(t) \). This method has good properties in bridging between complete fitting and a very conservative “no fit” (all contributions zero) outlook, and it allows for cross-validation of estimates by selective data denial (Hastie et al., 2001). Figure 6 (a) shows the pattern that could be fit on a dataset
which included hydrocarbon concentrations. There was significant contribution of the first component, but little understanding; the compound identified as trans-2-butene was the major positive contributor (more ozone production), while cis-2-butene was distinguishably negative; 3-methyl pentane was the strongest negative contributor. Few components contributed to this group. This suggests, if anything, that particular sources had a strong effect, but not necessarily via the chemistry of these compounds. In view of this, a regression against wind direction was made. Two small maxima and minima were suggested, but the explanatory power was low. These investigations do not seem to tell us much, but we will return to the technique in the next section, where we discuss Figure 6 (b).

The OH+NO₂ Loss Term for Oxidant

There is another feature that also suggests further directions for study. Earlier we noted that most ozone destruction terms are relatively easily estimated as checks to models, but one term that typically does require photochemical modeling is the OH+NO₂ term. This is more properly a loss term for “odd oxygen” defined as the sum of rapidly interchanging species like O₃ and NO₂ [Kleinman, 2004, Seinfeld and Pandis, 2004]. To the extent that this loss term for odd oxygen is dominant photochemically, it has also been used to describe an “ozone production efficiency.” This has been described as approximately the amount of ozone produced by an emitted NO molecule divided by the NO₂ loss rate: how much odd oxygen is produced in a “cycle” of NO₄ emission and removal.

Consequently, we wrote a relationship involving NO₂ similar to the ozone production term.

\[R_{\text{OH+NO₂}} = k_{\text{OH+NO₂}} \times [\text{OH}] \times [\text{NO₂}] \]

We tried very similar fitting procedures; we used [NO₂] rather than [NO₃] since the latter can either be measured directly or estimated from the more easily measured [NO] and [O₃] by the famous Leighton [1972] relation. Using logarithms once again to make estimates (in the most detailed form)

\[\log R_{\text{NO₂+OH}} = \log C + a \log (j \times [\text{HCHO}]) + b \log [\text{NO₂}] + d \log (T / 298) + f(t) \]

We derived estimates (compared in Table 2 accompanied by approximate error estimates)

such as the following:

\[R_{\text{OH+NO₂}} = 10^{0.42} (j \times [\text{HCHO}])^{0.17} [\text{NO₂}]^{0.90} \]
\[R_{\text{OH+NO₂}} = 10^{1.51} (j \times [\text{HCHO}])^{0.11} [\text{NO₂}]^{0.70} 10^{0.0487(T / 298)} \]
\[R_{\text{OH+NO₂}} = 10^{1.61} (j \times [\text{HCHO}])^{0.21} [\text{NO₂}]^{0.53} f_{\text{spline}}(t) \]
\[R_{\text{OH+NO₂}} = 10^{1.93} (j \times [\text{HCHO}])^{0.16} [\text{NO₂}]^{0.52} 10^{0.018(T / 298)} \]

The estimated coefficients follow generally similar patterns to those for P_o(O₃). In this urban situation, measured HCHO activity and NO₂ provide modest information about the variance of \(L(\text{NO₂}) \), \(R^2 = 0.47 \). There is a notable increase in explanation when using \(T \), but fitting a day-to-multi-day function adds considerably more to the \(R^2 \) value. Explanatory power (regression coefficient magnitude) tends to redistribute from one independent variable to another as more variables are added. The increase in one regression coefficient for a new variable at the expense of regression coefficient of previous variable regression...
coefficient may or may not necessarily imply conclusions about causation, of course. They do indicate specific ways to study the importance (for example) of temperature or formaldehyde activity by other techniques. Figure 7 (a and b) give an overview of sensitivities to radical production and NO2 concentration in practical ppb units and also with a more abstract scale in which log quantities are used. The main contours indicate response to radical activity and to NO2, while the lighter contours indicate comparison to the ozone production relationships just shown. This relationship is actually rather complex, depending on a strong simplifying assumption that NO/NO2 is at the mean value observed in the samples, NO/NO2 ~ 0.21.

Again, very significant increases in model R^2 were found when we allowed a separate, slowly varying, function of time to modify the other effects in the prediction in a multiplicative manner. R^2 of 0.88 was achieved. Figure 6 (b) describes this function; since the dimensionless function varies from by a range of 0.6 units, the sensitivity effects were larger than for P_o(O3). In this case, the $L1$ partial least squares analysis suggested that there were strong negative effects on L(NO2) that were associated with high reactivity VOC compounds. Possibly OH was being reduced by the availability of other reactants (e.g., VOCs) than NO2. If so, there should be ways to parameterize the L(NO2) response in a predictive manner. Measurement and kinetic calculations with observed VOC’s could be an aid in this area near sources.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>C</th>
<th>10^c</th>
<th>a</th>
<th>b</th>
<th>d</th>
<th>$f(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.42 ± 0.10</td>
<td>0.17 ± 0.02</td>
<td>0.90 ± 0.03</td>
<td>20.37 ± 048</td>
<td>9.0 eq. dof</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-21.8 ± 0.47</td>
<td>0.11 ± 0.01</td>
<td>0.69 ± 0.02</td>
<td>4.78 ± .51</td>
<td>9.0 eq. dof</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.61 ± 0.06</td>
<td>0.21 ± 0.01</td>
<td>0.53 ± 0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4.5 ± 0.49</td>
<td>0.16 ± 0.01</td>
<td>0.52 0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2 in log term</td>
<td></td>
<td>0.47</td>
<td>0.68</td>
<td>0.91</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>in ppb terms</td>
<td></td>
<td>0.41</td>
<td>0.56</td>
<td>0.89</td>
<td>0.88</td>
<td></td>
</tr>
</tbody>
</table>

Approximate Efficiency of Ozone Production

Another significant estimator is the efficiency of ozone production. This is generally described as the total chemical production rate of ozone ratioed to the loss rate of NOx from the system. An approximate simple form for this production efficiency can be described as the ratio of two rates, that of peroxy radicals reacting with NO to generate new ozone, P_o(O3), and the rate of loss of NO2 by reaction with OH, i.e., P_o(O3) / L(NO2). The values derived from the rate laws vary between 0.5 and 18, with one outlier at ~45.

Statisticl Estimates of P_o(O3) / L(NO2) without extra information can be made (See Figure
8(a)) but they describe 51% of the variance or less, although suggesting further relationships. One might expect that the NO/NO\textsubscript{2} ratio is very important for this ratio, and that a smaller role would be played by mechanisms determining radicals, since OH and HO\textsubscript{2} would rise almost proportionally at the same NO/NO\textsubscript{2} ratio. Indeed, this is the case. Radicals play a certain role, though. The best estimate we found for this ratio in using familiar variables included only photolytic UV (the photolysis of HCHO to radicals), not HCHO.

\[
\text{Ozone production Efficiency} = 10^{1.830j/1.830} \text{NO}^{0.81} \text{NO}_2^{-0.95}, R^2 = 0.51
\]

or
\[
10^{-8.2j/8.2} \text{NO}^{0.82} \text{NO}_2^{-0.94} b10^{9.67/298} f_{\text{spline}}(t), R^2 = 0.78
\]

The function \(f_{\text{spline}}(t) \) used to improve this estimate is nearly the opposite of the function describing NO\textsubscript{2} loss, as Figure 8(c) shows. Since the removal rate is so significant, it is quite possible that improvements in production efficiency parameterization can be made. This could occur if measurement of useful underlying variables such as VOC composition or VOC reactivity with OH do prove to be useful in describing \(L(\text{NO}_2) \).

Discussion and Comparison to Previous Work

There are many similarities of these relationships to those described by Kleinman (2004). Kleinman describes relationships for ozone produced along a parcel trajectory with power laws that look somewhat similar to our own. In these relationships, Kleinman makes a useful distinction between “original” sources of HO\textsubscript{x} radicals and a conversion of OH to HO\textsubscript{2}; he also includes a term for the conversion of NO to NO\textsubscript{2}. We have not distinguished between the first two terms; Kleinman also notes that there is some overlap in the concepts, particularly the role played by HCHO. HCHO is both an important source of HO\textsubscript{x} radicals and also a significant measure of the rate of organic reactivity which converts OH to HO\textsubscript{2}. Kleinman’s (2002) suggested measurement-based description of ozone production efficiency points out the importance of [NO] / [NO\textsubscript{2}] For that reason, the two descriptions must differ: perhaps Kleinman’s description forces the distinction a bit strongly, whereas this description is bound to ignore what distinction there is. Our research is somewhat difficult to compare in detail to that of Sillman (Sillman and He, 2002, and referenced previous work) due to the near-source sampling. Sillman’s analysis moved forward the longitudinal studies of ozone, nitrogen oxides, and some pollution tracers in the work that followed the Liu et al (1987) studies in NOAA Boulder’s air chemistry group. Ren’s point-modeling work on the Queens situation is closer in spirit, and the Sillman and the Ren papers provide a good companion to this. Possibly the greatest use can be in future comparisons to regional model simulations, particularly in their treatment of peroxy radicals and their behavior at high NO\textsubscript{x} concentrations. This type of analysis may be greatly improved by VOC reactivity measurements wherever such equipment can be deployed (Mao et al, 2009).

Conclusions

We have found that combined measurements of formaldehyde, formaldehyde photolysis rate, and nitrogen oxides (NO and preferably NO\textsubscript{2}) allow useful statistical estimates of the ozone production rate \(P_0(O_3) \) and the loss of nitrogen oxide \(L(\text{NO}_2) \) from a
photochemically reactive system. Specifically, the principal rates \(\text{HO}_2 + \text{NO} \) and \(\text{OH} + \text{NO}_2 \) have relationships to these relatively easily measured parameters, a radical activity parameter involving VOC, \((r)\), and the appropriate nitrogen oxide concentration, NO or \(\text{NO}_2 \). The relationships are always significantly less than linear with the \(\text{NO}_x \) quantity, so that the regression studies add information. As with most other considerations of pollutant ozone formation, \(P_o(O_3) \) always increases with added precursor, but at an ever decreasing rate. (Concentrations of \(\text{NO}_x \) at power-plant plume levels may not seem to follow this pattern; that topic deserves separate discussion.) A power-law form with the power \(a \) or \(b \) less than 1 provides appropriately simple fitting parameters. Log-log graphs with the power form give a useful tool, e.g., simple, linear contour graphs which illustrate sensitivities. When looking at the largest span of polluted situations including very fresh pollution with 8-50 ppb of NO, the variance explained for \(P_o(O_3) \) is remarkable, reaching 0.73. When more modest NO values between about 0.5 and 8 ppb are examined, the scatter in prediction remains, while ozone varies over a shorter range, lowering the correlation coefficient. For the moderate-pollution example, temperature seems to very play an important explanatory role, a situation not found with airborne studies we consider more fully elsewhere (ref). For \(P_o(O_3) \), nitric oxide concentrations and another variable, VOC activity or temperature, play roughly equal roles over the range of variables, NO, to \(j \times \text{HCHO} \), and \(T \) encountered in the sampling situation. For the loss of oxidant due to the reaction of \(\text{OH} + \text{NO}_2 \rightarrow \text{HNO}_3 \), similar relationships are found. For each relationship, \(P_o(O_3) \) and \(L(\text{NO}_2) \), there seem to be relationships that change the sensitivity to the other variable over periods of several days. For \(L(\text{NO}_2) \), the relationship appears related to the presence of highly reactive hydrocarbons, possibly indicating a competition for \(\text{OH} \) radicals. The origin of the day-to-day variation in \(P_o(O_3) \) is not yet clear, but it seems to be a simple parameter, a general amplification or diminution of the the \(P_o(O_3) \) response to NO, to \(j \times \text{HCHO} \), and to \(T \).

Finally, a variable meant to approximate the production efficiency of ozone, \(P_o(O_3) / L(\text{NO}_2) \) does not follow a power-law relationship, but rather has a broad maximum at the central levels of the pollution product, \((r)\), at least in these Queens observations. Lower efficiency is apparent at higher and lower values of the pollution product.

The forms of the contour graphs and relationships suggest interpretation in terms of practical smog ozone control. While they may be useful, they only begin to decompose the problem. Other questions remain. How do emissions of \(\text{NO}_x \) influence NO at the measurement spot? How do organics in the atmosphere react to yield the spot VOC activity that may be approximately measured by the formaldehyde reactivity \((r)\)? How do the competing processes of \(\text{NO}_x \) removal and \(O_3 \) production, and other processes, influence the total amount of ozone made, especially as air from cities mixes and moves downwind? Still, there may be a vocabulary to analyse these questions in the relationships that are shown here, and techniques complementary to idealized reacting plume analyses and massive budgets of volume-integrated transformation rates in complete urban simulation models.
Acknowledgements: We express our appreciation to Lawrence Friedl and NASA Applications Rapid Development program PMTACS and ARCTAS teams Laura Iraci, and internal reviewers, audience feedback at the Second International Conference on Atmospheric Chemical Mechanisms, Davis, CA, USA, 2008.

Figure 1. Histograms of observed distributions of important quantities for production of ozone as sampled at Queens College, in (a) all complete samples including highly polluted cases and (b) in a selection of “moderate pollution” cases specified by the condition that NO concentrations be less than 8 ppb (vertical long dashed line). Although this constrained HCHO also, there the ratio [NO] / [HCHO] varied widely. The NO concentrations in (b) show a preference for even-ppb values, considered an artifact of recording. This artifact may have limited achievable correlation of statistical fits with observations somewhat.
Figure 2. Ozone production as a function of organic activity as measured by HCHO photolysis and of NO, portrayed in several ways. This estimate considers all pollution samples measured at Queens College, including high-pollution cases. See text for power-law estimation procedure. (a) Contours shown on a three-dimensional surface, emphasizing the nature of diminishing production rate as a function of each coordinates: units are in ppb and hours; i.e., $P_0(O_3)$ in ppb/hr, NO in ppb, and HCHO activity in ppb/hr. (b) The same information displayed in the contour-plot style used most commonly with Empirical Kinetic Model A (EKMA) methods, also in ppb units. (c) A plot using logarithmic quantities, with the abscissa and ordinate shown in equal aspect ratio, i.e., equal relative sensitivity $\delta \log 10 (P_0) / \delta \log 10 ($coordinate). It is convenient to use the molecular units, molec cm$^{-3}$ and s$^{-1}$; all rates and statistical fits are made in these units.
Figure 3. (a) Comparison of prediction with only $j \times \text{HCHO}$ and NO to observations based on $\text{HO}_2 + \text{NO}$, log scale. (b) Comparison of prediction including also $T/298$, to observations, linear scale exhibiting different slope on different days. (c) Same prediction including $T/298$, log scale. (d) Comparison of prediction including a slowly changing day-by-day factor, log scale. (e) Complex relationship of T and $\log_{10}(j \times \text{HCHO})$.
Figure 4. Ozone production as a function of organic activity as measured by HCHO photolysis and of NO, portrayed in several ways. Only moderate pollution samples are considered here (\(\text{NO} \leq ?\)). (a) Contours shown in linear terms. (b) Contours shown in log terms; axes are set up at a 1:1 ratio. For each graph, the heavy, color-filled contours (and side-scale) indicate the fit at \(T = 298\) K, approximately the median temperature. The gray contours that are not color-filled indicate a very much higher production rate at the 90\(^{th}\) quantile temperature (10% of the \(T\) measurements are higher).

Figure 5. Response of \(\rho_{0}(O_{3})\) to identified controlling variables; range of variables shown includes 98% of observations. Variation with temperature at this surface site and period is roughly comparable to the variability with to \(j \times \text{HCHO}\) in air-borne measurements that
we have analyzed. (b) a depiction of observed $P_o(O_3)$ in terms of $j \times $ HCHO and NO, all in log log terms and using molecular units.

Figure 6. (a) Red circles. Slow variation of a time-dependent fitting parameter for $P_o(O_3)$ which greatly improves the correlation of statistical fit with measurements. Smaller dark circles indicate variation of a best-fitting linear combination of hydrocarbon measurements chosen to mimic the trend of the red circles. (b) A similar depiction of a fit of the loss rate of NO$_2$ due to OH. Red circles are fitted smooth t-variation (see) text, dark circles are best-fit linear combination of hydrocarbon concentrations. These hydrocarbons may indicate a sensitivity to VOC reaction-rate with OH.
Figure 7. Loss of nitrogen oxides by OH+NO₂ reaction, shown in color-filled contours. (a) Graph showing a large sensitivity to NO₂ and a moderate sensitivity to T. The heavy lines show the dependence at 301.5 K, about five contour lines displaced from the color-graph scale, corresponding to T = 298 K. (b) Graph does not have 1:1 aspect ratio. The gray contours indicate for comparison the sensitivity of the production rate of ozone; to do this, NO was estimated from NO₂ using a simple rescaling of the ratio of means. L(NO₂) is very NO₂-sensitive. This graph does not represent all the complexities of the relationships of Pₒ(O₃) and L(NO₂).
Figure 8. (a) Calculated and fitted production efficiency of ozone (dimensionless) as described by $P_{O(O_3)}$, $L(NO_2)$ using variables useful for prediction. Note the day-to-day variation shown by different colors (b) Similar comparison using also an empirical fit that describes a slow variation through the measurement. (c) Slow, multiday variation of sensitivity function s for $P_{O(O_3)}$, $L(NO_2)$, and a direct empirical estimate of an approximate “ozone production efficiency,” $P_{O(O3)} / L(NO_2)$. The production efficiency variation mirrors the variation for photochemical NOx removal, OH+NOx.