A historical timeline of solar science discoveries—leading to the newest spacecraft in NASA's heliophysics fleet.

The Corona as the Sun's Atmosphere
English astronomer Francis Baily observes a total solar eclipse and suggests that the hazy 'corona' outlining the Sun is its atmosphere.

Comet Tails in the Wind
Johannes Kepler observes comet tails and hypothesizes that they are blown away by pressure from sunlight — a solar breeze.

The Coronal Heating Problem
Swedish astronomer Bengt Edlen detects highly ionized iron in the corona, indicating a temperature of 1.8 million degrees Fahrenheit. This is much hotter than the Sun's surface.

A New Heating Mechanism
Swedish physicist Hannes Alfvén proposes the existence of a new kind of wave forming in electrically conducting fluids. These waves may be responsible for heating the corona to such high temperatures.

A Solar Wind Made of Particles
Building on Kepler's hypothesis from 400 years earlier, Cuno Hoffmeister (and later Ludwig Biermann) proposes that the Sun emits a steady stream of charged particles that push the ions in comet tails always away from the Sun.

The First Theory of the Solar Wind
Eugene Parker connects the hot corona with the solar wind via a rigorous mathematical theory. According to the theory, heat pressure from the million-degree corona forces it to expand outward, forming a solar wind that drags the Sun's magnetic field lines deep into space.

Slow Solar Wind and Helmet Streamers
Using observations from the joint ESA/NASA Solar and Heliospheric Observatory, Neil R. Sheeley Jr. and colleagues identify puffs of slow solar wind emanating from helmet streamers — bright areas of the corona that form above magnetically active regions on the photosphere. Exactly how these puffs are formed is still not known.

Nanoflares May Heat the Corona
Eugene Parker proposes that frequent, small eruptions on the Sun — known as nanoflares — may heat the corona to its extreme temperatures. The nanoflare theory contrasts with the wave theory, in which heating is caused by the dissipation of Alfvén waves.

Fast Wind from Coronal Holes
Images from Skylab, the U.S.'s first manned space station, identify that the fast solar wind is emitted from coronal holes — comparatively cool regions of the corona where the Sun's magnetic field lines open out into space.

The Slow and Fast Solar Wind
NASA's Mariner 2 spacecraft observes the solar wind, detecting two distinct 'streams': a slow stream travelling at approximately 215 miles per second, and a fast stream at 430 miles per second.

Solar Wind Detected
The Soviet satellite Luna 1, the first spacecraft to leave geocentric orbit, measures the solar wind directly for the first time, confirming key parts of Parker's theory.

The Corona as the Sun's Atmosphere
Swedish astronomer Bengt Edlen detects highly ionized iron in the corona, indicating a temperature of 1.8 million degrees Fahrenheit. This is much hotter than the Sun's surface.

The Corona as the Sun's Atmosphere
English astronomer Francis Baily observes a total solar eclipse and suggests that the hazy 'corona' outlining the Sun is its atmosphere.

Comet Tails in the Wind
Johannes Kepler observes comet tails and hypothesizes that they are blown away by pressure from sunlight — a solar breeze.