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Volatiles on the Moon yoi&.ic o

= State of knowledge circa 2004: Are there volatiles on the Moon?

Analytical Tools Recent Data
* Mapping Aﬂ@W@[ﬁ@@] " LADEE
= Thermal analyses = LRO
= Spectroscopic analyses . = LCROSS
= Laboratory experiments U = Chandrayaan-1
* Impact experiments * Lunar Prospector
= Modeling = EPOXI, Cassini
= Reanalysis of Apollo = ARTEMIS

samples S, = IBEX
= Particle analyses . ’/,:/7 » Kaguya

(energetic particles,

_ = Apollo samples
neutrals, neutrons, ions) P P
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Volatiles on the Moon

= Three brands of volatiles:

> Sequestered volatiles in cold traps

- Either episodic delivery of large quantities
or constant delivery of small quantities or
both

> Internal volatiles trapped in minerals and
glasses

- Leftover from lunar formation
> Global surface volatiles

- Transient veneer either produced and lost
in place diurnally or involved in migration
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LRO Diviner and Thermal Analysis

= Three brands of volatiles:
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LRO LAMP Surface Frost

* Three brands of volatiles:
> Sequestered volatiles in cold traps

LRO Lyman Alpha Mapping
Project (LAMP)
Gladstone et al. (2012) JGR
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Neutron and Radar Data VORTICES

* Three brands of volatiles:
> Sequestered volatiles in cold traps

* Neutrons (LPNS &
LRO LEND)

> Enhancements in
hydrogen content in
top meter of regolith
in PSRs

> Heterogeneous
distribution

= Radar evidence still
evolving (Mini-RF)

» Moon’s PSRs aren’t
full of big ice blocks,
unlike Mercury

Neutron

SPUDIS ET AL. (2013)
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= Three brands of volatiles:
» Sequestered volatiles in cold
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Ongoing Investigations yoi&.ic o

Basic questions Significance
= What is present-day = Resource location,
distribution/abundance potential extraction
on lunar volatiles? methods
= Delivery and retention
processes

* What is the composition Markers for lunar

of the volatiles? formation, inner Solar
System inventories,
comets

= Informs utilization
schemes
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Sources and Migration of Volatiles to Cold Tre Cbdnces

L

ballistic
hop

thermal desorption
sputtering release

1)

2)

3) impact vaporization condensation
4)

outaassin adsorption
? - thermalization

re-emission

in cold trap
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Modifications to Lunar Cold Traps

= Photolysis from UV zodiacal light, starlight, Earthshine; reflected
sunlight.

Impact vaporization from all sizes of meteoroids.

lon sputtering from solar wind particles.

Diffusion into the regolith.

Sublimation from thermal effects

Vondrak and Crider, 2003
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Impact Gardening in Polar Cold Traps

age " Initial ice layer—
abundance is stratified
with depth

= Impacts poke holes in ice
layer—anomalous
regions have lower
abundance than average

* Few ice blocks remain—
anomalous regions have
higher abundance than
average
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= Water is mixed with

depth—few anomalous
regions
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Ice Retention

initial thickness - = The amount of ice present today is

of ice

WO ] 100em not the amount delivered to the

95 cm cold traps
90 cm

85 cm
80 cm

;gcm = Retention of ice is shown as a
cm

65 cm function of the initial thickness of
60.cm the ice

55¢cm

50 cm = f=b -0.38 log (t)

45 cm

A0cm where b is a function of the

30 cm thickness, x
25cm

fraction of ice retained

20 cm = 15 cm thick, 600-700 Myr old
l o scenario implies that <30% of the
00— scm original ice remains.

age (Myr)




Mobility Requirements

D

What fraction of drill sites in a 20 m x 20 m area

contains buried ice?

100 Myr

= 500 Myr
1000 Myr

number of model runs

0 20 40 60 80 100

percentage of search area containing ice

Assuming 20 m x 20 m search area

Assume initial ice layer was 15 cm thick

For a ~500 Myr old ice
deposit, there is a
finite chance that a 20
m x 20 m exploration
grid would be
completely dry.
However, it is most
likely that 30-50% of
the exploration grid
contains ice.

VORTICES
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Model Results VORTICES

= Best correlation with relative altitude of lowest point
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SOLAR SYSTEM EXPLURATIUN‘_':SEARC'H- -"
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‘Spillage may
occur!’

Clark et al, 2010
3 micron IR

Moon- spillage activated by harsh space environment?

-Part of OH Veneer signature: ‘Redistribution’ or
transport of polar crater volatiles to mid-latitudes

15 Courtesy of W. Farrell (NASA/GSFC)
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Emission Rates and Surface Veneer

Assume in crater fractional water content of 0.1%wt

Impact Vaporization: For this water content, a 108 kg
micrometeroid near 10 km/sec releases ~107 H,0s /m?-s
[Cintala, 1992; Farrell et al., 2013]

Sputtering: For this water content, yield is ~10-3 water
molecules/ion released also generates about ~107 H,0s /m?-s
but water released more energetically than from impacts

For a 20 km radius crater, the water molecules redistributed to
the surrounding 400 km diameter topside region is on average
~2 x 10* H,0s /m?-s

For a shadowed region residence time of 1/2 of lunation, a
volatile ‘veneer’ should form in topside shadowed region at
~10%% H,0s /m? (mostly from impact vaporization).

Courtesy of W. Farrell (NASA/GSFC) W
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Effects of Operations on the Environment
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Volatiles: What’s Next? Vogi s

Basic Questions Status Data Needed
= What is present-day [ ] = In situ sampling,
distribution/abundance? ¥ bi-static radar, IR,
higher spatial
resolution
mapping

= What is the

composition? " In situ sampling,

sample return,
isotopic analysis

19 10 m
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Conclusion: Science and Exploration

= Ice in lunar polar regions has a heterogeneous distribution.
» Processes of scientific interest produce the heterogeneity.

> The heterogeneity drives the design of any mission to sample
volatiles in situ on the Moon.

= Many processes act simultaneously as a source and a sink to
volatiles

> Impacts both bury (protect) polar volatiles and excavate (remove)
them

» Operations that use volatiles also deposit volatiles in the
environment

= Science and exploration should coordinate to meet their
synergistic goals pertaining to lunar volatiles

» Exploration missions will provide data for scientific interpretation of
history of volatiles and physical processes acting on the Moon.

» Intense international robotic lunar exploration in the past decade
has transformed the understanding of lunar volatiles.

— 9
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Future Directions voRTICES

Ultimate Questions

= What are the sources of volatiles and relative
importance?

» What processes affect the delivery and retention
of the volatiles?
= When were the volatiles introduced to the Moon?

= What do they tell us about the formation of the
moon, early volatiles in inner solar system?

= How do we mine and utilize the volatiles in future
missions?

21 N4 @
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