NASA Landing Site/Exploration Zone for the First Human Missions [#1022]

Paul Yun

Department of Mathematics El Camino College, Torrance CA NASA/JPL Solar System Ambassador

Latitude and Longitude: 4.6°S 137°E

Latitude: 4.6 degrees South

(Located between +/- 50 degrees latitude) Elevation: -4.5 km MOLA

(Less than +2 km altitude)

RUBRICS

Gale Crater

Science ROI(s) Rubric

Site Factors					EZ1 (ROI 2)	EZ1 (ROI 3)	EZ1 (ROI 4)	EZ1 (ROI 5)	EZ1 (ROI 6)	EZ1 (ROI 7)	EZ1 (ROI 8)	EZ1 (ROI 9)	EZ1 SUM
	Astrobio		Potential for past Habitability	0	•	•	•	•	•	0	•	•	2,3,4,5,6,8, 9(1,7)
ce Site Criteria		Threshold	D Potential for present habitability/refugia		•	0	0	0	0		•	•	2,8,9 (3,4,5,6,)
		Qualifying	Potential for organic matter, w/ surface exposure		0	0	0	•		•	•	•	5,7,8,9 (2,3,4)
	Atmospheric	Threshold	Noachian/Hesperian rocks wł trapped atmospheric gases	٠	0	0		0	0	0			1(2,3,5,6,7)
		Qualifying	Meteorological diversity in space and time	•	0	0	0	0	0	0	0	0	1(2,3,4,5,6, 7,8,9)
			High likelihood of surface- atmosphere exchange	•		0			0	0			1(3, 6, 7)
			Amazonian subsurface or high- latitude ice or sediment	•				0	0				1(5,6)
			High likelihood of active trace gas sources	•	0			0	0	0			1(2,5,6,7)
	Geoscience	Threshold	Range of martian geologic time; datable surfaces	•				0	0				1(5,6)
ien			Evidence of aqueous processes	0		•	•	0	0				3,4(1,5,6)
Sc			Potential for interpreting relative ages	•				0	0				1(5,6)
		Qualifging	Igneous Rocks tied to 1+ provinces or different times	•	0					0			1(2,7)
			Near-surface ice, glacial or permafrost		0		0	0			•	•	8,9(2,4,5)
			Noachian or pre- Noachian bedrock units	•				0	0				1(5,6)
			Outcrops with remnant magnetization	•	0			0	0	0			1(2,5,6,7)
			Primary, secondary, and basin- forming impact deposits	•				0	0		•	•	1,8,9(5,6)
			Structural features with regional or global context	•	0	0	0	•	•	0			1,5,6
			Diversity of aeolian sediments and/or landforms	•	0	0	0	•	•	0	0	0	1,5,6(2,3,4,

Key							
• Yes							
o	Partial Support or Debated						
	No						
?	Indeterminate						

Resource ROI(s) Rubric

Site Factors				EZ1 (R01 1)	EZ1 (R01 2)	EZ1 (ROI 3)	EZ1 (ROI 4)	EZ1 (ROI 5)	EZ1 (ROI 6)	EZ1 (ROI 7)	EZ1 (ROI 8)	EZ1 (R01 3)	EZ1 SUM		
	Engineering Meets First Order Criteria (Latitude, Elevation, Thermal Inertia)												YES		
vil Engineering Criteria			Potential for ice or ice/regolith		0	0	0	0	0		•	•	8,9,(2,3,4,5,6,)		
		Threshold	Potential for hydrated minerals		0	0	0	0	0		•	•	8,9,(2,3,4,5,6,)		
			Quantity for substantial production		0	0	0	0	0		•	•	8,9,(2,3,4,5,6,)		
	e		Potential to be minable by highly automated systems		0	0	0	0	0		٠	•	8,9,(2,3,4,5,6,)		
	er Resour		Located less than 3 km from processing equipment site								•	•	8,9		
			Located no more than 3 meters below		0	0	0	0	0		0	•	(2,3,4,5,6,8,9)		
			Accessible by automated		0		0	0	0		0	0	(2,4,5,6,8,9)		
	2at		Potential for multiple sources of												
	-	Qualifying	ice, ice/regolith mix and hydrated minerals		•	0	•	•	•		•	•	8,9,(2,3,4,5,6,)		Kev
			Distance to resource location can be >5 km		•	•	•	٠	•		0	0	2,3,4,5,6(8,9)		Yes
			Route to resource location must		0	0	•	•	•		•	•	8,9,(2,3,4,5,6,)	· ·	Tes
	Civil Engineering	Threshold	~50 sq km region of flat and stable terrain with sparse rock distribution								•	•	8,9	0	or Debated
			1–10 km length scale: <10 [°]								•	•	8,9		No
			Located within 5 km of landing site location								•	•	8,9	?	Indeterminate
		Qualifying	Located in the northern hemisphere Evidence of abundant cobble sized or										89(12456)		
ö			smaller rocks and bulk, loose regolith		<u> </u>		<u> </u>	<u> </u>	<u> </u>	0	-		9(23 4 5 6 7 8)		
ISRU and								<u> </u>	<u> </u>	<u> </u>			123456789		
	luction	Qualifying	No local terrain feature(s) that	0	_			0	0	0	•	•	8,9(1,5,6,7)		
	Food Prod		Access to water		0			-					8 9(2 4 5)		
			Access to dark, minimally altered	•	•	0	•	•	0	0	0	•	1,9(2,3,4,5,6,7,8)		
			Potential for metal/silicon	-	_		_	-		0			189(234567)		
	/Silicon Resource	Threshold	Potential to be minable by highly	-	~	0	0	<u> </u>	0				9 9(2 3 4 6)		
			automated sustems Located less than 3 km from processing		· ·	0	<u> </u>		<u> </u>				0,0(2,0,4,0)		
			equipment site Located no more than 3 meters below	~	-	-	-	-	-	-			(1224567.99)		
			the surface Accessible by automated	0	· ·	0	· ·	· ·	0	· ·	0	-	(1,2,3, 4,3,0,7, 0,3)		
		Qualifying	sustems Potential for multiple sources of	0	0	0	0	0	0	0	•	•	8,9(1,2,3,4,5,6,7)		
			metals/silicon									<u> </u>			
	Metal		Distance to resource location can be >5 km	•	•	•	•	•	•	•	•	•	1,2,3,4,5,6,7(8,9)		
			Route to resource location must be (plausibly) traversable	0	0	0	0	0	0	0	•	•	8,9(1,2,3,4,5,6,7)		

SCIENCE ROIs

Gale Crater

Human missions will deepen our understanding Mars with Curiosity's Insitu data.

- Mount Sharp of sedimentary layers
- Bottom of a lake
- Habitable environment
- Methane

Gale Crater was formed by a meteor impact about 3.5 to 3.8 billion years ago.

Aeolis Mons (Mount Sharp) of ~5km layered sedimentary Noachian and/or Hesperian rocks suitable for radiometric dating in a significant range of martian geological time

Near the bottom of the mound are clay minerals. **Repeated Sulfate and Clay Beds in West Gale Crater** (Deposits with a high preservation potential for evidence of past habitability and fossil bio-signatures)

NASA/JPL/ University of Arizona

RESOURCE ROIs

Gale Crater

Resource ROIs

Higher atmospheric density: Best known radiation shielding

Hydrated Soil in Gale Crater

Hydrate Mineral (2wt % H₂O) Soil's amorphous component (3 to 6 wt % H₂O)

Gale Crater soil composition:

Plant macronutrients and micronutrients are available to complete life cycle. Mars atmosphere is made of Carbon dioxide 95.32% & Nitrogen: 2.7%.

Nitrates found in Gale Crater: Nitrogen exists in soil.

Cobble-sized or smaller rocks and bulk, loose regolith

Cobble-sized rocks

Iron Oxides

Silicon, Aluminum and Magnesium

A plausible Mars landing site

Higher atmospheric density: Advantage on velocity reduction in landing

A flat area of approximately 25 km² of the terrain with slope less than ~10 degrees and without significant landing hazards including dust

Curiosity's Insitu data decrease risk for human missions , and reduce cost.

- Radiation
- Wind speed and direction
- Temperature
- Atmospheric pressure

Daily Cycles of Radiation and Pressure at Gale Crater: As pressure increases, the total radiation dose decreases.

Mars Sol (Martian day since MSL landing)

Engineering Parameter: More than 5 km away from nuclear powered Curiosity

Proposed site satisfies engineering constraints, which is supported by successful landing of 899 Kg Curiosity.

Elon Musk

Transportation & Mission in Exploration Zone(EZ)

Mobility Type I: Wheeled vehicle

Apollo 15-Lunar Rover Vehicle (210 kg on earth) (1971)

Don't forget spare tires!

Higher atmospheric density: Advantage on potential flying on Mars

Mobility Type II: Mars aircraft with faster rotating and bigger propeller with powerful battery

Con: Low atmospheric density Pro: Low gravity

Remote control robotic mission with sample return

Drone on Mars

Drone on earth

DATA NEEDS

Gale Crater

Highest Priority EZ Data Needs

We need additional data set to answer the following science question.

"Can any microbe survive in present Gale Crater?"

We need additional data set to answer the following resource question.

"How deep should we dig in Gale Crater for enough water?"

Conclusion

Gale Crater is the Exploration Zone with

- 1) A proven safe landing site,
- 2) Rich scientific resources, and
- 3) Resources that support human missions.

Thank you for supporting Gale Crater!! Paul Yun