Virtual Telescope for X-ray Observations: VTXO

Pl: John Krizmanic (CRESST/NASA/GSFC/UMBC)

Mission Description

Precision formation flying of a OpticsSat with X-ray Phase Fresnel Lens (PFL) Optics and a DetectorSat with an X-ray camera forming a 1 km focal length X-ray telescope with 55 milli-arcsecond angular resolution and 8 arcsecond FoV

Science Objectives

Image environments $\times 10$ closer to compact X-ray sources Sco X-1: X-ray telescope PSF calibration
Cyg X-1 \& GRS 1915+105: jet structure in X-ray Novae Cyg X-3, GX 5-1, Cen X-3: dust scattering halos Crab PWN: structure in accelerator termination shock Eta Carinae: bow shock location in colliding wind γ Cas: spatial scale of X-ray emission

Mission Specs

ESPA-ring deployment on rideshare Orbit: $90,000 \mathrm{~km} \times 600 \mathrm{~km}$ perigee Orbit fraction above rad belts: $>50 \%$ Observation time: 10 hours/32.5 hr orbit DetectorSat: ESPA-class ($50 \times 40 \times 80 \mathrm{~cm}^{3}$) OpticsSat: 6U Cubesat Mission Lifetime: ~250 days

X-ray Telescope Specs

Three different PFL Optics:

PFL\#1 Energy: $4.5 \pm 0.15 \mathrm{keV}$
PFL\#2 Energy: $6.7 \pm 0.15 \mathrm{keV}$
PFL-Achromat Energy: 4-6 keV
PFL Diameter: 3 cm
PFL Efficiency: 30\%
PFL Focal Length: 1 km
X-ray Camera: Teledyne H2RG HyViSI

Observation time for 1000 VTXO counts in the energy band $4.5+/-0.15 \mathrm{keV}$		
Source	Flux (mCrabs)	Obs Time (hr)
Sco X-1	8000	0.2
GX 5-1	1260	1.5
GRS 1915+105	450	4.2
Cyg X-3	390	4.9
Cyg X-1	350	5.4
Crab Pulsar	100	19
Cen X-3	90	21
γ Cas	13	146
Eta Carinae	4.2	452

PFL Imaging Performance

Design Energy: 8 keV
Material: Silicon
PFL Diameter: 3 mm
PFL Efficiency: 36\%
PFL Focal Length: 110.5 m
Diffraction-limit PSF: 15.9 mas

S-band radios provide inter-satellite data link and ranging. ~30 kbps ground com bandwidth around apogee.
GPS positions and velocities available for entire orbit, resolution reduced above GPS constellation.

ConOps

- Loose formation leaves perigee.
- Science formation forms in ~10 hr to 1 km focal length at 5 hr before apogee:
- Thrusters keep image on X-ray camera within $\pm 5 \mathrm{~mm}$ for $\pm 5 \mathrm{hr}$ around apogee.
- Navigation filter uses NISTEx-II star tracker \& Nav sensors also imaging beacons on OpticsSat to obtain 53 mas telescope pointing resolution.
- Formation relaxes moving to perigee.
- Ground com occurs before perigee.
- Process repeats.

Spacecraft

DetectorSat

1 VACCO 3-nozzle cold gas thruster; 2 SWIFT SLX radio; 3 Batteries; 4 Avionics bus/shielding; 5 NISTEx-II interferometric start tracker; 6 X ray camera assembly; 7 Instrument electronics/shielding; 8 VACCO cold gas generator; 9 X-ray camera/star tracker viewing ports.

DetectorSat:
Dry Mass: 72 kg
Wet Mass: 109 kg
Power: 48 W
OpticsSat:
Dry Mass: 9.7 kg
Wet Mass: 12 kg
Power: 24 W
Telemetry:
200 Mbits/orbit

OpticsSat

VTXO AS ${ }^{3}$ Team
Principle Investigator: John Krizmanic ${ }^{1}$
Science Team: Mike Corcoran ${ }^{2}$, Alice Harding ${ }^{3}$, Chris Shrader ${ }^{2}$
Engineering Team: Neerav Shah ${ }^{3}$, Steve Stochaj ${ }^{4}$, Phil Calhoun ${ }^{3}$, Lloyd Purves ${ }^{3}$, Cassandra Webster ${ }^{3}$, Kyle Rankin ${ }^{4}$, Daniel Smith ${ }^{4}$, Asal Nasari ${ }^{5}$, Laura Boucheron ${ }^{4}$, Krishna Kota ${ }^{4}$, Hyeongun Park ${ }^{4}$

1 CRESST/NASA/GSFC/University of Maryland, Baltimore County 2 CRESST/NASA/GSFC/Catholic University of America
3 NASA/Goddard Space Flight Center
4 New Mexico State University
5 Space Dynamics Laboratory

AS ${ }^{3}$ Summary
Spacecraft, flight dynamics, and GN\&C finalized in weeklong MPL study at Wallops.
SmallSats use components with flight heritage to the best extent possible.
NISTEx-II Interferometric star tracker operational on ISS STP-H6 platform.
Small charged particle radiation detector included to verify rad environment during science observations.
Mission costing performed by GSFC CEMA office using MPL-developed MELs and Price-H parametric cost model with cost risk analysis: Mission Cost estimate is $\sim 40 \%$ above $\$ 35 \mathrm{M}$.

