Spacecraft Navigation Using Optical Astrometry & Ranging

Tomas Martin-Mur

Workshop on Emerging Technologies for Autonomous Space Navigation
16 February 2017

Opportunity: Optical Communications Systems

Deep-space optical links could revolutionize space communications

Those same links could also be used for deep space navigation

Ground Laser Transmitter (GLT)
Table Mtn., CA
5kW, 1m-dia. Telescope

Ground Laser Receiver (GLR)
Palomar Mtn., CA
5m-dia. Hale Telescope
Opportunity: ESA’s Gaia Star Catalog

Topic covered by Chris Jacobs

Will provide reference star positions than can be used to perform spacecraft astrometry at a level comparable to that possible with VLBI

~37 million stars down to 15^m accurate to 0.12 nrad
~1 billion stars down to 20^m accurate to 2 nrad
Spacecraft position components relative to telescope can be measured optically:
- LOS Range (R) and Doppler (D)
- POS Astrometry (RA, DEC)

- Background star locations req’d for pointing knowledge and frame tie

- Measurements processed on-board or on-ground to determine trajectory

(x, y) define plane-of-sky (POS)
z defines line-of-sight (LOS)
Building block: Ground-based High-power Lasers

- High-powered laser for testing being installed at the OCTL
- It should allow for reflector-based astrometry and ranging up to lunar distances
- It can also be used for deep-space transceiver-based experiments
Building block: Spacecraft Optical Terminal

• Goals:
 • **Precision ranging (5 mm)** with high BW receiver & transmitter using accurate on-board time-tagging of sent and received laser-optical signals;
 – Either 2-way, or 1-way when equipped with a precise on-board clock
 • **On-board high-precision astrometry (10 uas)** with a large-format, multi-megapixel, low noise, fast CCD camera;

• Approach:
 • Build and demonstrate performance of proof-of-concept for new instrument capable of communication, ranging, and astrometry.
On-board Astrometry

- On-board multi-megapixel CCD camera integrated into DOT would enable precision astrometry to ~20 μas
 - Beacon-less acquisition and comm (current DSOC needs an Earth-based optical comm beacon);
 - Autonomous nav relying on an over 10,000 increase in onboard astrometric capabilities;
 » Using asteroids or moons as targets
 » Using other laser-equipped spacecraft as targets
Building block: Ground-based Telescopes and Detectors

• 5 nrad spacecraft astrometry could be achievable with a 1 m telescope, and 1 nrad with a 5 m telescope.

• It may be more efficient to have two different types of ground telescopes:
 – One with large apertures for telemetry and ranging
 – Smaller, low-cost telescopes for all kinds of astrometry, including spacecraft tracking
Point of Departure for Astrometry

Field distortion: optics and detector
~ 250 nrad

Streaked image due to motion
~ 1000 nrad

Atmospheric turbulence
~ 150 nrad

Photon noise

30 s integration

Pre-Gaia Catalog Error
~ 250 nrad

Credit: Chengxing Zhai
Goal for Precise Astrometry

Field distortion:
- **optics and detector**
 - ~ 0.7 nrad

Atmospheric turbulence
- ~ 0.4 nrad

Differential chromatic refraction
- ~ 0.5 nrad

Streaked image due to motion
- < 0.1 nrad

Gaia Catalog Error
- ~ 0.1 nrad

Photon noise
- ~ 0.1 nrad
- ~ 0.4 nrad
- ~ 0.7 nrad

Field distortion modeling
- using Gaia and dense field image (1 arcmin field)

Synthetic tracking
- 30 s -> 3600 s

Credit: Chengxing Zhai
New Camera on Pomona College 1m Telescope a JPL’s Table Mountain Observatory

• A new camera has been installed at TMO for precision astrometry and it is being calibrated using the 2016 release of the Gaia catalog.

• Currently being tested observing asteroids, as analog of observing interplanetary spacecraft.

Credit: Chengxing Zhai
Optical Comm Nav Pros and Cons

Pros:

• Single-station plane-of-sky measurements
 – Possible without changes to the spacecraft optical terminal
 – Feasible with smaller, low-cost apertures

• Not affected by charged particles (ionosphere or solar plasma)
 – Solar plasma is the dominant error source for X-band tracking

• Improved ranging accuracy
 – Ranging requires changes to the spacecraft optical terminal
Optical Comm Nav Pros and Cons

Cons:

• Ground-based optical tracking precluded by cloud cover
 – Could be mitigated by regional diversity

• Astrometry less accurate or impossible with increased levels of sky brightness
 – Astrometry not available for small Sun-Earth-probe angles

• Requires precise pointing, no optical LGA at deep-space distances
 – It may not be possible to track and operate the payload at the same time
 • Solvable with a gimballed optical terminal
Optical Astrometry Constraints

- Elevation: optimal within ~30° of zenith
- Brightness: astronomical twilight (18°) observed

Can observe fine

30° off-zenith

Twilight 18°

Gets worse
FY16 Navigation Analysis

• Radio and optical data types simulated
• Different mission scenarios considered
 – Mars lander case based on Mars 2020
 – Mars orbiter case based on MAVEN (Mars Atmosphere and Volatile Evolution)

Mars 2020 schematic. Image courtesy of NASA.

MAVEN at Mars. Image courtesy of NASA.
Comparing Radiometrics and Optometrics

<table>
<thead>
<tr>
<th></th>
<th>Radiometrics</th>
<th>Optometrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data types</td>
<td>Two-way Doppler, two-way range, ΔDOR</td>
<td>Optical range, ground-based astrometry</td>
</tr>
<tr>
<td></td>
<td>e.g. for X-band: Doppler: 0.10 mm/sec Range: 3 m</td>
<td>Range: 5 cm (360 sec integration)</td>
</tr>
<tr>
<td></td>
<td>ΔDOR: 60 ps (2.25 nrad)</td>
<td>Astrometry depends on:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• elevation angle,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• time of the day,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• telescope diameter,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• integration time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➢ 1 nrad for a 5 m telescope at zenith, at night, with 1 hour integration</td>
</tr>
<tr>
<td>Data uncertainties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error sources</td>
<td>Earth orientation, station location, ephemeris, GMs, clock</td>
<td>Troposphere only</td>
</tr>
<tr>
<td></td>
<td>Troposphere, ionosphere, solar plasma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quasar catalog</td>
<td>Star catalog</td>
</tr>
</tbody>
</table>
Mars Lander Results

• Assuming continuous availability, optical can outperform traditional radiometric tracking data

• Optical outperforms direct radiometric analog (Radio range + ΔDOR)

• Could meet MSL, Mars 2020 requirements

Credit: Sarah Elizabeth McCandless
Mars Lander Results

- Navigation performance most sensitive to telescope diameter

Credit: Sarah Elizabeth McCandless
Mars Orbiter Results
April 18-19, 2016

- Based on MAVEN, currently in orbit at Mars
- Reconstruct orbit to within 3.0 km
- Optical outperforms radio during tracking passes & tracking gaps

Credit: Sarah Elizabeth McCandless
Mars Orbiter Results
May 5-6, 2015

- Degraded OD performance due to occultations
- Optical outperforms radio during tracking passes but not tracking gaps
- Still meets navigation requirements

Credit: Sarah Elizabeth McCandless
Other Navigation Scenarios to be Analyzed

• Asteroid rendezvous
 – Simultaneous imaging of spacecraft and target
 – Use of the on-board camera for target imaging
 – On-board autonomous navigation

• Mars spacecraft-to-spacecraft tracking
 – Complementing short-haul data links
 – On-board autonomous navigation

• Gravimetry of planets and moons
Conclusion

- Optical tracking has the potential to provide viable deep-space navigation data types with performance comparable to that achievable with radio.

- Optical tracking will be affected by some unique operational constraints that will limit its availability:
 - Cloud cover
 - Sky brightness for astrometry
 - Need for precise pointing – no optical LGA