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Abstract 

• Uncertainty and Risk Analysis is an increasingly important 
part of cost estimating. In addition to the increased demand 
from decision makers to see this type of analysis, NASA 
policy often requires certain programs to report a confidence 
level along with the cost estimate or a range of costs "with a 
confidence level established by a probabilistic analysis".  This 
presentation will cover how to incorporate uncertainty in an 
estimating model. This includes calculations of prediction 
intervals around a regression based Cost Estimating 
Relationship. It will compare the effects of using just input 
uncertainty, just model uncertainty, and both input and model 
uncertainty on the final results of the model. Finally, there will 
be a demonstration of how this math has been implemented 
and automated in the Project Cost Estimating Capability 
(PCEC) and how to add uncertainty to a PCEC model. 
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Input Uncertainty  

Input Uncertainty is variation around the inputs to a model 

• Type that most people are familiar with and many include in their models 

• Important because the final values for many parameters are not known at 

the time of estimating 

• Sources include: 
– Uncertainty around the final design 

– Variation in historical data 

– Changing requirements 

– Uncertainty of who will perform the work 

– Variation in price of materials 

– Weather 
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Input Uncertainty is Not Enough 

for Regression Equations 

Model Uncertainty is the uncertainty around the estimate produced by a 

regression equation 

• Holding the input value steady will still produce an output distribution because of the 

modeling error 

• The total uncertainty of the model is a combination of two types of variation: input and 

model 

Non-linear regression example adapted from 2008 NASA Cost Estimating Handbook 
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Regression Overview 
 

Ordinary Least Squares regression finds the line through the data that 

minimizes the sum squared error. This produces a mean estimator. 

We use information from the regression analysis to produce 

confidence and prediction intervals which help us estimate.  

y = 0.7836x + 0.8138 
R² = 0.9469 
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Confidence vs Prediction intervals 
 

Confidence and Prediction intervals are related but provide bounds for different 

types of estimation. 

• Confidence intervals give bounds for estimating the true value of the regression line 

(the true mean of Y) at a particular x value (or vector if there are multiple independent 

variables). 

• Prediction intervals give bounds for estimating another observation (particular value 

of Y) at a particular x value (or vector if there are multiple independent variables). 

 

 

 

 

 

 

 

Prediction intervals include two types of variation: the error around estimating the true mean and the 

natural variation around the true mean. 

Because the estimate of the mean necessarily has less variation than the estimate of observations 

that produce that mean, confidence intervals are smaller than prediction intervals. 
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Why are Prediction Intervals Bigger? 
 

Confidence intervals: 
Here were are trying to predict the mean y value and so are only concerned about the variation around the 
regression line estimate. 

Mean estimate = 𝑦 0|𝑥0 

𝑣𝑎𝑟 𝑦 0 𝑥0 = 𝑣𝑎𝑟 𝑥0𝛽 𝑥0  

                        = 𝑥0 𝑣𝑎𝑟 𝛽  𝑥0’ 

                               = 𝑥0 𝜎 2(𝑋′𝑋)−1𝑥0’ 

                                = 𝜎 2 𝑥0 (𝑋′𝑋)−1𝑥0’ 
Where 𝛽  is the estimated regression coefficients and 𝑋 is the design matrix. 

 

Prediction intervals: 

Here we are trying to predict a new y value (not the mean of the y’s) and so are also concerned with the 
variation of the y values themselves, not just around the mean. To account for this, we add another term. 

               New observation estimate = 𝑦 0 = 𝑦 0|𝑥0 + 𝜀0 

                                  𝑦 0 = 𝑦 0|𝑥0 + 𝜀0 

     𝑣𝑎𝑟 𝑦 0 𝑥0 = 𝑣𝑎𝑟(𝑦 0|𝑥0 + 𝜀0) 

                                                                  = 𝑥0 𝑣𝑎𝑟 𝛽  𝑥0
′ + 𝑣𝑎𝑟(𝜀0|𝑥0) + 2cov(𝑥0𝛽 , 𝜀0|𝑥0)  

                                    (no covariance because of OLS assumptions) 

                               = 𝑥0 𝜎 2(𝑋′𝑋)−1𝑥0
′ + 𝜎 2 

                                = 𝜎 2 [𝑥0 (𝑋′𝑋)−1𝑥0
′ + 1] 

The inclusion of the additional term results in a “+1” in the final step which makes the prediction intervals larger. 
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Calculating Intervals 

Form of an interval: 

Output from regression equation ± critical value from t distribution × Standard Error 

 

Ordinary Least Squared dictates that we use a t-distribution because  
• We assume normally distributed data around means 

• Do not know the actual variance of the residuals (sigma^2) and so must use an estimate (SEE) 

 

The difference between confidence and prediction intervals is in the Standard Error term which 
we have already seen. So 

C.I. = 𝑦 0|𝑥0  ±  𝑡 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙, 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑠𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚  ∗ 𝑆𝐸𝐸 ∗  𝑥0 (𝑋′𝑋)−1𝑥0’  

P.I. = 𝑦 0|𝑥0  ±  𝑡 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙, 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑠𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚  ∗ 𝑆𝐸𝐸 ∗ 1 +  𝑥0 (𝑋′𝑋)−1𝑥0’  
 

SEE (Standard Error of the Estimate) comes from our regression analysis  

and is our estimate for sigma. 

 

Note: These formulas are more common written as:  

C.I. = 𝑦 |𝑥0 ± 𝑡𝛼

2
,𝑑𝑓 × 𝑆𝐸𝐸

1

𝑛
+ 

(𝑥0−𝑋 )2

 𝑋2−𝑛𝑋 2  

P.I. = 𝑦 |𝑥0 ± 𝑡𝛼

2
,𝑑𝑓 × 𝑆𝐸𝐸 1 +

1

𝑛
+ 

(𝑥0−𝑋 )2

 𝑋2−𝑛𝑋 2 

However, these formulas do not extend to the case with multiple independent variables. Thus 
matrix algebra (and notation) is used. 
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Producing and Using Prediction Intervals 
 

Now that we know what predictions intervals tell us and how they are different than confidence 
intervals, how do we use them? 
The use we are concerned with is producing estimated y values for a Monte Carlo simulation. Because Monte Carlo simulations 
rely on the range of future observations rather than the mean of the observations, prediction intervals are used to randomly 
sample from the distribution of future observations.  

1. Calculate the output of the regression equation for the x value(s). This is the mean estimate. 

2. Randomly sample from a t distribution with degrees of freedom equal to the residual degrees of freedom 
from the regression analysis. 

3. Calculate the Standard Error for the regression equation at the given input vector.  

𝑠𝑒 𝑦 𝑥0 = 𝑆𝐸𝐸 1 + 𝑥0 𝑋′𝑋 −1𝑥0′ 

where SEE = the Standard Error of the Estimate for the regression analysis and X is the design matrix. The 
design matrix is of size [(number of data points) x (number of variables + 1)] where the first column is all 1’s, the 
second column is the data points for the first variable in the regression, the third column is the data points for the 
second variable in the regression, etc. 

 

Now we have all the part for the expression: 

Output from regression equation + critical value from t distribution × Standard Error 

This will produce a single potential future observation of y either above or below the estimated mean 
(because the sample from the t distribution may be positive or negative) which can then be used in one trial of 
a Monte Carlo simulation.  

 

Notes: The PCEC refers to (𝑋′𝑋) as the “squared design matrix” and includes this with CERs for users to use 
for including model uncertainty in estimates. 

The PCEC includes Prediction Interval calculations for appropriate CERs. Users can use any Monte Carlo 
addin with the PCEC to add uncertainty to their models. 
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Why Are Prediction Intervals curved? 

Prediction (and confidence) intervals are narrowest near the point (𝑥 , 𝑦 ) and get wider as the x 

value(s) move away. To understand why, it is easier to refer again to the PI equation for a univariate 

regression: 

P.I. = 𝑦 |𝑥0 ± 𝑡𝛼

2
,𝑑𝑓

× 𝑆𝐸𝐸 1 +
1

𝑛
+ 

𝑥0−𝑋 2

 𝑋2−𝑛𝑋 2 

Looking at this expression we can make a few observations: 

• When the input value equals the mean, 𝑥0 = 𝑋 , the third term under the radical is 0 and the 

standard error is at its smallest.  

• When 𝑥0 ≠ 𝑋 , the third term under the radical is positive. Moreover, the standard error grows 

larger as 𝑥0 gets farther from 𝑋 . This happens in either direction because the term is squared and 

thus always positive. 

• The regression equation is most precise near the center of the data set. Estimating outside the 

range of the data carries large uncertainty because the standard error grows large. 

• The standard error must be calculated for every input value. During simulations where 𝑥0 is varied 

(input uncertainty), the standard error must be recalculated for each trial.  

• Increasing the number of data points (n) adds precision to the C.I.’s more than the P.I.’s This is 

because increasing n makes the second and third terms under the radical vanish to 0. These are 

the only terms under the radical for C.I.’s, but P.I.’s have the 1 as well.  



Victory Solutions MIPSS Team 

Output Comparisons: Input 

Uncertainty 

This graph illustrates the results of including only input uncertainty in a 
simulation. 

 

 

 

 

 

 

 

 

 

It assumes that the output from the regression equation is the desired predicted 
value, which is rarely the case when incorporating uncertainty. The regression 
equation estimates the mean of the y values, but usually an estimate for a new 
observation is desired. 
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This graph illustrates the results of including only model uncertainty in a 
simulation. 

 

 

 

 

 

 

 

 

 

It assumes that the input value for x is known absolutely at the time of 
estimating, which is not usually the case. It uses the regression equation to get 
one mean estimate and then uses prediction intervals to produce a range of y 
values for the sole x value. 
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Output Comparisons: Input and 

Model Uncertainty 

This graph illustrates the results of including both input and model 
uncertainty in a simulation. 

 

 

 

 

 

 

 

 

 

 

This captures the widest and most accurate range of potential y values by 
including both types of uncertainty. 
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