Flight Demonstrations and Capabilities (FDC)

Scalable Convergent Electric Propulsion Technology and Operations Research (SCEPTOR)

Critical Design Review

November 15-17, 2016

Day 2 Package

Agenda Day 1

	Section	Presenter	Time Slot
0	Ground Rules	CJ Bixby (Board Chair)	8:00 - 8:15
1	X-57 Overview	Sean Clarke	8:15 - 8:25
2	Programmatic Overview	Tom Rigney	8:25 – 8:35
3	System Overview	Matt Redifer	8:35 – 8:45
4	Flight Control IPT	Dave Cox	8:45 – 9:35
5	Piloted Simulation	Ryan Wallace	9:35 – 10:00
6	Vehicle IPT	Keith Harris	10:00 - 11:30
	Lunch (delivered)		11:30- 12:30
7	Power and Command IPT	Sean Clarke	12:30 – 2:30
8	Instrumentation IPT	Ethan Nieman	2:30 - 4:00

Agenda Day 2

	Section	Presenter	Time Slot
1	Performance & Sizing IPT	Nick Borer	8:00 - 9:00
2	Wing IPT	Jeff Viken	9:00 - 11:00
3	Software Management	John Theisen	11:00 - 11:45
	Lunch (delivered)		11:45 - 12:45
4	T & V/AirVolt	Yohan Lin	12:45 – 1:45
5	Ground & Flight Operations	Aric Warner	1:45 - 3:00
6	Hazard Review/FMEA	Phil Burkhardt	3:00 - 3:30
7	Wrap-up/Breakout Schedule	CJ Bixby	3:30 - 4:00

SCEPTOR CDR Nov. 15-17, 2016

Day 3 Break-Out Sessions

		Room		
	S-211	S-234	S-241	
08:00	Wing Structure		Battery (ITAR) Sean Clarke	08:00
09:00	Jeff Viken		Vehicle Performance Nick Borer	09:00
10:00	CFD (incl. LEAPTech) Jeff Viken	Secondary Structure Wesley Li	Cruise Motors/Traction Bus Sean Clarke	10:00
11:00	Flutter / Whirl Flutter Jen Heeg		Instrumentation Ethan Nieman	11:00
12:00		Lunch (delivered)		12:00
13:00	Wrap-Up / RFAs			13:00
14:00	CJ Bixby			14:00

SCEPTOR CDR Nov. 15–17, 2016

SCEPTOR CDR

Performance & Sizing IPT Nicholas K. Borer (757) 864 4818 nicholas.k.borer@nasa.gov

Entry Criteria

SCEPTOR CDR Nov. 15-17, 2016

Roles & Responsibilities

- Sizing and performance analysis for Mod III & Mod IV configurations
 - Integrated propulsion & aerodynamic analyses
 - Cooling system design & analysis
- Team:
 - LaRC: Nick Borer, Michael Patterson, Joe Derlaga, Brandon Litherland
 - GRC: Jeff Chin, Sydney Schnulo, Andrew Smith, Bob Christie (ret)
 - Joby: Alex Stoll, Arthur Dubois

SCEPTOR CDR Nov. 15-17, 2016

X-57 To P	Schedule to Mod II FRR	NASA
	Removed	
	Removea	
SCEPTOR CDR I	Nov. 15–17, 2016 Session 1, Performance &	Sizing IPT 5

Summary of Driving Requirements

- 3.5x threshold, 5x goal reduction in energy consumption, use 43.5MJ/kg and Tecnam fuel flow data to establish baseline applies to cruise point only

 150 KTAS, 8,000 feet ISA used for cruise design point
- Mod 4 stall speed to match weight-normalized Tecnam P2006T stall speed
 55 KCAS @ 2700lbf = 58 KCAS @ 3000 lbf
- No engine-out requirements glide is safety mechanism. Single-engine climb gradient of 6.7%
- Negative glide slope required with high-lift propellers operating, approach must be at speed to allow total power failure without stall
- 450 ft/s tip speed for high-lift propellers
- Use COTS propeller and hub for cruise propellers
- Land in crosswind with some bank without cruise propeller ground strike
- Cruise motor rated at 60kW, 2250 RPM originally due to selection of COTS 60kW continuous/80kW peak motor, later became de facto requirement for Joby cruise motor development
- Cooling sufficient for climb power on AFRC hot day

SCEPTOR CDR Nov. 15-17, 2016

Session 1, Performance & Sizing IPT 9

X-57 XAXWEL	Major Des	sign Iter	rations		NASA
Model	P2006T (stock)	Rev 1.2	Rev 2.0	Rev 3.3 (PDR)	
Span, ft	37.4	33.0	29.2	31.6	
Planform area, ft ²	158.9	56.9	57.5	66.7	
Wing loading, lbf/ft ²	17.1	52.7	52.2	45.0	
Aspect ratio	8.8	19.1	14.8	15.0	
Root chord, ft	4.57	2.25	1.97	2.48	
Tip chord, ft	2.90	1.20	1.97	1.74	
Leading edge sweep, deg	0.0	5.0	7.5	1.9	
Cruise propeller diameter, ft	5.84	4.70	5.74	5.00	
Cruise propeller RPM	2250	2470	1500	2250	
High-lift propellers	-	8	10	12	
C _L @ 58 KCAS, 3000 lbf	1.66	4.63	4.58	3.95	

SCEPTOR CDR Nov. 15–17, 2016

 Goal is reduct consul cruise Req from inter 	Aero to sho tion in e mption point uires ~1 n aerody gration	dynai ow overa energy at spec .5+ benef mamic	mic B all 5x ified	enefits of DEP
Aircraft	L/D (max)	L/D (cruise)	Aero Benefit	
P2006T	14.4	9.0	N/A	
X-57 unpowered	15.1	13.4	1.05/1.49	P2006T
X-57 powered	15.8	13.9	1.10/1.54	X-57 Mod 3/4 unpowered
SCEPTOR CDR Nov	. 15–17, 2016			40 60 80 100 120 140 160 180 200 V, KTAS Session 1, Performance & Sizing IPT 13

SCEPTOR X-57 CDR

Toolchain Validation

- Generated 14 OpenVSP geometries to test build-up assumptions
 - Unpowered
 - Wing only
 - Wing + tip nacelle
 - Wing + all nacelles
 - Isolated propellers
 - Power, thrust at XROTOR geometry
 - Delta-pitch to match XROTOR thrust
 - Installed cruise
 - Wing + tip nacelle, tip prop or disc
 - Wing + all nacelles, tip prop or disc

SCEPTOR CDR Nov. 15-17, 2016

Unpowered Wing + Tip Nacelle Results

0.1

Good agreement 2 depending on boundary 1.8 layer assumption 1.6 Some divergence above 1.4 CL~1, but design cruise Coefficient of Lift 1.2 region is generally below 1 this CL Transition model 0.8 One case of divergence Fully due to grid issues, turbulent 0.6 currently being resolved 0.4 Low-fidelity toolchain 0.2 used for design lines up 0 best with STAR-CCM+ and 0 0.01 0.02 0.03 0.04 0.05 **OVERFLOW** results

SCEPTOR CDR Nov. 15-17, 2016

AVL-MATLAB-XFOIL (transition) -VSPAero (fully turbulent) STAR-CCM+ (transition) -FUN3D (fully turbulent) OVERFLOW (transition) -OVERFLOW (fully turbulent) 0.06 0.07 0.08 0.09 Coefficient of Drag Session 1, Performance & Sizing IPT 21

TPMs: V-Speeds

Symbol	Mod II	Mod III	Mod IV	Description
Vr	65	90	90	Rotation speed, KCAS
Vx	72	93	93	Best angle of climb speed, KCAS
Vy	84	110	110	Best rate of climb speed, KCAS
VySSE	80	N/A	N/A	Best rate-of-climb speed with one engine inoperative
VSSE	70	N/A	N/A	Safe simulated OEI speed, KCAS
Vbg	85	105	105	Best glide speed, KCAS
Vminsink	TBD	TBD	TBD	Minimum sink speed, KCAS
VMC	62	N/A	N/A	Minimum control speed, KCAS
Vapp	90/71	105/94	94/75	Approach speed, KCAS
Vfe	92/122	TBD	TBD	Maximum flaps extended speed, KCAS
VLO/VLE	122	122	122	Maximum gear operating/extended speed, KCAS
Vs0	55	73	73	Power-off stall speed in the landing configuration, KCAS
Vs1	57	82	82	Power-off stall speed in the (takeoff) configuration, KCAS
Vs	65	88	88	Power-off stall speed in the cruise configuration, KCAS
Vs0hl	N/A	N/A	58	Power-off stall speed in the landing configuration with high-lift motors operating, KCAS
Vs1hl	N/A	N/A	TBD	Power-off stall speed in the (takeoff) configuration with the high-lift motors operating, KCAS
VA	122	165	165	Maneuvering speed, KCAS
VNE	171	171	171	Never-exceed speed, KCAS
VNO	133	TBD	TBD	Maximum structural cruising speed, KCAS
VC	136	152	152	Design cruise speed, KCAS
VH	TBD	169	169	Maximum level flight speed at maximum continuous power, KCAS
VD	190	190	190	Design dive speed, KCAS
PTOR CDR	Nov. 15–	17, 2016		Session 1, Performance & Sizing IPT 35

TPMs: Other Metrics

Mod II	Mod III	Mod IV	Description
TBD	4.8	4.8	Efficiency multiplier at cruise (per S1.3)
60	60	60	Cruise propeller maximum continuous power, kW
255	255	255	Cruise propeller maximum continuous torque, N-m
215	215	215	Cruise propeller maximum static tip speed, m/s
180	180	180	Cruise propeller design static tip speed, m/s
2250	2250	2250	Cruise propeller RPM at initial climb
255	255	255	Cruise propeller torque at initial climb, N-m
TBD	188	188	Cruise propeller helical tip speed at initial climb, m/s
2250	2250	2250	Cruise propeller RPM at cruise
TBD	177	177	Cruise propeller torque at cruise, N-m
195	195	195	Cruise propeller helical tip speed at cruise, m/s
TBD	TBD	TBD	Cruise propeller RPM at approach (windmilling)
TBD	TBD	TBD	Cruise propeller torque at approach (windmilling), N-m
TBD	TBD	TBD	Cruise propeller helical tip speed at approach (windmilling), m/s
N/A	N/A	13	High-lift propeller maximum continuous power, kW
N/A	N/A	21	High-lift propeller maximum continuous torque, N-m
N/A	N/A	TBD	High-lift propeller maximum static tip speed, m/s
N/A	N/A	137	High-lift propeller design static tip speed, m/s
TBD	364	364	Cruise motor temperature at initial climb (AFRC hot day), K
TBD	383	383	Cruise controller temperature at initial climb (AFRC hot day), K

SCEPTOR CDR Nov. 15-17, 2016

- Verification
 - Analysis: multi-CFD concurrence to design codes & assumptions for integrated aero-performance modeling
- Testing
 - Static and forward motor-propeller testing, including windmilling, to validate selected computational predictions for performance & cooling

SCEPTOR CDR Nov. 15-17, 2016

Session 1, Performance & Sizing IPT 37

SCEPTOR CDR Nov. 15-17, 2016

HR-13 Symmetric Loss of Cruise Propeller Thrust (Partial/Total)

This hazard pertains to loss of thrust that simultaneously (or nearly so) effects both primary propulsion units. It is a hazard during flight operations and ground roll through takeoff. Primary propulsion is provided as follows: power comes from two independent high-voltage traction battery busses, each of which deliver power to two independent three-phase motor controllers that turn a single six-phase outrunner motor connected to a single, electrically-actuated variable pitch propeller on each side. The propeller pitch controllers are powered by a low-voltage avionics electrical bus (independent for left vs. right propulsor). Hence, a failure of a single traction battery bus results in each primary propulsion unit essentially losing power to half of the windings in the motor, which will result in a substantial, albeit symmetric, loss in thrust. Far less likely are design issues or common cause failures (including control software) in the propulsion units that cause both propulsion units to produce reduced or zero thrust (for example, a divide by zero error at a particular throttle setting in the throttle encoder that causes both encoders to drop off line).

Causes	Effects	Mitigations
 A. Failure in power system B. Failure in electric motor C. Failure of motor controller D. Failure in propeller E. Failure of propeller governor F. Throttle encoder failure 	 Partial loss of thrust (e.g. single power bus failure) Complete loss of thrust (common cause omission failures) Inability to maintain level flight (stall) Loss of vehicle control Damage or loss of aircraft Damage to ground assets Injury or death to personnel 	 Design propulsion system for single-fault tolerance, able to provide partial takeoff power in event of single fault (A, B, C) Peer review of design (A, B, C, F) Use COTS propellers and governors with an FAA type certificate (D, E) Environmental testing of propulsion system (A, B, C) Taxi tests (A, B, C, D, E, F) Flight test of propulsion system (Mod II) (A, B, C, D, E, F) Redundancy in throttle encoder (F) Design for margin from single power bus and associated motor controller + motor, higher power operation at higher RPM within propeller limits, vehicle drag low enough for level flight/marginal climb after single power bus failure during other than takeoff operations (A) Operational restrictions – operate from long runways with minimial obstructions ahead to eliminate need for V1 (takeoff safety speed) – can always brake or land straight ahead in event of symmetric failure during or just after takeoff (A, B, C, D, E, F)

SCEPTOR CDR Nov. 15-17, 2016

Session 1, Performance & Sizing IPT 39

HR-15 Cruise Propeller Performance Degradation and/or Separation

This hazard pertains to situations that are related to physical damage sustained by the propellers used on the primary propulsion units. These propellers are wood core, composite wrapped, electrically actuated variable-pitch propeller units with a constant speed controller (propeller governor). They are located at the wingtips in the Mod III configuration, so clearance issues can be exacerbated during takeoff and landing due to bank angles, or obstructions along the runway or taxiway edges. Striking the ground or other obstructions could result in significant blade damage. Additionally, issues associated with striking other objects or FOD could damage the blades. The blades can suffer from manufacturing failures, or induced failures due to other inadequate interfaces (such as the interface between the propeller and the motor). Damage to the blades of the propellers can result in degradation of performance, including loss of thrust, all the way up to separation of propeller components that may depart at high energy and strike other objects (support equipment, personnel, or the aircraft itself).

Causes	Effects	Mitigations
 A. Composite/wood delamination B. Defects in composite, wood, metal/fasteners C. Fatigue/end of Life D. Improper installation on attachment hardware E. Propeller over-speed F. FOD/bird strike G. Excessive vibration H. Flutter I. Unbalanced prop J. Variable pitch/constant speed system failure K. Excessive aero loading L. Spinner failure M. Hub failure N. Ground strike O. Inadequate design (new motor and propeller attach point) 	 Loss of cruise thrust Untrimable asymmetric thrust condition – inability to maintain level flight Loss of aircraft control Structural failure of nacelle/motor mount Structural failure of motor Damage or loss of aircraft Damage to ground assets Injury or death to personnel 	 Inspect prop and spinner prior to flight (A, B, D, J, L, M) Perform run-up check prior to takeoff to check for excessive vibration, noise, instruments within limits (A, B, G, I, J) Monitor prop RPM (E, J) Perform regular maintenance and overhaul (C, D, J, L, M) Adhere to SCEPTOR procedures, mission rules, fact sheets and updated POH (E, N) Implement emergency (manual) motor power shut-down (E, F, G, H, I, J, L, M, N) Motor controller design to limit torque based on RPM (E) Use COTS type-certificated components and design and operate within TCDS limits (A, B, C, F, G, I, J, K, L, M, O) Control room monitoring of vehicle dynamics (G, H, I) Motor and propeller dynamic balancing (A, B, D, G, H, I, J, L, M) Peer review of design (D, H, K, O) Perform motor endurance testing (A, B, G, I, O)
SCEPTOR CDR Nov. 15–17, 2016		Session 1, Performance & Sizing IPT 40

HR-21 Failure of Propulsor System (Mod II)

This hazard pertains to the SCEPTOR experimental propulsor system that replaces the baseline Tecnam Rotax 912S 100 HP engines in Mod II. The propulsor system includes all internal and external components of the Joby X-57 60KW motor, motor controller, propeller, hub assembly, structural components and mounting hardware. Failure could occur during ground and flight operations including ground roll through take-off and landing.

Causes	Effects	Mitigations
 A. Electrical short/open in stator windings B. Inadequate design C. Installation error D. Manufacturing defect E. External/environmental abuse (thermal/mechanical) F. Ground isolation fault G. Inadequate grounding H. Lightning strike I. Rotor structural failure J. Stator structural failure K. Rotor magnet performance degradation L. Magnet bond failure M. Motor controller failure N. Inadequate motor/controller cooling O. Motor drivetrain failure (bearings, driveshaft, hub assembly, attachment hardware) P. FOD Q. Unbalanced propeller 	 Asymmetric thrust Loss of propulsion Motor/controller fire inside nacelle Damage to ground assets Separation of propulsor and inadequate trim authority Damage to aircraft Injury to personnel 	 Ground tests (acceptance test and CST) (A, B, C, D, E, F, G, I, L, M, O) Grounding checks (F, G) Design with adequate margins (B, C, D, I, J, K, L, M, N, O) Quality control process (C, D, L, P) Peer review of design (B) VFR operations only (H) Perform visual inspection of system components (C, D, E, G, L, O, P) Adhere to SCEPTOR operational placards and procedures (C, E, H, P) Taxi tests (A, B, C, D, E, F, G, I, L, M, O) Evaluate control authority in the event of a propulsor separation (Q) Propulsion system acceptance testing (Airvolt) (A, B, D, I, J, K, L, M, N, O, Q)
SCEPTOR CDR Nov 15-17 2016		Session 1 Performance & Sizing IPT 41

SCEPTOR CDR Nov. 15-17, 2016

Go Forward Plan

- Cruise prop force & moment analysis
- Mod II installation cooling analysis
- Mod I performance report & Mod II-III performance baseline report
- Mod IV propeller/nacelle/motor evaluation
- Mod IV integrated aero/propulsive performance analysis

SCEPTOR CDR Nov. 15-17, 2016

Session 1, Performance & Sizing IPT 43

Exit Criteria	
Subsystem Level Exit Criteria	Evidence
Detailed design is shown to meet the subsystem requirements with adequate technical margins	Slides 10-34
Subsystem level design is stable and adequate documentation exists to proceed to the next phase	N/A
Subsystem interface control documents are sufficiently mature to proceed to the next phase, and plans are in place to manage any open items	Slides 7-8
Subsystem technical risks are identified and mitigation strategies defined	N/A
Test, verification, and integration plans are sufficient to progress into the next phase	Slide 37
Final hazards adequately addressed and considered in the detailed design	Slides 38-41

SCEPTOR CDR Nov. 15-17, 2016

BACKUPS

SCEPTOR CDR Nov. 15-17, 2016

System Req No.	System Requirement Description	Subsys Req No.	Subsystem Requirement Description	Verif. Method
	The CEPT system shall establish a General Aviation (GA) baseline as the performance metric.	\$1.1	The SCEPTOR Sizing and Performance design high lift motor operating stall speed in the landing configuration, VSOhl, shall be no greater than 55 * sqrt(MTOW/1230) KCAS, where MTOW is the maximum takeoff mass in kilograms.	Analysis
1		S1.2	The SCEPTOR Sizing and Performance value for steady climb gradient shall be at least 6.7 percent at a climb speed of 1.2*VS1.	Analysis
1		S1.3	The SCEPTOR Sizing and Performance design energy consumption rate per unit distance at the cruise condition shall be at least 3.5 times lower than the energy consumption rate per unit distance of the baseline aircraft at its maximum cruise power setting (recommended mixture and appropriate cruise weight) at the specified CEPT cruise altitude. For comparison purposes, the energy content of the fuel of the baseline aircraft shall be 43.5 MJ/kg.	Test

Requirements (2)

System Req No.	System Requirement Description	Subsys Req No.	Subsystem Requirement Description	Verif. Method
	S3.1 S3.2 S3.3 The CEPT system shall flight test the use of a Distributed Electric Propulsion (DEP) S3.5 concent.	\$3.1	The SCEPTOR Sizing and Performance design approach shall enable a negative glide slope with the high- lift motors running at a speed between [VS0 + 5 KCAS] and VSOhl at altitudes from sea level to 5000 feet.	Analysis
		S3.2	The SCEPTORS Sizing and Performance value for cruise shall be evaluated at 150 KTAS, 8000 ft MSL.	Inspection
		S3.3	The SCEPTOR Sizing and Performance approach for high-lift propeller design shall consider a tip speed of no more than 140 m/s when operating at maximum power at VS0hl at sea level.	Analysis
3		S3.4	The SCEPTOR Sizing and Performance shall provide lift augmentation for lower-speed operations such that VSOhl < VSO, using high-lift motors and propellers distributed along the leading edge of the wing but not including the wingtips.	Analysis
		S3.5	The SCEPTOR Sizing and Performance shall provide the primary means of thrust generation on the ground and in flight, using cruise motors and propellers located near the wingtips.	Inspection
	·	S3.6	The SCEPTOR Sizing and Performance shall have cruise propellers with a pitch setting that allows for reverse thrust generation without significant stalling of the blades over an airspeed range of [VS0hl - 5 KCAS] and [VS0 + 5 KCAS] and over a propeller speed range of 1700 to 2700 RPM.	Test
	_	\$3.7	The SCEPTOR Sizing and Performance shall have cruise motors and propeller governors that are able to control and maintain reverse thrust settings of the cruise propeller over an airspeed range of [VS0hl - 5 KCAS] and [VS0 + 5 KCAS] and over a propeller speed range of 1700 to 2700 RPM.	Test

Requirements (3)			N	
System Req No.	System Requirement Description	Subsys Req No.	Subsystem Requirement Description	Verif. Method
	The CEPT system shall provide volume for the electrical power system components.	S19.1	The SCEPTOR Sizing and Performance shall ensure the cruise motor and propeller shall accept a commercially available, electrically-actuated constant speed hub.	Inspectior
19		S19.2	The SCEPTOR Sizing and Performance shall ensure pylons and nacelles enable sufficient volume for wiring, instrumentation, motors, speed controllers, structural connections, and other associated hardware, including additional volume for adequate access.	Analysis
20	The CEPT system shall provide a mounting interface for the Cruise Motors.	S20.1	The SCEPTOR Sizing and Performance shall place the cruise motors within nacelles located at the wingtips.	Inspectior
21	The CEPT system shall provide a mounting interface for the DEP Motors.	S21.1	The SCEPTOR Sizing and Performance shall place high-lift motors within nacelles on pylons that extend below the wing.	Inspectior

SCEPTOR CDR Nov. 15-17, 2016

54	EPTOR
FLECTRIC M	X-57 Fich

Requirements (4)

System Req No.	System Requirement Description	Subsys Req No.	Subsystem Requirement Description	Verif. Method
22	The CEPT system shall provide a wing to fuselage mechanical mounting interface compatible with the GA aircraft.	S22.1	The SCEPTOR Sizing and Performance shall place wing root of the new wing within the same footprint of the wing root of the baseline demonstrator.	Inspection
25	The CEPT system shall be capable of gliding to a safe	S25.1	The SCEPTOR Sizing and Performance shall enable the demonstrator to land on a flat surface with at least a 10-degree bank with the landing gear extended.	Analysis
		S25.2	The SCEPTOR Sizing and Performance shall limit sink rate of the aircraft such that the landing force used in the determination of the inertia limit load factor to less than 146% of the forces established during certification of the original Tecnam landing gear.	Analysis
	anding on an approved surface in the event of total power loss.	S25.3	The SCEPTOR Sizing and Performance shall operate at speeds of no less than 5 KCAS over the power-off stall speed of the current aircraft configuration when operating at less than 1,500 ft AGL, other than for takeoff or landing.	Test
		S25.4	The SCEPTOR Sizing and Performance shall begin approach-to-landing segment an airspeed no less than [VS0 + 5 KCAS].	Test

Requirements (5)				
System Req No.	System Requirement Description	Subsys Req No.	Subsystem Requirement Description	Verif. Method
27	The CEPT system shall be capable of recovering from a failure in the cruise motors.	\$27.1	The SCEPTOR Sizing and Performance takeoff and initial climb profile, when using only the cruise motors, will be conducted at speeds and power settings that enable immediate (that is, without consideration of deceleration effects due to thrust and drag imbalance) trimming of pitch, roll, and yaw forces from the primary flight controls in the event of failure of a single cruise motor, if possible. If a portion of the takeoff envelope results in an inability to immediately trim asymmetric forces due to engine failure, the takeoff and initial climb profile will select power settings that minimize the integral of the largest net moment imbalance over the total time of the net imbalance.	Analysis
30	The CEPT system	S30.1	Unless otherwise specified, the SCEPTOR Sizing and Performance values shall be established in still air using the 1976 US Standard Atmosphere.	Analysis
	shall operate within the flight envelope defined	S30.2	When specified as "Armstrong Hot Day," the SCEPTOR Performance values shall use the atmosphere established in S30.1, but with the temperature adjusted by +22 deg C.	Analysis
	in Figure 1 and at the flight condition	\$30.3	The SCEPTOR Sizing and Performance approach shall consider cruise motors that output a maximum continuous shaft power of 60kW at 2250RPM throughout the CEPT flight envelope.	Test
	achieve the test objective.	S30.4	The SCEPTOR Sizing and Performance values for the cooling system for the cruise and high-lift motors and controllers shall be able to operate at maximum continuous power throughout the relevant areas of the flight envelope during Armstrong Hot Day conditions.	Test

SCEPTOR CDR Nov. 15-17, 2016

Design Tradespace Exploration

- Explore tradespace of "cruise-sized" wing using rapid aero-propulsive and weight prediction tools
- Rank designs by cruise efficiency multiplier (primary SCEPTOR metric)
 - Ratio of stored energy depleted per nautical mile from SCEPTOR at cruise to stock P2006T at cruise
- As design iterations progressed, identified favorable regions & dropped number of parameter explorations
 - Tailored variables & design space ranges to consultation with other IPTs

Exploration 1	Exploration 2	Exploration 3
7	4	3
Latin Hypercube	Latin Hypercube	6 level full factorial
1000	500	216
5	4	4
Latin Hypercube*	Latin Hypercube*	Latin Hypercube*
200	200	200
2700, 3000, 3400 pounds	2700, 3000, 3400 pounds	2700, 3000, 3400 pounds
150, 175, 200 KTAS	135, 150, 175 KTAS	135, 150, 175 KTAS
1.8M	900k	388k
	Exploration 1 7 Latin Hypercube 1000 5 Latin Hypercube* 200 2700, 3000, 3400 pounds 150, 175, 200 KTAS 1.8M	Exploration 1Exploration 274Latin HypercubeLatin Hypercube100050054Latin Hypercube*Latin Hypercube*2002002700, 3000, 3400 pounds150, 175, 200 KTAS1.8M900k

*One variable was discrete (number of blades), so a lower-variable LHC design was duplicated for each discrete variable setting

SCEPTOR CDR Nov. 15-17, 2016

SCEPTOR CDR Wing IPT

Wing IPT Jeff Viken Jeffrey.k.viken@nasa.gov 757-864-2875

Entry Criteria								
Subsystem Level Entry Criteria	Evidence							
Technical Performance Metrics (TPMs)	20, 36-39, 40-46, 51, 57, 58, 97-100, 106, 133, 135, 136, 142-148, 151-153, 158,159							
Final Subsystem Requirements and/or Specifications	5-6							
Interface Control Documents	4, 11							
Detailed Design and Analysis	13-39, 47-156							
Drawings	133-136							
Test and Verification Plan	13-18, 40-46, 100-104, 135, 158, 159							
Technical Risks	160-164							
SCEPTOR CDR Nov 15-17 2016	Session 2, Wing IPT 2							

ACEPTOR X-57 MAXWEIL IN	Schedule to Mod II FRR	NASA
	Removed	
SCEPTOR (CDR Nov 15-17 2016 Session 2.	Wing IPT 3

Statement

The CEPT system shall flight test the use of

a Distributed Electric Propulsion (DEP)

Reo

No.

3

concept.

Driving Requirements (1/2)

Inspection

Inspection

Inspection

		W5.1	The wing shall meet the requirements of Armstrong Aircraft Structural Safety of Flight Guidelines G-7123.1-001.	Analysis
5	The CEPT system shall be inhabited.	W5.2	The wing shall be structurally tested to the requirements of Armstrong Aircraft Structural Safety of Flight Guidelines G-7123.1-001.	Test
		W5.3	The wing shall be designed with a mechanical flight control system.	Inspection
15	The CEPT system shall be controllable and monitored by EGSE during integration and checkout activities.	W15.1	The wing shall provide access and monitoring of the power and control systems by EGSE for the both the Cruise motors and DEP motors during integration and checkout activities.	Inspection
18	The CEPT system shall be a mechanical flight control system.	W18.1	The wing shall be designed with a mechanical flight control system that interfaces with the Tecnam fuselage control system.	Inspectio
19	The CEPT system shall provide volume for the electrical power system components.	W19.1	The internal wing volume shall accommodate all volume requirements for the Cruise motors, DEP motors, and instrumentation systems.	Inspection
20	The CEPT system shall provide a mounting	W20.1	The wing shall provide a mounting structure for the Cruise Motors that interfaces to the wing primary structure.	Analysis
	Interface for the Cruise Motors.	W20.2	The wing shall provide aerodynamic nacelles for the Cruise Motors.	Analysis
21	The CEPT system shall provide a mounting	W21.1	Thie wing shall provide a mounting structure for the DEP Motors that interfaces to the wing primary structure	Analysis
	Wolfing the DEP Motors.		The wing shall provide aerodynamic nacelles for the DEP Motors	Analysis
	SCEPTOR CDR Nov 15-17 2016		Session 2, V	Ving IPT 5

Subsys

Req. #

W3.1

Driving Requirements (2/2)

Req. No.	Statement	Subsys Req. #	Subsystem Requirement Definition	Verification Method			
	The CEPT system shall provide a wing to	W22.1	The wing shall provide an interface to mount to the Tecnam fuselage.	Analysis			
22	fuselage mechanical mounting interface compatible with the GA aircraft.	echanical mounting interface with the GA aircraft. Additional structure shall be designed and installed, as needed, that interfaces SCEPTOR wing to the Tecnam fuselage.					
	The CEPT system shall be capable of gliding		V25.1 The wing shall provide mechanical flight controls that do not require power to operate.				
25	the event of total power loss.	W25.2	The flaps shall have the capability to be extended by power available from the emergency power system.	Inspection			
26	The CEPT system shall be capable of recovering from a failure in the high lift motor system.	W26.1	The wing shall be designed such that any change in forces due to loss of the high- lift motor system will be controllable by the SCEPTOR aircraft.	Analysis			
27	The CEPT system shall be capable of recovering from a failure in the cruise motors.	W27.1	The wing shall be designed such that any change in forces due to loss of the both motors of the Cruise motor system will be controllable by the SCEPTOR aircraft.	Analysis			
30	The CEPT shall operate within the flight envelope defined in Figure 1 and at the flight condition required to achieve the test objective.	W30.1	The wing shall be designed to operate safely within the envelope defined in Figure 1 and at the flight condition required to achieve the test objective.	Analysis			
22	The CEPT system shall validate all new primary and secondary structure contain	W32.1	The wing shall be designed to meet the requirements of Armstrong Aircraft Structural Safety of Flight Guidelines G-7123.1-001.	Analysis			
32	sufficient structural margin for the applied loads.	W32.2	The wing shall be structurally tested to the requirements of Armstrong Aircraft Structural Safety of Flight Guidelines G-7123.1-001.	Test			

SCEPTOR CDR Nov 15-17 2016

SCEPTOR Hazard Analysis

Hazard Summary (Wing Design)

HR-2 Structural Failure of Wing (Mod II) HR-7 Wing Control Surface System Failure (Mod III) HR-12 Whirl Flutter (Mod II and III)

SCEPTOR CDR Nov 15-17 2016

Session 2, Wing IPT 7

SCEPTOR CDR Nov 15-17 2016

HR-7 Wing Control Surface System Failure (Mod III)

This hazard pertains to the SCEPTOR Mod III aileron and flap system implemented into an experimental wing. The aileron system is a conventional wing-tip mechanically actuated aileron that is actuated by push/pull tubes that are interfaced to the baseline Tecnam fuselage cable aileron system. The flap system consists of a single pivot flap (displaced hinge brackets) that is attached to the wing with 6 spanwise brackets and actuated by a torque tube driven by an electric motor. During flight operations including ground roll through take-off, and landing an aileron and/or flap system failure could occur due to the unique nature of the wing design.

Causes	Effects	Mitigations
A. Composite delamination	Loss of aircraft control	1. Adhere to SCEPTOR procedures, mission rules, fact sheets and updated POH (C, D, E)
B. Defects in composite material	Damage or loss of aircraft	2. Peer review of design (C, D, E, F, G, H)
/manufacturing	 Damage to ground assets 	3. Analysis review (C, D, E, F, G, H)
C. Excessive wing deflection/binding	 Injury or death to personnel 	4. Control room monitoring of vehicle dynamics (C, D, E, G, H)
D. Flutter		5. Control surface system designed to specified factor of safety with positive margins (B, C, E, F, G, H)
E. Excessive aero loading		6. Composite material system coupon testing to be performed and documented (A, B, G)
F. Improper load cases		7. Aircraft GVT (A, B, C, D, F, G, H, I)
G. Failure of attachment point hardware		8. Taxi Tests (C, D, G, H, I)
H. Flap/aileron actuation system failure		9. Chase Aircraft (C, D, G, H)
I. Improper installation		10. Wings loads test (A, B, C, E, F, G, H, I)
J. FOD intrusion		11. Quality control process (A, B, G, H, I, J)
		12. Fabrication procedure (A, B, G, H, I)
		13. Installation procedure (I)
		14. Pre and post flight inspections (A, B, C, G, H, I, J)

SCEPTOR CDR Nov 15-17 2016

Session 2, Wing IPT 9

SCEPTOR CDR Nov 15-17 2016

LEAPTech Test Data/CFD Comparisons

Karen Deere Sally Viken Melissa Carter James Murray Jason Lechniak

Unblown Wing (Props Re	emoved) Lift and Drag <i>Coefficients</i>
Removed	Removed
 These are CFD results for a variety of: CFD tools CFD analysts Truck and groundplane implementations CL looks worse than CD 	 Ellipses shows large 2D experimental uncertainty bounds CFD trends often dramatically different Joby ground-effect deltas questionable
SCEPTOR CDR Nov 15-17 2016	Session 2, Wing IPT 17

SCEPTOR Airfoil / Flap Design

Jeff Viken

SCEPTOR4.1 Grid 2: Cruise Wing, High Lift Nacelles CFD Results

Karen Deere, Sally Viken, Melissa Carter NASA LaRC CFD Team August 19, 2016

Day 2 Package

Geometry

- 30° Flap Position
- S_{ref}=9600 in²
- b_{ref}=379.47332 in
- c_{ref}=25.560833 in
- MRC= (158.971505 in, 0 in, 86.65072593 in) Root C/4
- MAC=25.560833 in
- Root Incidence 2°
- Washout 2°
- Leading edge sweep is 1.887°
- Sweep at 0.7c is 0°

SCEPTOR CDR Nov 15-17 2016

X-57 WAXWELL	Computed vs Estimated Drag Due to Wing											
	Estimated CD Wing Estimated Wing Drag Buildup Induced Drag Wing Friction	to Meet Cruise Spe Force -N(5) Force -Ibs 165 37.09 65.7 14.77			eed		FUN3D	Fully Turl les)	urbulent			
	Wing Profile Cruise Nacelles	28.2 33.6	6.34 7.55 I	lbs		F	FUN3D -	Grid2 (w/ HL	Nacelles)			
	Sub-Total (w/o HL Nacelles) High-Lift Nacelles Sub-Total (w/ HL Nacelles)	83.1	18.68	65.76 84.44	lbs		Alpha	CL	CD	CD(cruise power)	ΔCD above Estimate	
	CD = D / q*S = 0.5 * rho * V^2 * S					1	-4	0.26247	0.02571	0.02378	0.00263	
	rho (8,000 ft)	0.00186824	slugs/ft^3				-2	0.45701	0.02658	0.02466	0.00350	
	v 	253.171479	ft/s				-0.452	0.62772	0.02020	0.02732	0.00617	
	S	66.666667 59.8732628	ft^ lb/ft^2			1 +	-0.452	0.02772	0.02924	0.02752	0.00017	
	q						U	0.67852	0.03046	0.02854	0.00739	
	Estimated Drag Coeffcient Due						0.424	0.73187	0.03178	0.02986	0.00871	
	Without HL Nacelles	0.01647					0.647	0.75562	0.03254	0.03062	0.00947	
	With HL Nacelles	0.02115					2	0.89488	0.03779	0.03587	0.01471	
	Adjustments to Fully Turbulent CFD Drag Laminar Flow on Wing Drag of Wing Inside Fuselage Trim Drag (Forward CG) Sub-Total CFD Drag above Estimate Drag Margin Available							CFD indicat meet cruise Computed o that about margin will	es Maxwell e speed goal drag estimat 20% of drag be used	can tes		
SCEPTOR CD	R Nov 15-17 2016							Session 2	Wing IPT 39			

. .

Structural Design Criteria

- The max design gross and landing weight is 3,000 lbs.
- The wing primary structures will be designed to meet the loads requirements described in the SPEC-CEPT-003 document.
- Environmental / Temperature requirement: 0°F to max operational temperature or not lower than +165°F.
- The fatigue life of the critical wing structures including motor mounts shall be considered. Structure will be designed to 200 flight hours. A scatter factor of 4 times the planned number flight cycles or flight hours will be used for fatigue analysis.
- All structure MUST have positive Margin(s) of Safety.
 - MS = (allowable load / ultimate load) 1.0
- Ultimate load is defined as:
 - ultimate load = factor of safety x design limit load.

SCEPTOR CDR Nov 15-17 2016

Loads Requirements

- The new wing structure will be designed to meet the following loads requirements.
- Flight loads
 - Maneuver load factor (+3.42 / -1.37g)
 - Gust load factor
 - Air loads equilibrium (trim loads)
 - Unsymmetrical flight conditions
- Ground loads
 - Тахі
 - Landing
 - Transient take-off bump

- Powerplant loads
 - Inertial loads
 - Aerodynamic loads
 - Max motor thrust
 - Max motor torque
 - P-factor
 - Gyroscopic
- Control surface and system loads
- Thermal loads

SCEPTOR CDR Nov 15-17 2016

Ground Testing

- Ground tests will be conduct at AFRC and Flight Loads Lab (FLL) process will be followed.
- New Wing Qualification / Acceptance test (Wing alone test)
 - Objective: to validate the wing structural integrity
 - Test up to 120% of DLL
 - Critical load conditions: Up-bending, down-bending and worst torsion
 - Pre and post test inspection will be performed, i.e. Visual and Ultrasonic NDI
- Flight test strain gages calibration test
 - Objective: to calibrate the flight test strain gages
 - Test up to approx. 30% of DLL
- Ping test (Wing alone)
 - Objective: to identify the structural modes and the associated mode shapes as well as frequency and damping values of the Mod III wing before the integrated GVT.

SCEPTOR CDR Nov 15-17 2016

SCEPTOR CDR Wing Structure

Xperimental LLC Ryan Malherbe – <u>ryan@xperimentalllc.com</u> Nick Jenkins – nick@xperimentalllc.com Paulo Iscold – paulo@xperimentalllc.com

SCEPTOR CDR Nov 15-17 2016

Session 2, Wing IPT 49

Load Analysis

SCEPTOR CDR Nov 15-17 2016

<image><image><image><image><image><image><image><image><image><image><image>

Case #	Airspee	d	Load Factor	Weight	CG position	Altitud	le	Descrip	tion
1	89kEAS (Vs)	+1.0	13351N	4044.81mm	Oft	Vs – 18	g ASL	
2	152kEAS(Vc)	+2.91	13351N	4044.81mm	Oft	Vc ma	x nz due stall	ASL
3	164kEAS(Va)	+3.42	13351N	4044.81mm	Oft	Va – p	ositive mane	uver ASL
4	190kEAS(Vd)	+3.42	13351N	4044.81mm	Oft	Vd – p	ositive mane	uver ASL
5	190kEAS(Vd)	-1.71	13351N	4044.81mm	Oft	Vd – n	egative gust	ASL
6	89kEAS (√s)	+1.0	13351N	4044.81mm	15000	ft Vs – 1 ₈	g high altitud	de
7	152kEAS(Vc)	+2.91	13351N	4044.81mm	15000	ft Vc max	x nz due stall	high alt.
8	164kEAS(Va)	+3.42	13351N	4044.81mm	15000	ft Va-p	ositive mane	uver high alt.
9	190kEAS(Vd)	+3.42	13351N	4044.81mm	15000	ft Vd – p	ositive mane	uver high alt
10	190kEAS(Vd)	-1.71	13351N	4044.81mm	15000	ft Vd – n	egative gust	high alt.
11	164kEAS(Va)	+2.99	13351N	4044.81mm	Oft	Asym -	- 100/75	
12	164kEAS(Va)	+2.28	13351N	4044.81mm	Oft	Rolling	at Va	
13	164kEAS(Va)	+2.28	13351N	4044.81mm	Oft	Rolling	; at Va – max	roll rate
14	190kEAS(Vd)	+2.28	13351N	4044.81mm	Oft	Rolling	at Vd	
15	190kEAS(Vd)	+2.28	13351N	4044.81mm	Oft	Rolling	; at Vd – max	roll rate
16	130kEAS(Vf)	+2.00	13351N	4044.81mm	Oft	Flap		
Case #	Airspeed	Load	Weight	CG position	Alt	Fx	Мх	My	Mz
17	164	+2.565	13351N	4044.81mm	Oft	1927	376.25	0	0
18	164	+3.42	13351N	4044.81mm	Oft	1400	318.75	0	0
19	164	+2.5	13351N	4044.81mm	Oft	1542	0	261.5	104.6

Session 2, Wing IPT 65

Wing Attachment

SCEPTOR CDR Nov 15-17 2016

Removed Removed torsion Bending torsion Bending torsion Bending torsion Bending torsion Bending torsion Bending torsion

SCEP R. K. S.					NASA
		Shear	Removed		
S	CEPTOR CDR Nov 15-17 2016			Session 2, Wing I	РТ 73

X-57 WAXWELL W		NASA
	Removed	

Session 2, Wing IPT 93

High Lift Nacelle

SCEPTOR CDR Nov 15-17 2016

<image><image><image>

SCEPTOR REVERSE			NASA
MAXWELL	Prepreg Resin system		
	Removed	Fibers	
	Wet Lay-up Resin System	Removed	
	Removed		
SCEPTO	R CDR Nov 15-17 2016	Session 2,	Wing IPT 98

X-57 X-57		NAS
Main material properties:		
	Removed	

REPTOR RETURN X-57 MAXWELL M		NASA
	Removed	
SCEPTOR CDR Nov 15-17 2016		Session 2, Wing IPT 101

SCE REAL	CST LAND		NASA
		Removed	
	SCEPTOR CDR Nov 15-17 2016		Session 2, Wing IPT 102

X-57 MAXWELL		NASA
	Removed	
		Socion 2 Wing IDT 102

X-57 X-57		NAS
	Removed	
SCEPTOR CDR Nov 15-17 2016		Session 2, Wing IPT 104

FEA Model

SCEPTOR CDR Nov 15-17 2016

Session 2, Wing IPT 105

X-57 MAXWELL		NASA
	Removed	
SCEPTOR CDR Nov 15-17 2016		Session 2, Wing IPT 107

REPTOR NATUREL	NASA
	Fuselage Symmetry Reproved Fuselage Constraint
SCEPTOR CDR Nov 15-17 2016	Session 2, Wing IPT 109

X-57 MAXWELL IN		NASA
	и У	fing Symmetry
	Removed	
SCEPTOR CDR Nov 15-17 2016		Session 2, Wing IPT 110

X-57 MAXWELL		NASA
	Removed	
SCEPTOR CDR Nov 15-17 2016		Session 2 Wing IPT 115

X-57 WAXWELL		NASA
	Removed	
SCEPTOR CDR Nov 15-17 2016		Session 2, Wing IPT 116

X-57 X-57 X-WELL		
	Removed	
SCEPTOR CDR Nov 15-17 2016		Session 2 Wing IPT 118

X-57 MAXWELL		NASA
	Removed	
SCEPTOR CDR Nov 15-17 2016	Session 2, Wing	IPT 119

X-57 XAXWELL IN		NA
	Removed	
SCEPTOR CDR Nov 15-17 2016		Session 2, Wing IPT 122

X-57 MAXWELL		NASA
	Removed	
SCEDTOR CDR Nov 15 17 2016		Secsion 2 Wing IDT 122

X-S7 MAXWELL IN	NAST
R	emoved
SCEPTOR CDR Nov 15-17 2016	Session 2, Wing IPT 124

REPTOR REMAXWELL DA		NASA
	Removed	
SCEPTOR CDR Nov 15-17 2016		Session 2, Wing IPT 125

SCE BERNY MA	C-57 KWEL		NASA
		Removed	
	SCEPTOR CDR Nov 15-17 2016		Session 2, Wing IPT 126

Fabrication

SCEPTOR CDR Nov 15-17 2016

"BIRD STUKE" SPON CARBON OOA PRE-PRES MONUGE LOYUP DOUBLE Own LOP REMOVABLE FAIRINGS CARBON/ WET-LAY UP DIVINGERL Farmfo seruld MANUAL CARBON IMPREGNATION SCEPTOR CDR Nov 15-17 2016 Session 2, Wing IPT 128

Session 2, Wing IPT 127

Armstrong Part Numbers

FIRST TWO DIGITS:

SECOND TWO DIGITS: STILL TBD BY IPT LAST THREE DIGITS:

ASSIGNED BY ARMSTRONG DCO

Session 2, Wing IPT 133

01 VEHICLE INTEGRATION 02 WING 03 POWER 04 COMMAND 05 INSTRUMENTATION 06 FLIGHT CONTROLS 07 MGSE MECHANICAL GROUND SUPPORT EQUIPMENT 08 EGSE ELECTRICAL GROUND SUPPORT EQUIPMENT **09 MISCELANEOUS**

Drawing numbers will be in the SCEPTOR-XXXXXXX format

The first two digits will designate the IPT with the exception of the Performance and Sizing IPT since we do not expect any drawings to come out of that IPT. The second two digits will designate the highest level subsystem of that IPT. The fifth through seventh digit will be the sequential drawing number.

Armstrong Drawing Control office will manage drawing numbers. The DCO will be provided with our drawing tree. The DCO is agreeable to issuing numbers in blocks to make things easier for the our partners not physically located at Armstrong.

SCEPTOR CDR Nov 15-17 2016

Drawings 1 04778-14 CURE: A SECTION D-D 04778 A SCEPTOR CDR Nov 15-17 2016 Session 2, Wing IPT 134

Structural Design/Analysis Roles

 Xperimental LLC has lead role in SCEPTOR Mod III/IV wing design and analyses

- AFRC and Flight Safety Review Board have final technical authority

- LaRC Wing IPT provides verification and oversight for wing design/analyses
 - Verify Xperimental performs analyses/testing to show structure meets requirements
 - Provide feedback to project and review board on structural concerns
 - Working together to make sure structure is sufficient for ground and flight load cases

SCEPTOR CDR Nov 15-17 2016

Session 2, Wing IPT 139

Page 104

Xperimental/LaRC Collaboration

- Wing IPT reviewed preliminary wing design and found 2nd mode (knife edge) was too close to first bending (potential flutter issue)
- Worked with Xperimental to determine why 2nd mode was so low
 - Identified global material properties on the forward and aft spar caps required unidirectional fibers
 - After design modification, 2nd mode is more appropriately spaced from the first bending mode to reduce chances of flutter

Mode	<u>XPMTL</u>	<u>XP WITH</u> <u>AL+</u>	<u>XP5" SOLID</u> <u>VWEB</u>	<u>XP5" <i>UNI</i> SKINS</u>	DOE11
1	1.60	2.35	1.92	2.79	2.00
2	<u>*2.76</u>	<u>7.17</u>	<u>7.24</u>	<u>7.0-8.0</u>	<u>9.12</u>
3	8.66	13.17	9.98	14.45	11.35
4	12.15	24.59	18.13	18.89	19.36
5	19.25	31.14	28.55	33.45	21.03
6	26.82	36.76	33.00	35.79	25.93

Mod III/IV Wing Concerns

- All issues and concerns have been provided to Xperimental/AFRC
 - Wing IPT and Xperimental are working together to find solutions
- Concerns/issues we are working through:
 - Preliminary analysis of fuselage suggests additional structure required to handle new wing loads
 Battery mounting structure to fuselage needs to be assessed with wing loads
 - Need to test composite structure systems (not just material) to failure
 - Mitigate project risk by building ground test article to analyze and test to failure
- Resolved concern/issues:
 - Wing buckling was an issues, however design modifications now showing sufficient strength for driving load cases
 - 2nd mode (knife-edge) too close to 1st mode has been resolved
 - Main (center) spar does not attach to fuselage, however current analysis shows positive margins for driving load cases

SCEPTOR CDR Nov 15-17 2016

Aeroelasticity Analysis NASA LaRC Jen Heeg

SCEPTOR CDR Nov 15-17 2016

Proceeding and the second secon

- Flutter-free throughout flight envelope, extended to aeroelastic evaluation limits (wing flutter, whirl flutter)
 - Margins relative to important physical parameters
- Static aeroelastic analysis results and trends assessed against limits on deformation (deflection and twist); in flight, at take-off, on landing
- Low frequency assessment against handling qualities criteria
- Control authority degradation and hinge moment influences acceptable for vehicle maneuver

SCEPTOR CDR Nov 15-17 2016

Session 2, Wing IPT 153

Aeroelasticity, Summary

- Whirl flutter is our primary concern at this point. There are indications of several potential flutter mechanisms.
- Linear flutter analyses have been conducted on current structural model of the wing. No indication of a flutter problem.
- Influence of full vehicle representation: Previous design iterations with mass representation of fuselage and tail have been analyzed. No indication of a flutter problem.
- Shortcomings of the linear flutter analysis:
 - Wing-alone, for current design iteration
 - In-plane (drag-direction) forces and couplings can not be captured by this analysis. CFD simulation is required. Previous design iterations showed good correlation between CFD and linear analysis results, with no flutter problems due to the in-plane modes.
 - Whirl flutter is analyzed separately.

Real

Wing flutter analysis

Hz

Summary of whirl flutter

- Whirl flutter analysis is a FEM cycle behind the rest of the analyses
- The whirl flutter prediction is below the clearance requirement
- Margins and/or safety factors:
 - Show only margin in flight condition for a given model of a given design cycle
 - No margins relative to mass or stiffness are shown or implied except as noted
 - Most as-built vehicles and wind tunnel models are significantly different from the design iteration FEM in terms of mass and stiffness distributions
- For the design cycle analyzed, whirl flutter onset is predicted between 200-500 kts for the windmilling configuration
- The degree of instability increases when the tip nacelle connection flexibility is incorporated into the model. This is the only sensitivity examined to date.

SCEPTOR CDR Nov 15-17 2016

Rol	es and Resp	00	ns	ibilit	ies 🔊
		LaRC	AFRC	Xperimental	
	Wing Aerodynamic Design	Х			
	Loads Definition		х		
	Structural Specifications	х	х		
	Material Selection / Test Coupons			х	
	Wing Structural Design			х	
	Wing / Fuselage Attachment Design			х	
	Wing Primary Structure Analysis	х		х	
	Control Surface Design			х	
	High-lift / Cruise Motor Nacelle Design			х	
	Structural Testing		х		
	Aeroelastcity Analysis	х		х	
	Aeroelastic Testing		х		
	Wing Fabrication			х	
	Wing Attachment Structure Fabrication			х	
SCEPTOR CDR Nov 15-17 2016					Session 2, Wing IPT 157

Ground Testing

- AFRC Flight Loads Lab (FLL) process will be followed
- Qualification / Acceptance test (wing alone test)
 - Objective: to validate the wing structural integrity
 - Test up to 120% of DLL
 - Critical load conditions: Up-bending, down-bending and worst torsion
 - Pre and post test inspection will be performed, i.e. Visual, tap test, NDI
- Flight test strain gages calibration test
 - Objective: to calibrate the flight test strain gages
 - Test up to approx. 30% of DLL
- Ground vibration test (integrated wing and vehicle in flight configuration)
 - Objective: to identify the structural modes and the associated mode shapes as well as frequency and damping values.
 - The modal data will be used for the correlation and verification (and modification if necessary) of the structural dynamic FEM used in the flutter analysis.
 - Ping test will be performed during the wing qualification test.

SCEPTOR CDR Nov 15-17 2016

X-57 tu	X-57 - Failure to Meet Primary Insufficient Flut	[,] Flight ter Mar	Ob gin	jectives	Due to	NASA						
RISK ID	Risk Statement	Conseque	nce (C	ost, Schedule, Tec	hnical <u>)</u>	5						
SC08	There is a possibility that a lack of required flutter margin will be identified just prior to initiating flight testing for some regions of the planned flight	Cost	3	5% - 10% of yearly	project cost							
Risk Owner	envelope. This could result in (1) a change to or elimination of some requirements or (2) additional analysis and testing to re-examine the	Schedule	4	< 2 month slip to I	evel one milestone							
Jeff Viken Trend	flutter margins, resulting in schedule slip (>2 month slip to level one milestone) with associated labor and procurement overruns (5% - 10% of yearly project cost) and a major impact to technical objectives.	Technical	4	Moderate impact objectives	to technical	1 Z 3 4 5 C						
Criticality Medium	10-24-2016: Reviewed with PM, DPM, RO, CE, and SE. 8-19-2016: Reviewed with DPM and RO; need to reword if risk occurs statements 3-29-2016: Reviewed risk with RO, PM, PI, and RM. Mitigations have varying degr 3-24-2016: Opened risk. Reviewed risk with PM, OE, CE, RM Systems Engineer and	ees of impact to I established L >	the co (C, crit	onsequence but i icality, and upda	no lower than 2 ated mitigations	x 2. 5.						
Original L x C	S-24-2010. Opened fisk, keylewed fisk with rivi, OE, CE, Nivi Systems Engineer and established EAC, childanty, and updated mitigations.											
	Risk Approach: Watch – mitigations to be considered after analysis and/or test	ng is performe	Risk Action Cost to Start Date End Date N Mitigation Step / Task Description Implement Implement Implement									
Current L x C	Risk Approach: Watch – mitigations to be considered after analysis and/or test Risk Action Mitigation Step / Task Description	Cost to Implemen	u. t	Start Date	End Date	New L x C (Cost, Schedule, Technical)						
Current L x C 2 x 4 Target L x C	Risk Approach: Watch – mitigations to be considered after analysis and/or test Risk Action Mitigation Step / Task Description If risk occurs, The stiffness of the physical connections of the nacelles and wing mounted hardware can be adjusted during the integration to reduce consequence.	Cost to Implemen	t	Start Date	End Date	New L x C (Cost, Schedule, Technical) 2 x 4						
Current L x C 2 x 4 Target L x C 2 x 2	Risk Approach: Watch – mitigations to be considered after analysis and/or test Risk Action Mitigation Step / Task Description If risk occurs, The stiffness of the physical connections of the nacelles and wing mounted hardware can be adjusted during the integration to reduce consequence. Could operationally limit the aircraft flight envelope to stay clear of boundaries where flutter may occur.	Cost to Implemen	t	Start Date	End Date	New L x C (Cost, Schedule, Technical) 2 x 4 2 x 4						
Current L x C 2 x 4 Target L x C 2 x 2 Open Date 3-24-16	Risk Approach: Watch – mitigations to be considered after analysis and/or test Risk Action Mitigation Step / Task Description If risk occurs, The stiffness of the physical connections of the nacelles and wing mounted hardware can be adjusted during the integration to reduce consequence. Could operationally limit the aircraft flight envelope to stay clear of boundaries where flutter may occur. Redistribute modal masses or change the motor speeds to mitigate effects of whirl flutter. Can be done after analysis and/or after ground and/or flight testing.	Cost to Implemen	t	Start Date	End Date	New L x C (Cost, Schedule, Technical) 2 x 4 2 x 4 2 x 2						
Current L x C 2 x 4 Target L x C 2 x 2 Open Date 3-24-16 Closed Date	Risk Approach: Watch – mitigations to be considered after analysis and/or test Risk Action Mitigation Step / Task Description If risk occurs, The stiffness of the physical connections of the nacelles and wing mounted hardware can be adjusted during the integration to reduce consequence. Could operationally limit the aircraft flight envelope to stay clear of boundaries where flutter may occur. Redistribute modal masses or change the motor speeds to mitigate effects of whirl flutter. Can be done after analysis and/or after ground and/or flight testing. If risk occurs, a redistribution of wing tip motors and/or the high lift motors could help to reduce the consequence.	Cost to Implemen	t	Start Date	End Date	New L x C (Cost, Schedule, Technical) 2 x 4 2 x 4 2 x 2 2 x 4						

RISK ID	Risk Statement	Consequer	nce (Co	ost, Schedule, Tec	chnical)	5	
5009	Given that the X-57 wing design is new and not fully tested, there is a nossibility that the drag induced during flight testing will be greater than	Cost	1	Insignificant cost impact			
	expected, resulting in minor cost and schedule impacts and not meeting	Schedule	1	Insignificant sche	dule impact	2	
isk Owner	significant performance goals and objectives.		L				
eff Viken		Technical	5	May not meeting technical objectiv	significant project e		
Trend	Statu						
Criticality Aedium	 generator mitigation. 8-19-2016: Reviewed with DPM and RO. Added Vortex generator mitigations. 3-29-2016: Reviewed risk with PM, PIs, RO, and RM. Scored risk and complete consequence will be identified and added (wortex generators at a during the participation). 	d risk statement. D	evelop	ed mitigations.	Additional miti	gation strategies to low	
Criticality Aedium iginal L x C 3 x 5	generator mitigation. 8-19-2016: Reviewed with DPM and RO. Added Vortex generator mitigations. 3-29-2016: Reviewed risk with PM, PIs, RO, and RM. Scored risk and complete consequence will be identified and added (vortex generators etc.) during the r 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer and establish 3-22-2016: Transferred risk to new FDC Project format	d risk statement. D next risk manageme ed L X C, criticality,	evelop nt mee and up	ed mitigations. ting. dated mitigatio	Additional miti ns. Updated an	gation strategies to low	
Criticality Aedium iginal L x C 3 x 5 Irrent L x C 2 x 5	generator mitigation. 8-19-2016: Reviewed with DPM and RO. Added Vortex generator mitigations. 3-29-2016: Reviewed risk with PM, PIs, RO, and RM. Scored risk and complete consequence will be identified and added (vortex generators etc.) during the r 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer and establish 3-22-2016: Transferred risk to new FDC Project format Risk Approach: Mitigate	d risk statement. D text risk manageme led L X C, criticality,	evelop nt mee and up	ed mitigations. ting. dated mitigatio	Additional mitin	gation strategies to lowe	
criticality Aedium iginal L x C 3 x 5 urrent L x C 2 x 5 arget L x C	generator mitigation. 8-19-2016: Reviewed with DPM and RO. Added Vortex generator mitigations. 3-29-2016: Reviewed risk with PM, PIs, RO, and RM. Scored risk and complete consequence will be identified and added (vortex generators etc.) during the r 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer and establish 3-22-2016: Transferred risk to new FDC Project format Risk Approach: Mitigate Risk Action Mitigation Step / Task Description	d risk statement. D text risk manageme ted L X C, criticality, ost to Implement exceeds current budget)	evelop nt mee and up	ed mitigations. ting. dated mitigatio Start Date	Additional miti ns. Updated an End Date	gation strategies to lowe d scored risk. New L x C (Cost, Schedule, Technical)	
criticality Aedium iginal L x C 3 x 5 irrent L x C 2 x 5 arget L x C 2 x 4	generator mitigation. 8-19-2016: Reviewed with DPM and RO. Added Vortex generator mitigations. 3-29-2016: Reviewed risk with PM, PIs, RO, and RM. Scored risk and complete consequence will be identified and added (vortex generators etc.) during the r 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer and establish 3-22-2016: Transferred risk to new FDC Project format Risk Approach: Mitigate Risk Action Mitigation Step / Task Description 1) LeapTech testing to validate drag performance and CL.	d risk statement. D text risk manageme led L X C, criticality, ost to Implement exceeds current budget)	evelop nt mee and up	ed mitigations. ting. dated mitigatio Start Date FY15	Additional miti ns. Updated an End Date Jan - 16	gation strategies to low d scored risk. New L x C (Cost, Schedule, Technical) 3 x 5	
rriticality Aedium iginal L x C 3 x 5 rrent L x C 2 x 5 arget L x C 2 x 4 pen Date 3-22-16	generator mitigation. 8-19-2016: Reviewed with DPM and RO. Added Vortex generator mitigations. 3-29-2016: Reviewed risk with PM, PIs, RO, and RM. Scored risk and complete consequence will be identified and added (vortex generators etc.) during the r 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer and establish 3-22-2016: Transferred risk to new FDC Project format Risk Approach: Mitigate Risk Action Ct Mitigation Step / Task Description (if for the sting to validate drag performance and CL. 2) A drag margin of ~13% is used in the design to allow for uncertainty in the design tools and methodology. Ct	td risk statement. D text risk manageme led L X C, criticality, ost to Implement exceeds current budget)	evelop nt mee and up	ed mitigations. ting. dated mitigatio Start Date FY15 May - 15	Additional miti ns. Updated an End Date Jan - 16 Oct - 16	gation strategies to low d scored risk. New L x C (Cost, Schedule, Technical) 3 x 5 2 x 5	
Criticality Aedium iginal L x C 3 x 5 Irrent L x C 2 x 5 arget L x C 2 x 4 Ipen Date 3-22-16	generator mitigation. 8-19-2016: Reviewed with DPM and RO. Added Vortex generator mitigations. 3-29-2016: Reviewed risk with PM, PIs, RO, and RM. Scored risk and complete consequence will be identified and added (vortex generators etc.) during the r 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer and establish 3-22-2016: Transferred risk to new FDC Project format Risk Approach: Mitigate Risk Action Mitigation Step / Task Description 1) LeapTech testing to validate drag performance and CL. 2) A drag margin of ~13% is used in the design to allow for uncertainty in the design tools and methodology. 3) Independent CFD validation of wing design drag performance	td risk statement. D text risk manageme led L X C, criticality, ost to Implement exceeds current budget)	evelop nt mee and up	ed mitigations. ting. dated mitigatio Start Date FY15 May - 15 Jan - 16	Additional mitin ms. Updated an End Date Jan - 16 Oct - 16 Oct - 16	gation strategies to lowe d scored risk. New L x C (Cost, Schedule, Technical) 3 x 5 2 x 5 2 x 5	

ISK ID	Risk Statement	Conseq	ence	Cost, Schedule, Tee	chnical)	5
C11	Given that the X-57 Mod III wing will be constructed of a composite material, there is a possibility that the first composite article of a particular.	Cos	t 3	> \$1M (wing rebu	uild,+ standing army	/) 4 3
	design contains flaws and discrepancies such as significant delaminations	Schedu		6-month delay po	ossible	2
COwner	or disbonds that render the first article useless, resulting in a 6-month delay and associated labor overrups (>\$1M) or de-scoping the X-57					1
f Viken	project, and some impact to technical objectives.	Technic	^I 3	Some impact to t	echnical objectives	
rend	Statu		L			
iticality edium inal L x C	8-19-2016: Reviewed with PM, DPM, RO, CE, and SE. Mingaton 2: Unarged 8-19-2016: Reviewed with RO and DPM. Criticality lowered to Medium; curre added 3-29-2016: Reviewed risk with PM, PIs, RO, and RM. Scored risk and complet 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed Complete risk with PM, OE, CE, RM Systems Engineer, developed 2-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed 3-24-2016: Reviewed	nt L x C changed f ed risk statement risk statement, es	om 4 x Devel ablishe	5 to 2 x 5 because oped mitigations. d L X C, criticality	e mitigation #2 r, and updated r	is complete. Mitigation
iticality edium inal L x C 4 x 5	8-19-2016: Reviewed with PM, DPM, Criticality lowered to Medium; curre added 3-29-2016: Reviewed risk with PM, PIs, RO, and RM. Scored risk and complet 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed scored risk. Need to complete mitigations and determine target LxC. Need to 3-22-2016: Transferred risk to new FDC Project format	nt L x C changed f ed risk statement risk statement, es o determine targe	om 4 x Devel ablishe LxC.	5 to 2 x 5 because oped mitigations. d L X C, criticality	e mitigation #2 r, and updated r	is complete. Mitigatio
iticality edium inal L x C 4 x 5 'ent L x C 2 x 5	 8-19-2016: Reviewed with FM, DFM, KO, CE, and SE. Mitigation 2: changed 8-19-2016: Reviewed with RO and DPM. Criticality lowered to Medium; curre added 3-29-2016: Reviewed risk with PM, PIs, RO, and RM. Scored risk and complet 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed scored risk. Need to complete mitigations and determine target LxC. Need to 3-22-2016: Transferred risk to new FDC Project format Risk Approach: Mitigate 	nt L x C changed f ed risk statement risk statement, es o determine targe	om 4 x Devel ablishe LxC.	5 to 2 x 5 becaus oped mitigations. d L X C, criticality Start Date	e mitigation #2 , and updated r	is complete. Mitigation mitigations. Updated a
iticality edium inal L x C 4 x 5 rent L x C 2 x 5 get L x C	8-19-2016: Reviewed with FM, DFM, FO, CE, and SE. Mitigation 2: charged 8-19-2016: Reviewed with FM of DPM. Criticality lowered to Medium; curre added 3-29-2016: Reviewed risk with PM, PIs, RO, and RM. Scored risk and complet 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed scored risk. Need to complete mitigations and determine target LxC. Need to 3-22-2016: Transferred risk to new FDC Project format Risk Approach: Mitigate Risk Action Mitigation Step / Task Description	nt L x C changed f ed risk statement risk statement, es o determine targe Cost to Implement If exceeds current budget	om 4 x Devel ablishe LxC.	5 to 2 x 5 because oped mitigations. d L X C, criticality Start Date	e mitigation #2 r, and updated r End Date	is complete. Mitigation mitigations. Updated a New L x C (Cost, Schedule, Technical)
iticality edium inal L x C 4 x 5 rent L x C 2 x 5 get L x C 2 x 5	8-19-2016: Reviewed with PM, DPM, Criticality lowered to Medium; curre added 3-29-2016: Reviewed visk with PM, PIs, RO, and RM. Scored risk and complet 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed scored risk. Need to complete mitigations and determine target LxC. Need to 3-22-2016: Transferred risk to new FDC Project format Risk Approach: Mitigate Risk Action Mitigation Step / Task Description 1) Building block approach to composite design and fabrication	nt L x C changed f ed risk statement, es determine targe Cost to Implement if exceeds current budget	om 4 x Devel ablishe LxC.	5 to 2 x 5 because oped mitigations. d L X C, criticality Start Date June - 15	e mitigation #2 r, and updated r End Date May - 17	is complete. Mitigation mitigations. Updated a New L x C (Cost, Schedule, Technical) 3 x 5
edium inal L x C 4 x 5 rent L x C 2 x 5 get L x C 2 x 5 en Date 2 2-16	8-19-2016: Reviewed with FM, DFM, FO, CE, and SE. Mitigation 2: thanged 8-19-2016: Reviewed with FM of DPM. Criticality lowered to Medium; curre added 3-29-2016: Reviewed risk with PM, PIs, RO, and RM. Scored risk and complet 3-24-2016: Reviewed risk with PM, OE, CE, RM Systems Engineer, developed scored risk. Need to complete mitigations and determine target LxC. Need to 3-22-2016: Transferred risk to new FDC Project format Risk Approach: Mitigate Risk Action Mitigation Step / Task Description 1) Building block approach to composite design and fabrication 2) Wing design and fabrication accomplished by same subcontractor	nt L x C changed f ed risk statement risk statement, es o determine targe Cost to Implemen if exceeds current budget	om 4 x Devel ablishe LxC.	5 to 2 x 5 because oped mitigations. d L X C, criticality Start Date June - 15 Mar - 16	e mitigation #2 r, and updated r End Date May - 17 May - 16	is complete. Mitigation mitigations. Updated a New L x C (Cost, Schedule, Technical) 3 x 5 2 x 5

X-57 Harris	X-57 – Insufficient v	wing struc	ctur	al marg	jin	NAS		
RISK ID	Risk Statement	Conseque	nce (C	ost, Schedule, Tec	hnical)	5		
SC12	Given that the X-57 wing design is unique (high aspect ratio, DEP, motors on outboard location, etc.), there is a possibility of loads being under	Cost	3	5% - 10% of yearly	y project cost			
Risk Owner	predicted and/or material allowables over predicted causing damage in wing during ground or flight testing, resulting in cost (5% - 10% of yearly	Schedule	4	1- 2 month slip to milestone	level one			
Jeff Viken	project cost) and schedule (1-2 month slip to level one milestone) impacts and moderate impact to technical objectives. Note: Risk occurring would reduced operational envelope	Technical	4	Moderate impact objectives	to technical			
Criticality	8-19-2016: Reviewed with RO and DPM. Changed current L x C from 3 x 4 to 2	x 4 because mitigat	ion #2	is complete. Add	ded note to risl	k. Reworded mitigation #3		
Medium Original L x C 3 x 4	 3-29-2016: Reviewed risk with PM, PIs, RO, and RM. Scored risk and complete the event the risk occurs. 3-24-2016: Opened risk. Began to develop risk with PM, OE, CE, RM Systems E risk, and complete mitigations. Risk Approach: Mitigate 	ed risk statement. D	evelop work c	ed mitigations. n mitigations. N	Some mitigatio	ons reduce consequence in ete risk statement, score		
Medium Original L x C 3 x 4 Current L x C 2 x 4	3-29-2016: Reviewed risk with PM, Pis, RO, and RM. Scored risk and complete the event the risk occurs. 3-24-2016: Opened risk. Began to develop risk with PM, OE, CE, RM Systems E risk, and complete mitigations. Risk Approach: Mitigate Risk Action C Mitigation Step / Task Description C	ed risk statement. D Engineer. Started to Cost to Implement fexceeds current budget)	evelop work c	ed mitigations. M	Some mitigatio	ons reduce consequence in ete risk statement, score New L x C (Cost, Schedule, Technical)		
Medium Original L x C 3 x 4 Current L x C 2 x 4 Target L x C 2 x 4	3-29-2016: Reviewed risk with PM, Pis, RO, and RM. Scored risk and complete the event the risk occurs. 3-24-2016: Opened risk. Began to develop risk with PM, OE, CE, RM Systems E risk, and complete mitigations. Risk Approach: Mitigate Risk Action C Mitigation Step / Task Description Iff 1) Building block approach to composite design and fabrication C	ed risk statement. D Engineer. Started to Cost to Implement fexceeds current budget)	evelop work c	ed mitigations. N n mitigations. N Start Date Jun - 15	Some mitigatic Need to comple End Date May - 17	ons reduce consequence in ete risk statement, score New L x C (Cost, Schedule, Technical) 3 x 4		
Medium Original L x C 3 x 4 Current L x C 2 x 4 Target L x C 2 x 4 Open Date 3-24-16	3-29-2016: Reviewed risk with PM, PIs, RO, and RM. Scored risk and complete the event the risk occurs. 3-24-2016: Opened risk. Began to develop risk with PM, OE, CE, RM Systems E risk, and complete mitigations. Risk Approach: Mitigate Risk Action C Mitigation Step / Task Description (# 1) Building block approach to composite design and fabrication 2) Wing design and fabrication accomplished by same subcontractor	ed risk statement. D Engineer. Started to Cost to Implement Fexceeds current budget)	evelop work c	ed mitigations. N n mitigations. N Start Date Jun - 15 Mar - 16	Some mitigatic Need to comple End Date May - 17 May - 16	Ans reduce consequence in ete risk statement, score New L x C (Cost, Schedule, Technical) 3 x 4 2 x 4		
Medium Original L x C 3 x 4 Current L x C 2 x 4 Target L x C 2 x 4 Open Date 3-24-16	3-29-2016: Reviewed risk with PM, PIs, RO, and RM. Scored risk and complete the event the risk occurs. 3-24-2016: Opened risk. Began to develop risk with PM, OE, CE, RM Systems E risk, and complete mitigations. Risk Approach: Mitigate Risk Action C Mitigation Step / Task Description (n 1) Building block approach to composite design and fabrication 2) Wing design and fabrication accomplished by same subcontractor 3) Reduce the weight of the overall vehicle Same Subcontraction	ed risk statement. D Engineer. Started to Cost to Implement fexceeds current budget)	evelop work c	ed mitigations. N n mitigations. N Start Date Jun - 15 Mar - 16	Some mitigatic Jeed to comple End Date May - 17 May - 16	ete risk statement, score New L x C (Cost, Schedule, Technical) 3 x 4 2 x 4		

SCEPTOR CDR Nov 15-17 2016

Issues & Resolutions

(Questions to still be answered)

Issue	Resolution Plan
Verify there is sufficient aileron roll control at stall and with blowing	Conduct CFD runs and analyze 12' test data
Work remains on understanding blowing effects on control power effects	Conduct CFD runs of blown wing and tail combination
Verify that whirl flutter margins are sufficient	Conduct whirl flutter analysis will latest version of Xperimental FEM and MT propeller aerodynamics
Material properties / Design allowables	NIAR coupon testing is being conducted. We still need to develop a plan for assembly level testing (bonded joint and structural test articles).
SCEPTOR CDR Nov 15-17 2016	Session 2, Wing IPT 165

SCEPTOR CDR Nov 15-17 2016

Questions to still be answered

(Issues & Resolutions)

Issue	Resolution Plan			
No connector has been designed to connect Joby inverters to traction bus wires	Connector or bus bar still needs to be developed that connects traction bus wires to the cruise inverters			
Fuselage fairings	Still need to be designed			
Will a cruise motor oscillation condition occur at take-off if we hit a bump that is tuned to the first mode of the wing	Conduct a non-linear transient analysis in NASTRAN			
Verify that landing gear can handle all hard landing events at Mod III landing speeds	Review Tecnam certification documentation, conduct analysis of structure, limit crosswind component and the exposure to gust conditions			
SCEPTOR CDR Nov 15-17 2016	Session 2, Wing IPT 167			

Exit Criteria

Subsystem Level Exit Criteria	Evidence
Detailed design is shown to meet the subsystem requirements with adequate technical margins	20, 13-39, 47-156, 158,159
Subsystem level design is stable and adequate documentation exists to proceed to the next phase	Incomplete
Subsystem interface control documents are sufficiently mature to proceed to the next phase, and plans are in place to manage any open items	Incomplete - 4, 11
Subsystem technical risks are identified and mitigation strategies defined	160-164
Test, verification, and integration plans are sufficient to progress into the next phase	13-18, 40-46, 100-104, 135, 158, 159
Final hazards adequately addressed and considered in the detailed design	7-10

SCEPTOR CDR Nov 15-17 2016

CFD Back-up Slides

SCEPTOR CDR Nov 15-17 2016

X-57 X-57	•	172.6m Re=2, No Pow Cruise – Mo	aph, 833,455 Ver α = -4 Power at deled with ThrustCoff TorqueCof Vt_Ratio=7 3 blades, 1	Conc 150KTAS, •° to 18° $\alpha = -2^{\circ}$, - an Actuato $f = 4/\pi^{3*}KT $	0.452° or Disk I 4/π ³ *[Th 3/π ³ *[Ton M/60*D D in., Hu	On M=0.2 $\beta = 0^{\circ}$ γ , 0° , 2° Model rust/(ρ (rque/(ρ (γ)]=2.32 σ Radius	S 233, 2°β (FUN3D inpu (PPM/60) ² D ⁴) (RPM/60) ² D ⁵) 67 5=6.8901 in.	= 0° t)	
	α (deg)	Total HP	Thrust/pr op (lbf)	Torque/pr op (lbf)	КТ	KQ	ThrustCoff FUN3D input	TorqueCoff FUN3D input	
	-2	123.86	122.75	144.56	0.075	0.018	0.009632	0.004538	
	-0.452	128.92	127.69	150.46	0.078	0.018	0.010020	0.004723	
	0	131.45	130.16	153.41	0.079	0.019	0.010214	0.004815	
	2	147.88	145	172.59	0.088	0.021	0.011378	0.005417	
SCEPTOR CDR	Cruise pov	wer cases	for Nick's estin	mate when th	rust varie	d slightl	y from α =-2° to	α=2° (rev3mod3)	n 2. Wing IPT 174

·	CFD Code FUN3D v12.9 - Steady and unsteady Euler and RANS equations - Node based - Need higher resolution grids than cell co codes - Mixed element mesh improves viscous simulations - Compressible (all runs) or incompress - Variety of turbulence models available - SARC+QCR – used for all conditions - Rotation & Curvature correction	entered
	 Rotation & Curvature correction Quadratic Constitutive Relation: improves accuracy f flows compared to linear Boussinesq viscosity model 	or corner l
SCEPTOR CDR Nov 15-17	2016	Session 2, Wing IPT 175

A-57 MAXWELL NO		• 63 • N • H	3 mp o Pov igh L - Mo inp •	h, 55 wer c ift Pov deled ut) Thrust 34390 Torque 01097 Vt_Rat 5 blad	Coll KTAS, $x = 0^{\circ}$ wer α with A Coff=4/ coff=8, 0 tio=pi/J= es, Tip	ndi f M to 11° f = 0° t ctuato $pi^{3*}KT=4$ $pi^{3*}KQ=1$ pi/[V/(FRight Red in Section 1)	tion =0.08 o 11° r Disk I 4/pi ³ *[T =8/pi ³ *[⁷ RPM/60 ⁷ 11.34 in	1S β = 0° β = 0 Model (hrust/(rho(RF Torque/(rho(F *D))]=4.8484 ., Root Radius	,264,43 • FUN3D PM/60) ² D ⁴) RPM/60) ² D ⁴ 5=3.06 in.	1 =0.0 5)=0.	
	SHP	Power kw/prop	RPM	Thrust/ prop (lbf)	Torque/ prop (ft-lb)	Thrust/p rop (N)	Torque/ prop (N-m)	Horsepower/p rop	Total Horsepowe r	Total Thrust (lbf)	
SCEPTOR (16.35 CDR Nov	12.2 v 15-17 202	4548 16	46.49	14.01	206.8	19	12.14	145.62 Ses	557.89 sion 2, Wi	ng IPT 180

X-57 No		NASA
	Removed	
SCEPTOR CDR Nov 15-17 2016		Session 2, Wing IPT 183

Additional Material Loads

SCEPTOR CDR Nov 15-17 2016

Load Criteria – 14CFR Part23 SYMMETRICAL § 23.331 UNSYMMETRICAL § 23.347 Clean Airplane Discrete Vertical Gusts [§ 23.333(c), § 23.341] High Lift Devices [§ 23.345] ± 25 ft/sec vertical 25 ft/sec head-on Vertical Surfaces Lateral gust: ± 50 fps @ Vc [§ 23.443(a)] Commuter category [§ 23.443(b)] Gusts normal to plane of symmetry @ V_B, V_C, V_D clean airplane @V_F high lift devices 50 fps @ V_C and ± 25 fps @ V_D GUST ± 66 fps @ V_B (commuter category only) Wing Flaps [§ 23.457(a)] Horizontal Stabilizing and Balancing Surfaces [§ 23.425] Clean sipplane and with high lift devices Balancing Horizontal Tail Load [§§ 23.337] Horizontal Stabilizing and Balancing Surfaces [§ 23.427] Loads from gusts combined with yawing and slipstream effects, clean airplane and with high lift devices [§ 23.373] [§ 23.445] [§ 23,445(d)] Vertical Surfaces [§ 23,441] - @ V_A Yaw, sideslip, and rudder deflection Speed Control Devices Outboard or Commuter Category n = 3.8* Ailerons [§ 23.445] Abrupt maximum control move $@V_A$. Control deflection requirements $@V_C$ and V_D Fins or Acrobatic Category n = 4.4n = 6.0Winglets MANEUVER High Lift Devices [§ 23.345] May reduce for W > 4,118 lbs. Rolling Conditions [§ 23.349] - Wing and wing bracing Categ Condition (See § 23.333) ter A Airload Distribution Pitching: Checked and Unchecked Utility, Commuter = 2.0 g Applies to horizontal stabilizing and balancing surfaces [§ 23.423] Abrupt maximum control input @ V A and F 100%/60% Acrobati Wing Flaps [§ 23.457(a)] on deflections § 23.445 Wing lo ngine Torque [§ 23.361] - Combined with symmetrical limit loads @ VA ide Load on Engine Mount [§ 23.363] ENGINE bic and Aerodynamic Loads [§ 23.371] – Pitching and yawing, applie to turbine installations symmetrical Loads Due to Engine Failure [§ 23.367] - Turboprops only Wing Flaps Slipstream Effects, n = 1.0 [§ 23.457(b)] Pressurized Cabin Loads, combined with flight loads [§ 23.365] OTHER Rear Lift Truss, reverse air flow [§ 23.369] Canard or Tandem Wing Configurations [§ 23.302]

For trim load calculations, the effects of the fuselage was take into consideration using an equivalent body of revolution.

Engine Loads

Load cases mainly for the tip motor

- 23.361 Engine Torque (FS = 1.25 = turboprop)
- 23.363 Engine Side Loads
- 23.371 Gyroscopic Loads (MTV-7-152-64)
- 23.349 Rolling conditions
 - Normal acceleration due to the angular acceleration
 - Lateral acceleration due to the roll rate
- 23.471 Ground Loads (n_g = 3.0)

SCEPTOR CDR Nov 15-17 2016

Typical Results (GAMA) ••• CDN -0.1 0: ^{2 ND} at Trefftz-Plane 0.2 -0.25 -0.3 0. : : -0.3 0.1 0.05 SCEPTOR CDR Nov 15-17 2016 Session 2, Wing IPT 196

SCEPTOR R. X-57 MAXWELL	Ref. Area.: Ref. Chord.: Ref. Span: C.:	6.1935 [P Q R] d 0.649 alphaº 9.6384 betaº 1.75	deg/s	0 0 0 11.661 0) 18 C _{DIN}	CG position Ref.Vel.[m/s Air Density	4.(6] 10 0.	0448 06.3592 77082 135	0	NASA
	C _{DTOTAL} :	0.096466			CDP	ARASITE :	0.0213	331		
	FORCES									
	Body Axes [FX F	Y F71	-7000	73	0.0	0 46	805 69			
	Stab. Axes [FXs	FYs FZs1	2604.8	34	0.00) 472	254.61			
	Wind Axes [FXw	FYw FZwl	2604.8	34	0.00) 472	254.61			
	MOMENTS									
	Body Axes [MX]	MY MZ]	0.04	-	712.46	0.0	00			
	Stab. Axes [MXs	MYs MZs]	0.04	-	712.46	-0.0)1			
	Wind Axes [MXw	/ MYw MZw]	0.04	-	712.46	-0.0)1			
	FORCE COEFFI	CINETS								
	Body Axes [CX C	CY CZ]	-0.259	26	0.000	000	1.73337			
	Stab. Axes [CXs	CYs CZs]	0.0964	47	0.000	00 1	.75000			
	Wind Axes [CD (CC CL]	0.0964	47	0.000	00 1	.75000			
	MOMENT COEF	FICIENTS								
	Body Axes [cl cr	n cn]	0.000	00	-0.040	65 C	0.00000			
	Stab. Axes [cls o	cms cns]	0.000	00	-0.040	65 C	0.00000			
	Wind Axes [clw o	cmw cnw]	0.000	00	-0.0406	65 C	0.00000			
SCEPTOR CDR Nov 15-1	17 2016							Sessio	n 2, Wing IP	чт 200

Page 134

Est.[m]	0.08	0.23	0.38	0.53	0.69	0.85	1.00	1.16	1.32	1.48	1.64	1.80	1.95	2.11	2.27	2.43	2.59	2.74	2.90	3.06	3.22	3.38	3.53	3.69	3.85	4.01	4.16	4.32	4.48	4.64
Normal[N]	912.59	909.87	905.23	899.14	924.81	915.71	907.01	897.85	887.25	875.70	866.22	855.62	843.41	831.47	820.57	807.92	793.36	781.51	769.13	754.18	737.59	724.03	707.59	687.19	648.61	628.38	601.23	565.22	515.00	438.67
Axial[N]	-138.63	-139.48	-139.97	-140.14	-145.44	-146.13	-144.85	-143.25	-142.75	-143.29	-139.96	-137.99	-137.54	-136.12	-132.48	-130.47	-130.73	-126.45	-122.39	-120.19	-119.17	-112.60	-107.96	-105.44	-94.39	-84.15	-74.15	-60.50	-38.59	28.92
Moment[Nm	-63.74	-61.97	-60.41	-58.97	-59.75	-58.40	-57.06	-55.77	-54.59	-53.46	-52.27	-51.14	-50.11	-49.08	-48.04	-47.09	-46.26	-45.33	-44.40	-43.59	-42.88	-42.03	-41.34	-40.76	-40.83	-40.26	-40.03	-40.49	-41.37	-41.76
Est.[m]	0.00	0.15	0.30	0.46	0.61	0.77	0.93	1.08	1.24	1.40	1.56	1.72	1.87	2.03	2.19	2.35	2.51	2.66	2.82	2.98	3.14	3.30	3.45	3.61	3.77	3.93	4.09	4.24	4.40	4.56
Shear[N]	23412.03	22499.44	21589.57	20684.34	19785.20	18860.40	17944.69	17037.68	16139.83	15252.58	14376.88	13510.66	12655.04	11811.63	10980.16	10159.59	9351.67	8558.32	7776.80	7007.68	6253.50	5515.91	4791.88	4084.29	3397.10	2748.49	2120.11	1518.88	953.66	438.67
Bend.[Nm]	50009.69	46511.23	43151.65	39930.38	36818.59	33792.39	30883.64	28118.94	25496.88	23015.90	20674.24	18470.26	16402.35	14468.72	12667.45	10996.75	9454.75	8039.30	6748.32	5579.88	4531.83	3601.68	2787.05	2085.55	1494.64	1009.85	626.08	339.23	144.33	34.58
Torsion[Nm]	-2486.97	-2387.12	-2254.37	-2126.10	-2001.57	-1878.07	-1758.39	-1643.09	-1532.08	-1425.23	-1322.44	-1223.74	-1129.03	-1038.19	-951.16	-867.93	-788.36	-712.28	-639.76	-570.74	-505.08	-442.61	-383.41	-327.30	-274.28	-223.74	-175.95	-130.28	-85.97	-42.44
AxSh [N]	-3506.30	-3367.67	-3228.18	-3088.21	-2948.07	-2802.62	-2656.50	-2511.65	-2368.40	-2225.65	-2082.36	-1942.41	-1804.42	-1666.87	-1530.75	-1398.27	-1267.80	-1137.07	-1010.62	-888.23	-768.04	-648.87	-536.27	-428.31	-322.87	-228.48	-144.33	-70.18	-9.67	28.92
AxBd [Nm]	-7008.96	-6485.16	-5982.56	-5501.25	-5037.11	-4586.80	-4155.36	-3746.91	-3361.24	-2998.16	-2657.70	-2339.61	-2043.50	-1769.16	-1516.44	-1284.96	-1074.26	-884.20	-714.46	-564.39	-433.49	-321.51	-227.85	-151.62	-92.29	-48.79	-19.41	-2.50	3.80	2.28
InSh[N]	-3845.19	-3845.19	-3845.19	-3845.19	-3845.19	-3845.19	-3507.34	-3507.34	-3507.34	-3507.34	-3169.49	-3169.49	-3169.49	-3169.49	-2831.64	-2831.64	-2831.64	-2493.79	-2493.79	-2493.79	-2493.79	-2155.94	-2155.94	-2155.94	-1818.09	-1818.09	-1818.09	-1818.09	-1818.09	-1818.09
InBd[Nm]	13482.19	12896.18	12310.17	11724.16	11132.71	10530.38	-9935.17	-9380.80	-8826.42	-8272.04	-7749.22	-7248.24	-6747.26	-6246.28	-5795.84	-5348.27	-4900.69	-4469.23	-4075.05	-3680.88	-3286.70	-2927.63	-2586.85	-2246.08	-1906.16	-1619.35	-1332.72	-1046.10	-759.47	-472.84
InTr[Nm]	-901.28	-901.28	-901.28	-901.28	-901.28	-901.28	-826.10	-826.10	-826.10	-826.10	-733.94	-733.94	-733.94	-733.94	-671.63	-671.63	-671.63	-592.23	-592.23	-592.23	-592.23	-542.80	-542.80	-542.80	-476.18	-476.18	-476.18	-476.18	-476.18	-476.18
TotSh[N]	19566.84	18654.25	17744.38	16839.15	15940.01	15015.20	14437.34	13530.34	12632.48	11745.24	11207.38	10341.17	9485.55	8642.14	8148.52	7327.95	6520.03	6064.53	5283.01	4513.89	3759.71	3359.97	2635.94	1928.35	1579.01	930.40	302.02	-299.21	-864.43	-1379.42
TotBd[Nm]	36527.50	33615.05	30841.48	28206.21	25685.88	23262.01	20948.46	18738.14	16670.46	14743.86	12925.03	11222.02	9655.09	8222.43	6871.61	5648.48	4554.06	3570.08	2673.26	1899.00	1245.13	674.06	200.19	-160.53	-411.53	-609.50	-706.64	-706.86	-615.14	-438.27
TotTr[Nm]	-3388.25	-3288.40	-3155.65	-3027.38	-2902.85	-2779.35	-2584.50	-2469.20	-2358.18	-2251.33	-2056.37	-1957.68	-1862.97	-1772.13	-1622.80	-1539.56	-1459.99	-1304.51	-1231.99	-1162.98	-1097.31	-985.41	-926.22	-870.10	-750.45	-699.92	-652.12	-606.46	-562.14	-518.62

SCEPTOR CDR Nov 15-17 2016

Session 2, Wing IPT 201

 Therefore, Sperimental recommended considerations to use a frise aileron, or, at least, a design solution that permits further modifications on the aleron design.

 Image: Specific constraints of the constraints of t

X-57 MAXWELL W		NAS
		General view showing the access to the attachment points
		No special tool is necessary to assembly the wing
	Removed	
SCEPTOR CDR Nov 15-17 2016		Session 2, Wing IPT 208

X-57 MAXWELL US		NAS
	Removed	
	Ť	
SCEPTOR CDR Nov 15-17 2016		Session 2, Wing IPT 210

Additional Material Wing Attachment Analysis

SCEPTOR CDR Nov 15-17 2016

It is possible to notice:

- a) Significant reduction of moment reactions and small reduction of force reactions when the rear and front pins are aligned (cases 1 and 2)
- b) Further reduction of force reactions with the removal of torsional restrictions (making using of uni-ball bearings on the attachment points)
- c) Significant increase of load reactions, especially vertical, when the attachment to the main spar is added.

It is evident that the increase of loads reactions when the main spar attachment point was added happened due the increase of hyperstaticity of the system. Trying to bring the system back to an isostatic situation, the front spar attachment point was removed, as presented in the next slide.

It is important to notice that the main spar attachment was considered free of torsional restrictions. This condition (obtained using a uni-ball bearing) is only possible if this attachment point is working in single shear, since the main spar is too wide and there is no feasible bearing for this application with such big width.

SCEPTOR CDR Nov 15-17 2016

It is possible to notice:

a) For this particular case, the main spar attachment will carry almost all the vertical load since it is, probably, closer to the wing pressure center.

b) The lateral and longitudinal forces (that reacts the axial loads and the axial bending moment) increases, since the reaction arm is reduced.

Performing the modal analysis of the cases (3), (4) and (5), it is also possible to notice the significant reduction of the first torsional mode frequency in case (5) – front spar attachment removed.

Case	1 st Bending	1 st Axial Bending	2 nd Bending	2 nd Axial Bending	1 st Torsion
3	1.67	2.70	8.60	11.68	17.27
4	1.67	2.70	8.61	11.70	17.90
5	1.67	2.64	8.47	11.42	15.04

SCEPTOR CDR Nov 15-17 2016

The failure of one attachment was analyzed using a full model (no symmetry assumption), based on the attachment proposal #3, as described on slide 5.

It is possible to notice on the next slides:

- a) The total deflection of the wing with one attachment failure still under reasonable values
- b) The critical case (for this load case) would be the failure of the front spar attachment point.
- c) The critical reaction load in case of failure of the frontal attachment (~25kN) still lower that the reaction loads obtained in the case of mutual connection of front and main spar (case #4 slide 6) (~29kN).

SCEPTOR CDR Nov 15-17 2016

Additional Material FEA Model

SCEPTOR CDR Nov 15-17 2016

<image><image><image><image><image><image><image><image>

X-57		NASA
	Removed	
SCEPTOR CDP Nov 15-17 2016		Session 2 Wing IDT 235

REPTOR X-57 NAXWELL DU	NASA
	Removed
SCEPTOR CDR Nov 15-17 2016	Session 2, Wing IPT 236

X-57 MAXWELL		NASA
	Removed	
SCEPTOR CDR Nov 15-17 2016		Session 2. Wing IPT 239

X-57 MAXWELL	D3039	NASA
	Removed	
SCEPTOR CDR Nov 15-17 2016		Session 2, Wing IPT 241

SCEPTOR K-57 WAXWELL	D6641	NASA
	Domound	
	кеточеа	
SCEPTOR CDR Nov 15-17 2016		Session 2, Wing IPT 242

X-57 MAXWELL M	D5379	NASA
	Removed	
SCEPTOR CDR Nov 15-17 2016		Session 2, Wing IPT 243

SCEPTOR MASTEL IN MAXWELL IN	D5766	NASA
	Removed	
SCEPTOR CDR Nov 15-17 2016		Session 2, Wing IPT 244

Spar Cap Layup Schedule

Tests to evaluate the effect of mixing the shear-web's plies (bias) with the cap's plies (uni)

SCEPTOR Software

X-57 Software Manager John Theisen /661-276-2587 john.l.theisen@nasa.gov NASA/AFRC

X-57 Software Assurance Duc Tran /661-276-2303 <u>duc.n.tran@nasa.gov</u> NASA/AFRC

NASA/AFRC X-57 System Safety Phil Burkhardt /661-276-3277

phillip.a.burkhardt@nasa.gov

Jacobs/AFRC

ES Aero Software Manager Steve Yokum / Removed steve.yokum@tmctechnologies.com ES Aero/TMC

Entry Criteria				
Subsystem Level Entry Criteria	Evidence			
Technical Performance Metrics (TPMs)	N/A			
Final Subsystem Requirements and/or Specifications	Software Requirements Specification SRS-CEPT-003			
Interface Control Documents	Command Bus ICD-CEPT-005, Cockpit CD-CEPT-006, CMC Configuration File			
Detailed Design and Analysis	Software Design Description SDD-CEPT-004, Software Failure Modes Effects Analysis SFMEA-CEPT-009, SCEPTOR Hazard Analysis			
Drawings	N/A			
Test and Verification Plan	Software V&V Plan SVVP-CEPT-007, Software Test Plan STPLN-CEPT-005			
Technical Risks	SCEPTOR Hazard Analysis and Software Failure Modes Effects Analysis SFMEA-CEPT-009			

SCEPTOR CDR Nov 15-17 2016

K-S7	Schedule to Mod II FRR	NASA
	Removed	
SCEPTOR CDR No	v 15-17 2016 Session 3. Software M	anagement 3

Software Driving Requirements Cruise Motor Controller

Cmd Subsys Req No.	System Requirement Description	Software Req No.	Subsystem Requirement Description	Verif. Metho
C2 1 C	The Motor Controller shall send	SW-CMC1	The CMC shall report health and status as specified in the Command Bus ICD (ICD-CEPT-005).	Test
C2.1.6	all measured data to the Command Bus per ICD-CEPT-005.	SW-CMC2	The CMC shall limit torque to prevent exceeding propeller speed as specified in the CMC Configuration File.	Test
C2.3.2	The Command Bus shall carry all data/commands between the Cruise Motor Controllers and the Cruise Motors.	SW-CMC6	The CMC software shall send commanded current to the programmable Logic Device (PLD).	Test
C3.1.2	The Cruise Motor controllers shall be disabled until engaged by the pilot.	; Upon initialization, the CMC shall command zero torque until traction power is ON and throttle is placed to zero ± 10 Nm.		Test
The C Syster C7.1 thrott syster	The Cruise Motor Controller system shall process pilots	SW-CMC3	The CMC shall read in messages intended for the CMC as defined by the Command Bus ICD (ICD-CEPT-005).	Test
	throttle inputs for the Cruise system. SW-C	SW-CMC4	The CMC software shall encode the signals per Command Bus ICD (ICD-CEPT-005).	Test

SCEPTOR CDR Nov 15-17 2016

Session 3, Software Management 7

Software Driving Requirements Cruise Motor Controller

Cmd Subsys Req No.	System Requirement Description	Software Req No.	Subsystem Requirement Description	Verif. Metho	
		SW-CMC7	The CMC software shall limit the commanded torque to the range specified in the CMC Configuration File.	Test	
		SW-CMC8	The CMC software shall command maximum torque in the CMC Configuration File if commanded torque is beyond maximum limit.	Test	
		SW-CMC9	The CMC software shall command last valid torque if Throttle encoder is invalid.	Test	
	Regardless position of Throttle, the Cruise Motor Control shall provide safe commands for safe operation of the motors/ propellers. SW-CM SW-CM SW-CM SW-CM SW-CM SW-CM SW-CM	SW-CMC14	The CMC software shall use the last commanded torque for missed messages lasting less than the value specified in the CMC Configuration File.	Test	
C7.1.4		the Cruise Motor Control shall C7.1.4 provide safe commands for safe operation of the motors/ propellers. SW-CMC	SW-CMC15	The CMC software shall have a configurable command ramp rate to zero torque after a configurable delay as specified in CMC Configuration File.	Test
			SW-CMC16	The CMC software shall provide a configurable limit of the torque ramp rate range as specified in CMC Configuration File.	Test
		SW-CMC28	The CMC shall emit a unique audible alarm in the event traction voltage is present upon avionics power up.	Test	
		SW-CMC29	The CMC shall emit a unique audible alarm for fault state failed BIT.	Inspectio	
		SW-CMC30	The CMC shall emit a unique audible alarm for as long as Command Bus messages are not continuously being received.	Test	

Software Driving Requirements Cruise Motor Controller

Cmd Subsys Req No.	System Requirement Description	Software Req No.	Subsystem Requirement Description	Verif. Metho
		SW-CMC11	If the CMC detects an invalid message, the CMC shall publish status showing off- nominal to the Command Bus.	Test
		SW-CMC12	The CMC Software shall increment a counter that shall be used to determine the number of missed throttle command signals.	the Test ions. Inspection Test no Test Test 001) Inspection
	The CMC shall provide CMC and	SW-CMC23	Delivered software shall be interchangeable for identical hardware configurations.	Inspectio
C9.1.1	Motor health and status information to the Command Bus.	SW-CMC25	Data reported by the CMC on the Command Bus shall have a filter period as defined by the ICD-CEPT-005.	Test
		SW-CMC26	The CMC shall report the filtered value of all reported parameters with delay no greater than one frame rate.	Test
		SW-CMC27	The CMC shall be fully operational within 5 seconds of application of avionics power and traction power	Test
60.4.2	H&S shall include Built In Test	SW-CMC18	The CMC shall perform a BIT check as specified in the CMC spec (SPEC-CEPT-001) when avionics power is first applied.	Inspection Test
C9.1.2	(BIT).	SW-CMC19	The CMC shall report to the Command Bus degraded performance in the traction power circuit.	Test

SCEPTOR CDR Nov 15-17 2016

Software Driving Requirements Battery Management System

Cmd Subsys Req No.	System Requirement Description	Software Req No.	Subsystem Requirement Description	Verif. Method
		SW- BMS21	The BMS software shall provide real time fault status discrete indication to the cockpit for battery system temperature exceeding range.	Test
C2.2.3	The BMS shall report battery system critical parameters.	SW- BMS22	The BMS software shall provide real time fault status discrete indication to the cockpit in the event cell block voltage is outside the range of 2.5 to 4.2 volts.	Test
	system of their parameters.	SW- BMS23	The BMS software shall provide real time alarms/alerts via fault status discrete indication to the cockpit in the event cell block impedance increases at least 25% over the beginning of life (BoL) measured impedance.	Test
C3.1.2	The Cruise Motor controllers shall be disabled until engaged by the pilot.	SW-BMS4	The BMS software shall initialize to a default safe state using the standard configuration.	Test
C9.1.3	H&S shall include software version with checksum.	SW- BMS29	Deliverable software media shall be marked with Title/description, part number, version, and Software Development Agent (SDA) identification.	Inspection

SCEPTOR CDR Nov 15-17 2016

Session 3, Software Management 11

Software Driving Requirements Battery Management System

Cmd Subsys Req No.	System Requirement Description	Software Req No.	Subsystem Requirement Description	Verif. Method
		SW-The BMS software shall disconnect battery from the battery charger if theBMS11charge rate exceeds 75 Amps		Test
P10.1.10	The BMS shall disconnect from charger in the event of out of limits conditions.	SW- BMS12	The BMS software shall disconnect battery from the battery charger if the battery temperature exceeds limit specified in the BMS EDS Configuration File.	Test
		SW- BMS13	The BMS software shall disconnect battery from the battery charger if the cell block voltage exceeds 4.2 Volts	Test
P10.1.11	H&S shall include Built In Test (BIT).	SW- BMS28	The BMS shall perform a BIT immediately after BMS is powered.	Inspection / Test
D10 1 12	H&S shall include software	SW-BMS2	The BMS software shall provide integrity checks (checksums or CRC) for verifying software installation computed upon power up.	Test
P10.1.12	version with checksum.	SW-BMS3	The BMS shall read the configuration discrete input at startup to set a BMS UID.	Test

SCEPTOR CDR Nov 15-17 2016

Software Driving Requirements Battery Management System

Cmd Subsys Req No.	System Requirement Description	Software Req No.	Subsystem Requirement Description	Verif. Methoo
	The BMS shall provide BMS	SW-BMS5	The BMS software shall monitor the Traction Battery Bus power (voltage and current).	Test
P10.1.5	parameters in messages to be recorded by the instrumentation subsystem in	SW-BMS6	The BMS software shall report the Traction Battery Bus power (voltage and current).	Test
	accordance with a Master Measurement List (MML).	SW- BMS19	The BMS software shall provide highest temperature cell block, lowest thermal cell block, minimum, maximum, standard deviation, and mean temperature to the Command Bus for every cell block for every data frame.	Test
P10.1.6	The BMS shall monitor and maintain appropriate cell voltages within the batteries.	SW- BMS15	The BMS software shall maintain cell to cell charge balance at end of charge within 20 mV tolerance.	Test
D10 1 7	The BMS shall provide battery	SW- BMS16	The BMS software shall log measured amp-hours and resting cell voltage of the battery.	Inspectior
P10.1.7	condition information.	SW- BMS17	The BMS software shall provide estimated state of charge (SoC) as a percentage in real time to the Command Bus for each battery pack.	Test

SCEPTOR CDR Nov 15-17 2016

Session 3, Software Management 13

Software Driving Requirements Battery Management System

Cmd Subsys Req No.	System Requirement Description	Software Req No.	Subsystem Requirement Description	Verif. Method
		SW-BMS7	The BMS software shall monitor health and status of the avionics bus power supplies.	Test
		SW-BMS8	The BMS software shall report health and status of the avionics bus power supplies.	Test
		SW-BMS9	The BMS software shall log the running total of total amp hours expended.	Test
	The BMS shall	SW-BMS10	The BMS software shall broadcast charging rate (regardless charge source) for each battery pack on the Command Bus.	Test
	provide battery H&S	SW-BMS14	The BMS software shall indicate the cause of any disconnect events via the Command Bus	Test
P10.1.9	information	SW-BMS18	The BMS software shall report temperature throughout the battery pack to the command bus.	Test
	to Command Bus.	SW-BMS20	The BMS software shall send an alert status message consolidating all fault indications to Command Bus.	Test
		SW-BMS24	The BMS shall discard invalid data for persistent count less than 5.	Test
		SW-BMS25	The BMS shall provide the last known good value in the event that the persistent count is not exceeded.	Test
		SW-BMS26	The BMS shall notify user once persistent count is exceeded.	Test
		SW-BMS27	The BMS shall provide the data on the Command Bus using engineering units defined in ICD-CEPT-005.	Test

SCEPTOR CDR Nov 15-17 2016

Software Driving Requirements Cockpit Display System

Cmd Subsys Req No.	System Requirement Description	Software Req No.	Subsystem Requirement Description	Verif. Meth
		SW-CDS17	The display shall show current maximum cruise motor temperature for each cruise motor.	Verif. Met Test Test Test Test Test Demc Demc
C2 1 6	The Motor Controller shall send	SW-CDS18	The display shall show current maximum cruise controller temperature for each cruise controller.	Test
02.1.0	Command Bus per ICD-CEPT-005.	SW-CDS23	The CDC shall transmit messages onto the Command Bus per ICD-CEPT-005.	Test
		SW-CDS24	The CDC shall receive messages from the Command Bus per ICD-CEPT-005.	Test
		SW-CDS25	The CDC shall detect a loss of comm within less than 2 seconds.	Test Test Test Test
C2.3.4	The Command Bus shall carry all data from the BMS.	SW-CDS12	The display system shall use Command System ICD-CEPT-005 to interpret messages on the Command Bus.	Test
C3.1	The command system shall provide an electric propulsion system configurable by the pilot.	SW-CDS22	The CDC shall execute logic and mathematical operations on Command Bus signals per ICD-CEPT-006.	Test
67.4.2	All Throttle Encoders shall be mechanically calibrated to assure	SW-CDS7	The display shall show a comparison of the two cruise motor throttle lever commanded torques.	Demo
C7.1.3	identical (matched) signal output for any given position.	SW-CDS7	The display shall show a comparison of the two cruise motor throttle lever commanded torques.	Demo

Software Driving Requirements Cockpit Display System

SCEPTOR CDR Nov 15-17 2016

Software Driving Requirements Cockpit Display System

Cmd Subsys Req No.	System Requirement Description	Software Req No.	Subsystem Requirement Description	Verif. Metho
		SW-CDS5	The Cockpit Display System (CDS) shall have selectable screens and content in accordance with ICD-CEPT-006. (Cockpit ICD)	Demo
		SW-CDS6	The display shall provide a summary screen with mission critical information during flight per ICD-CEPT-005.	Test
		SW-CDS8	The display shall indicate fault conditions at all times while the display is powered.	Demo
		SW-CDS9	The display shall indicate stale data or loss of communication of any mission critical information.	Test
P10 1 9	The BMS shall provide battery	SW-CDS10	The display shall indicate a stale display.	Demo
110.1.5	Bus.	SW-CDS11	The CDS shall indicate SOC during normal operation via the panel LED array.	Demo
		SW-CDS13	The display system shall use the logic listed in ICD-CEPT-006 document to reflect states to the pilot	Test
		SW-CDS14	The display shall show the highest BMS reported battery cell temperature.	Test
		SW-CDS15	The display shall show the lowest BMS reported battery cell block voltage.	Test
		SW-CDS16	The display shall show the battery discharge rate.	Demo
		SW-CDS19	The display shall show the health and status of the Battery System.	Test

Software Driving Requirements Throttle Encoder

Cmd Subsys Req No.	System Requirement Description	Software Req No.	Subsystem Requirement Description	Verif. Method
C1.1.4	The power subsystem shall use the existing Tecnam throttle levers as a torque command to control the cruise motors.	SW-T1	The Throttle Encoder shall communicate on the Command Bus per ICD-CEPT-005.	Test
C9.1.3	H&S shall include software version with checksum.	SW-T2	Deliverable software media shall be marked with Title/description, part number, version, and Software Development Agent (SDA) identification.	Inspection
SCEPTOR	CDR Nov 15-17 2016		Session 3, Software Mana	gement 19

SCEPTOR CDR Nov 15-17 2016

Baseline SCEPTOR CSCIs

Description	SDA	Software Class
Instrumentation (Time Distribution System, Data Acquisition)	AFRC	Ш
Cockpit Display System (CDS)	AFRC	Ш
Throttle Encoder	COTS	Ш
Cruise Motor Controller (CMC)	JOBY/ TMC	I-S
Battery Management System (BMS)	EPS/TMC	I-S
Piloted Simulation	AFRC	Ш
Electrical Ground Support Equipment (EGSE)	AFRC	Ш
Laptop application (monitor BMS battery condition, i.e. charge cycle via downloaded BMS history files)	COTS	Ш
Laptop application (monitor/control electrical aircraft system)	AFRC	Ш
Battery Charger	COTS	Ш
Battery Emulator/Simulator	COTS	Ш
Aircraft Simulation Models	LaRC	Ш
Mission Control Room	AFRC	Ш

Detailed rational captured in Software Classification Worksheet

SCEPTOR CDR Nov 15-17 2016

SCEPTO

Software Hazards

The following hazards have software contributions and/or controls.

- X-57 HR-1 Aircraft Traction Battery Fire
- X-57 HR-2 Structural Failure of Wing (Mod III)
- X-57 HR-7 Wing Control Surface System Failure (Mod III)
- X-57 HR-8 Uncommanded Thrust
- X-57 HR-9 Inadequate Stability and Control (Mod III)
- X-57 HR-12 Whirl Flutter (Mod II & III)
- X-57 HR-13 Symmetric Loss of Cruise Propeller Thrust (Partial/Total)
- X-57 HR-14 Avionics Bus Failure
- X-57 HR-15 Cruise Propeller Performance Degradation and/or Separation
- X-57 HR-18 Abrupt Asymmetric Thrust (Mod III)
- X-57 HR-21 Failure of Propulsor System (Mod II)
- X-57 HR-24 Inadvertent Cruise Motor Propeller Rotation

SCEPTOR CDR Nov 15-17 2016

Session 3, Software Management 22

Safety Critical Process

- Software Classification and Safety Risk Assessment
 - Inputs: Evaluate Conops, System Spec, PHAs for software potential functions
 - Output: Capture Software Class, rational, and risk level in Worksheet/SAP
- Levels of Safety Analysis
 - Inputs: Evaluate Requirements, Design, Code, Test Results for safety impact
 - Outputs: Capture single/critical failure points/risks in Hazards Reports, FMEA Matrix, including mitigations and verifications.

Provide software safety controls in Requirements Spec, Design Descriptions, Code, including traceability

- Levels of Safety Reviews/Testing
 - Inputs: Code reviews, full path code coverage testing, failure modes and effects testing (off nominal, boundary), full regression testing of critical functions

Outputs: Code review notes, code coverage report, test results with NASA buy-off
SCEPTOR CDR Nov 15-17 2016
Session 3, Software Management 23

Address (Hex)	Description	Originator	Consumer
Pamayad	Port Throttle Position	Encoder	ACL/Display/Inverte
Removed	Starboard Throttle Position	Encoder	ACL/Display/Inverte
	Starboard Inrottle Position	Encoder	ACL/Display/Inverte

-	Address (Hex)	Description	Originator	Consumer
Ē		Port Torque Feedback A	P Mo Contr A	ACL/Display
		P Cont A Missed Throttle Count	P Mo Cntr A	Display
		Starboard Torque Feedback A	SB Mo Contr A	ACL/Display
		SB Cont A Missed Throttle Count	SB Mo Cntr A	Display
		Port Torque Feedback B	P Mo Contr B	ACL/Display
		P Cont B Missed Throttle Count	P Mo Cntr B	Display
		Starboard Troque Feedback B	SB Mo Contr B	ACL/Display
		SB Cont B Missed Throttle Count	SB Mo Cntr B	Display
		P Cont A Temperature	P Mo Cntr A	ACL/Display
		P Cont A Temperature 2	P Mo Cntr A	ACL/Display
		P Cont A Bearing Temp	P Mo Cntr A	ACL/Display
	0	P Cont A MW Temp 1	P Mo Cntr A	ACL/Display
	кеточеа	P Cont A MW Temp 2	P Mo Cntr A	ACL/Display
		P Cont A MW Temp 3	P Mo Cntr A	ACL/Display
		SB Cont A Temperature	SB Mo Cntr A	ACL/Display
		SB Cont A Temperature 2	SB Mo Cntr A	ACL/Display
		SB Cont A Bearing Temp	SB Mo Cntr A	ACL/Display
		SB Cont A MW Temp 1	SB CMC A	ACL/Display
		SB Cont A MW Temp 2	SB CMC A	ACL/Display
		SB Cont A MW Temp 3	SB CMC A	ACL/Display
		P Cont B Temperature	P Mo Cntr B	ACL/Display
		P Cont B Temperature 2	P Mo Cntr B	ACL/Display
		P Cont B Motor Temp	P Mo Cntr B	ACL/Display
		P Cont B MW Temp 1	P CMC B	ACL/Display

X-57 AXWELL	External	Interfaces (CAN C	ontroller)	N
	Address (He	c) Description	Originator	Consumer	
		P Cont B MW Temp 2	P CMC B	ACL/Display	
		P Cont B MW Temp 3	P CMC B	ACL/Display	
		SB Cont B Temperature	SB Mo Cntr B	ACL/Display	
		SB Cont B Temperature 2	SB Mo Cntr B	ACL/Display	
		SB Cont B Motor Temp	SB Mo Cntr B	ACL/Display	
		SB Cont B MW Temp 1	SB CMC B	ACL/Display	
		SB Cont B MW Temp 2	SB CMC B	ACL/Display	
		SB Cont B MW Temp 3	SB CMC B	ACL/Display	
		Port RPM Feedback A	P Mo Contr A	ACL/Display	
		Port RPM Feedback B	P Mo Contr B	ACL/Display	
		Starboard RPM Feedback A	SB Mo Contr A	ACL/Display	
	Romouro	Starboard RPM Feedback B	SB Mo Contr B	ACL/Display	
	Removed	Port CMC A Checksum	P CMC A	Display	
		Starboard CMC A Checksum	SB CMC A	ACL/Display	
		Port CMC B Checksum	P CMC B	ACL/Display	
		Starboard CMC B Checksum	SB CMC B	ACL/Display	
		Port CMC A Target Torque	P CMC A	ACL/Display	
		Starboard CMC A Target Torque	SB CMC A	ACL/Display	
		Port CMC B Target Torque	P CMC B	ACL/Display	
		Starboard CMC B Target Torque	SB CMC B	ACL/Display	
		Port CMC A Faults	P CMC A	ACL/Display	
		Starboard CMC A Faults	SB CMC A	ACL/Display	
		Port CMC B Faults	P CMC B	ACL/Display	
		Starboard CMC B Faults	SB CMC B	ACL/Display	

- Technical Performance detailed in requirements (allows for adjusting in some cases to pre-tested range to optimize overall performance later)
- Project conducted trade studies on BMS, CMC, etc. In software, the need for an operating system formed a project decision with EPS/TMC
- Standards and processes used by TMC in past NASA work DFRC/ARTS and space cube satellites are being used to assure compliance to Class 1S software (BMS and CMC) for SCEPTOR

SCEPTOR CDR Nov 15-17 2016

Session 3, Software Management 29

BMS OS Tasks	
FreeRTOS Spawned Tasks	
Task 1 - Main executive	
Task 2 - Fault detection and processing	
Task 3 - CAN communications	
Task 4 - Cell Voltages and Temperatures	_
Task 5 - Cell current measurement and integration	orio
Task 6 - Battery SoC calculations	rity
Task 7 - Battery SoH calculations	
Task 8 - Built-In Test, periodic and initiated	
Task 9 - Diagnostic communications (EGSE)	
Task 10 -Logging of data to microSD card	

SCEPTOR CDR Nov 15-17 2016

Misc. BMS Details

- Each of the (2) BMS systems are uniquely identified through discrete I/O jumpers.
 - Dictates use of CAN message IDs
- BMS will have configuration support to tune system thresholds and behaviors.
- The BMS will support software uploads via the command bus from the EGSE
- The BMS will download the log file via the command bus to the EGSE

SCEPTOR CDR Nov 15-17 2016

CMC Software Details

- There are 4 CMCs (2 per cruise motor)
- CMC software runs on an ARM processor which is synthesized as the IP core within the Xilinx FPGA.
- Bare-metal executive, no operating system
- PI controller receives <u>torque</u> input from pilot and controls <u>current</u> to the motor
- CMC monitors state of motor and limits commands to prevent unsafe operations.

SCEPTOR CDR Nov 15-17 2016

Misc. CMC Details

- Dictates use of CAN message IDs

- CMC will have configuration support to tune system thresholds and behaviors
- CMC has Ethernet to upload software and configuration.

SCEPTOR CDR Nov 15-17 2016

TMC Lab

- BMS and CMC software will execute on commercially available development boards (flight hardware functional equivalents)
 - COTS (FreeRTOS)
- All interfaces will be software emulated
 - Throttle, Cockpit, and Current sensor will utilize a standard PC with CAN hardware. Same for discretes, analog, SPI, etc.
- Appropriate for testing minimum, maximum, and off-nominal requirements as well as risk mitigation verification
- Test plans developed using this setup

SCEPTOR CDR Nov 15-17 2016

AFRC Lab

- Primary facility used to verify BMS and CMC integrated with SCEPTOR CDS requirements.
- Nominal testing of interfaces and behaviors
- Fault testing of command bus
- Timing tests will be done at AFRC Lab - Oscilloscope with CAN bus awareness planned.
- TMC and AFRC will coordinate resources, personnel, and formal V&V activities to minimize adverse schedule impact

SCEPTOR CDR Nov 15-17 2016

Aircraft

- Only used where the complete functional system (flight configuration or equivalent) must be present in full fidelity to satisfy verification of some requirements.
 - 2 BMS
 - 4 CMCs
 - 1 CDS (plus MoTec components)
 - 2 Throttles (with 2 encoders per Throttle level)
 - End-to-end testing of nominal conditions
 - 4 nominal operational requirements currently fall into this category

SCEPTOR CDR Nov 15-17 2016

Session 3, Software Management 45

Go Forward Plan - Software

- Release Software V&V Plan, SDD, SVD)
- Software Test Plan (in process/post CDR)
- Finish developing software
- Perform software assessments, necessary insight activities as appropriate per SMP and SAP (SFMEA, Hazards)
- Integrate and test software

SCEPTOR CDR Nov 15-17 2016

Session 3, Software Management 47

Issue	Resolution Plan
CMC Configuration file implementation (including input discretes to ID CMC and audible)	Complete the approach with hardware board designers. A "CMC Configuration File" allows tuning variables within ranges (initial target points in Requirement rationale)
Using different locations for V&V of SRS requirements	Coordinate different locations, travel, resource/assets, facilities, and personnel availability
TMC lack of equipment (full BMS, full CMC, CDS) to setup lab	Use different locations and NASA assets for some V&V activities
Motor Designers are currently focusing on hardware	Wait until Designers finish hardware and rudimentary software so they can focus on final software aspects
Limited insight to PLDs in CMC	Settle dual port ram interface information, possibly through code inspection
Scope on Unit Testing of CMC has grown	To be addressed by ESAero

Exit Criteria

Subsystem Level Exit Criteria	Evidence	
Detailed design is shown to meet the subsystem requirements with adequate technical margins	Slides 24, 31-39 Software Design Description SDD-CEPT-004	
Subsystem level design is stable and adequate documentation exists to proceed to the next phase	Slides 24, 31-39 Software Design Description SDD-CEPT-004	
Subsystem interface control documents are sufficiently mature to proceed to the next phase, and plans are in place to manage any open items	Slides 24-28 CAN ICD	
Subsystem technical risks are identified and mitigation strategies defined	Slide 22 SCEPTOR Hazard Analysis and SFMEA-CEPT-009	
Test, verification, and integration plans are sufficient to progress into the next phase	Slides 40-45, Software V&V Plan SVVP-CEPT-007, Software Test Plan STPLN-CEPT-005	
Final hazards adequately addressed and considered in the detailed design	Slides 22 SCEPTOR Hazard Analysis and SFMEA-CEPT-009	

SCEPTOR X-57 CDR

T&V/Airvolt

T&V/Airvolt Yohan Lin/661-276-3155 yohan.lin@nasa.gov

SCEPTOR X-57 MAXWELL IN	T&V Schedule	NASA
	Removed	
SCEPTO	DR CDR Nov. 15–17, 2016 Session 4, T & V,	/AirVolt 3

Type of Tests

- Inspection
- Analysis
- Test
 - Functional
 - Environmental acceptance
 - Proto qualification (stress test, higher than expected environment, can be used for flight if acceptance tested prior to use)
 - Failure Modes and Effects Test
- Demonstration
- Simulation

SCEPTOR CDR Nov. 15-17, 2016

Test & Verification Approach

System Level

- **Scaled**: System functional (Instrumentation check, cruise motor run up)
- AFRC:
 - Ground vibration test
 - System Verification/Validation
 - Cruise motor endurance
 - Hangar Radiation
 - Combined Systems Test

SCEPTOR CDR Nov. 15-17, 2016

Mod 2 System Integration and Test Flow Scaled frame Assem (Mechanical) AFRC Motor Mount & Nacelle Installation Cruise Moto Installation Propeller Installation Wing/Airframe & Ship to AFR Mod 2 System Verification & Assemble Wing/ Airframe Ground Vibra Control Room Weight & Balanc Combined Syst Flight Test ergency Pro Taxi Te SCEPTOR CDR Nov. 15-17, 2016 Session 4, T & V/AirVolt 8

AFRC System Level Testing

- System Verification/Validation Test
 - Verify avionics, instrumentation/sensors, command bus hardware, final software release, displays, cruise motor operation, batteries
- Cruise Motor Endurance
 - Verify cruise motors meet endurance requirements, use FAR Part 33 Airworthiness Standards: Aircraft Engines as guideline
 - Gather torque, thrust, voltage, current data

SCEPTOR CDR Nov. 15-17, 2016

System/Subsystem Verification Approach

- For subsystem level submit only a requirements verification matrix card to the subsystem IPT lead and NASA lead RT engineer for review. (The responsible test organization maintains the as-run test procedures). No STR or DR required.
- For inspections, analyses, and simulation verification submit the final report to the project chief engineer and lead RT engineer, in addition to the requirements verification matrix card.
- AFRC project personnel shall review the requirements of verification matrix cards to ensure requirements have been satisfied.

SCEPTOR CDR Nov. 15-17, 2016

Entry Criteria

Subsystem Level Entry Criteria	Evidence
Technical Performance Metrics (TPMs)	Slide 19
Final Subsystem Requirements and/or Specifications	Slides 18, 28
Detailed Design and Analysis	Slides 22-26
Drawings	TBR
Test and Verification Plan	Slides 27-29
Technical Risks	N/A

SCEPTOR CDR Nov. 15-17, 2016

TELL THE	Document Status		
Doc No.	Doc Type	Document Title	Status
ANLYS-CEPT-005	Analysis	Airvolt - FAR Part 33 Aircraft Engine Applicability	In Review

Driving Requirements

- The qualification testing shall include shock, vibration, thermal cycle, altitude, and final system test.
- Motor and controller assemblies shall successfully complete the acceptance tests and inspections specified herein prior to delivery or subsequent test. The acceptance testing shall include random vibrations, thermal cycle, altitude, and final system test.

SCEPTOR CDR Nov. 15-17, 2016

SCEPTOR CDR Nov. 15-17, 2016

Motor Adapter Design

Motor Adapter and Plate Mount

- Adapted from NASA Design (M. Yandell) that is for JM-1 testing on Airvolt
- Factor of Safety: Yield=3, Ultimate=5
- Analysis performed by ESAero and reviewed by NASA (RS)
- To be fabricated by outside machine shop

Session 4, T & V/AirVolt 23

SCEPTOR CDR Nov. 15-17, 2016

SCEPTOR CDR Nov. 15–17, 2016

250 kW Power Supply/Battery Simulator

Aerovironment

- 125kW per channel
- Bi-directional capability (Source or Sink)
- Remote CANBus control
- Local and remote E-stop for emergencies
- Input 480 VAC 3 Phase from Airvolt Pad

SCEPTOR CDR Nov. 15-17, 2016

Session 4, T & V/AirVolt 25

SCEPTOR X-57 CDR

Airvolt X-57 Test Plan

- Verify Traclab PRIDE cruise motor throttle command profiles with AFRC lab setup
- Verify CANBus communication with Airvolt DAQ with lab setup
- Verify standalone AV900 power supply command & operation
- Verify contactor operation
- Verify E-stop functionality
- Integrate flight motors and non flight inverters to test stand
 - Check operation of propeller controller
 - Verify communication with inverter
 - Verify CANBus as configured at test stand

SCEPTOR CDR Nov. 15-17, 2016

Notional Test Procedure

- 1. Make cable connections
- 2. Inspect motor and propeller
- 3. Check cooling cart hose and fuel level
- 4. Turn on display client
- 5. Turn on DAQ chassis
- 6. Turn on PRIDE PC
- 7. Check hardware E-stop
- 8. Turn on High Voltage Battery Simulator
 - 1. Verifying settings are correct
 - 2. Wait for X seconds
- 9. Load motor command profile on PRIDE PC
- 10. Turn on sensor excitation, FOBE & P120U power, and confirm items are operational
- 11. Start DAQ archiving
- 12. Engage the precharge circuit until 95% bus voltage is attained (takes about 5 seconds)
- 13. Enable High Voltage Battery Simulator output

14. Start test using PRIDE PC

1. Verify communication with High Voltage Battery

SCEPTOR CDR Nov. 15-17, 2016

Simulator and inverters

- 2. Turn on cooling cart
- 3. Ask user to verify propeller angle and settings using P120U
- 4. Perform manual blade sweep and check response on PRIDE
- 5. Start test by sending motor commands / profile
- 6. Repeat profiles as required
- 7. Command motor to 0 N-m
- 8. Command High Voltage Battery Simulator DC output to 0 VDC
- 9. Turn off cooling cart
- 15. Disable High Voltage Battery Simulator output
- 16. Stop DAQ recording
- 17. Turn off sensor excitation
- 18. Turn of all equipment, disconnect cables, etc.
- 19. Sign off procedure on PRIDE PC

Session 4, T & V/AirVolt 29

Concern	Resolution Plan
Potential damage to flight motor	Build-up test approach, throttle command profile tested in lab setup first before using on Airvolt
Personnel resources not adequate to support endurance testing causing schedule slips	Pair engineer with students to help with testing
After motor teardown and any repairs retest on Airvolt is required	Schedule allows for some retest activities

SCEPTOR CDR Nov. 15-17, 2016

Major Accomplishments

- Airvolt pad electrical upgrade to 480VAC 200A
- Completed Airvolt X-57 architecture design
- ANLYS-CEPT-005 "Airvolt FAR Part 33 Aircraft Engine applicability" document released
- Long lead GSE procurement in work
 - Load cell ordered
 - AV900 power supply already delivered and stationed at pad
- Detailed drawings to be finalized

SCEPTOR CDR Nov. 15-17, 2016

Exit Criteria

Subsystem Level Exit Criteria	Evidence	
Detailed design is shown to meet the subsystem requirements with adequate technical margins	Slides 22-26	
Subsystem level design is stable and adequate documentation exists to proceed to the next phase	Slides 26-28	
Subsystem interface control documents/drawings are sufficiently mature to proceed to the next phase, and plans are in place to manage any open items	Drawings to be released	
Subsystem technical risks are identified and mitigation strategies defined	N/A	
Test, verification, and integration plans are sufficient to progress into the next phase	Slides 27-28	
Final hazards adequately addressed and considered in the detailed design	To be presented at Tech Brief	

SCEPTOR CDR Nov. 15–17, 2016

SCEPTOR CDR 100. 15-17,

Atmospheric State Measurement

Required to normalize performance and acoustic measurements to Standard Day Airdata

- Static pressure, dynamic pressure, alpha, & beta
- Honeywell PPT pressure sensors Davis VP2 wireless weather station
- Air temperature, relative humidity, wind speed and direction

SCEPTOR CDR Nov. 15-17, 2016

SCEPTOR OPERATIONS & MISSION PLANNING

Aric Warner / X7608 Kurt Papathakis / X2569 Tim Williams / X5365

BATTERY CHARGING

- Several X-57 team members are stakeholders
- X-57 project will continue to move forward in parallel
- 2 units measuring 94.5"W X 39.37"D X 70.87"H
- Have Facilities quote for required power in the hangar
- Charging procedure being developed per DCP-O-001 Par 5.9.5 and DCP-O-011
- Seeking approval to charge batteries in hangar
 - Work in progress with Aircraft Maintenance Division Chief
 - Basic ground rules already agreed upon
 - Only properly trained individuals
 - No unattended charging
 - Completed hazard analysis
 - Hazards mitigated to acceptable level
 - Need battery and testing complete
 - There are workable contingencies if required

SCEPTOR CDR Nov 15-17 2016

AIRCRAFT MAINTENANCE PLAN OPS-CEPT-004

- AIRFRAME MAINTENANCE
 - AFRC OM Crew Chief, OA Technician and OI Inspector
 - NAMIS basic architecture has been input for TEC AXCV by Code OK
 - Aircraft records currently on Scaled Composite's version of ODT forms
 - Will use NAMIS upon delivery to AFRC
 - X-57 airframe will be maintained as a Tecnam P2006T

SCEPTOR CDR Nov 15-17 2016

BATTERY MAINTENANCE

- Properly trained individuals
- Working with manufacturer to define charging, maintenance and inspection plans
- Training from outside vendor planned in early 2017
 - Training classes from SAE International
 - » Introduction to Hybrid and Electric Vehicle Battery Systems
 - » Safe Handling of High Voltage Battery Systems

SCEPTOR CDR Nov 15-17 2016

MISSION RULES

- Formal document OPS-CEPT-002 in work
- Subjects being addressed
 - No flights will take place without weather briefing
 - Pre flights/post flights
 - Chase plan
 - Build up approach
 - All flights will have discipline monitored control room
 - No take off or landing with greater than TBD kts of crosswind
 - VFR conditions only
 - No flights into visible moisture
 - Avoid turbulence. No flight into areas of known moderate turbulence
 - All phases of flight will be within gliding distance to runway or lakebed
 - No flights with lightning in the vicinity
 - Adhere to go no-go doc
 - Address EMI issues
 - BASH concerns

SCEPTOR CDR Nov 15-17 2016

- The project will conduct control room training prior to first flight
- Will include comm plans, roles and responsibilities in the control room, simulated emergencies in the control room and in the X-57, etc.

SCEPTOR CDR Nov 15-17 2016

SCEPTOR X-57 CDR

- Climb as fast as possible (max continuous power for the motors)
- Every 1000 ft costs approx. 3 kWh (6% capacity)
- Every 25 kt increase costs approx. 3.5 kWh (7.5% capacity) for 5 minute cruise
- Every minute of cruise costs approx. 1.7 kWh (3.7% capacity) at 150 kt

SCEPTOR CDR Nov 15-17 2016

FLIGHT TEST OPERATIONS

Objectives

- Battery charging
- Vehicle preflight procedure
- Day of Flight Checklist
- Telemetry
- Motor start-up procedures (precharge)
- Control room ops
- Comms
- Instrumentation checks
 - Strains
 - Accels
 - Power Systems
 - Phasing
- Motor run-ups
- System checks
- Landing gear vibration / shimmy
- SCEPTOR CDR Nov 15-17 2016

- Success Criteria
 - Nominal power system
 performance
 - Nominal motor system
 performance
 - Nominal cockpit systems performance
 - Nominal landing gear performance
 - Maneuvers
 - Tower fly-by
 - Balloons
 - POPU
 - SHSS
 - Sawtooth Climb

- Data Requirements
 - Traction Battery
 Voltage/Current
 - Avionics Voltage/Current
 - Motor & Controller temps
 - Motor RPM
 - Accels
 - Strains
 - IMU
 - Air data (Airspeed, Alpha, Beta)
 - Surface Positions
 - Prop blade angle

High Speed Taxi

- High speed taxi on runway
- Reach take-off speed with no rotation
- Control room up and monitoring

SCEPTOR CDR Nov 15-17 2016

Low Altitude Climb/Descent

- Determine the best rate of climb for the vehicle
- Validate estimates of energy usage for climb
- Update mission planning tool with validated models

SCEPTOR CDR Nov 15-17 2016

- Determine energy usage at low speed cruise
- Update mission planning tool with validated models
- Build-up to high speed cruise

SCEPTOR CDR Nov 15-17 2016

- ALL TECNAM EP'S ARE BEING EVALUATED
- EP'S SPECIFIC TO MODIFICATIONS ARE BEING WRITTEN
- APPROVED FLIGHT MANUAL IS BEING UPDATED WITH SUPPLEMENT TO REFLECT CHANGES
- FACT SHEET IS BEING WRITTEN TO SHOW MODIFICATIONS
- ALL EP'S WILL BE FLOWN/EVALUATED IN THE SIMULATOR

SCEPTOR CDR Nov 15-17 2016

CRITICAL PHASES OF FLIGHT TEST PLAN

Tim Williams / X5365

X-57 MAXWELL NO	Schedule to Mod II FRR	NASA
	Removed	
SCEPTO	R CDR Nov 15-17 2016 Session 5, Ground & Flight Oper	rations 39

Issues & Resolutions

Issue	Resolution Plan Work with Code O and other stakeholders to come up with approved procedure, identify and mitigate risks						
In Hangar Battery Charging							

SCEPTOR CDR Nov 15-17 2016

System Safety Phil A. Burkhardt 661-276-3277 phillip.a.burkhardt@nasa.gov

SCEPTOR Hazard Summary	Hazard Cat Human	Hazard Cat Asset
HR-1 Aircraft Traction Battery Fire	I D	I D
HR-2 Structural Failure of Wing (Mod II)	I D	I D
HR-3 Traction Bus Failure	ΙE	ΙE
HR-4 Facility Service Faults	N/A	N/A
HR-5 Aircraft Damage due to Exposure to Excessive Environmental Conditions during Ground Operations	N/A	III D
HR-6 Exposure to Carbon Fiber	N/A	N/A
HR-7 Wing Control Surface System Failure (Mod III)	I D	I D
HR-8 Uncommanded Thrust	I D	III D

SCEPTOR CDR Nov 15-17 2016

Session 6, Hazard Review/FMEA 3

SCEPTOR Hazard Analysis		
SCEPTOR Hazard Summary	Hazard Cat Human	Hazard Cat Asset
HR-9 Inadequate Stability Control (Mod III)	I D	I D
HR-10 Loss of Aircraft Control due to Weather out of Limits	N/A	N/A
HR-11 Failure of Motor Mounts (Mod II)	ΙE	ΙE
HR-12 Whirl Flutter (Mod II and III)	I D	١D
HR-13 Symmetric Loss of Cruise Propeller Thrust (Partial/Total)	I D	I D
HR-14 Avionics Bus Failure	III E	II E
HR-15 Cruise Propeller Performance Degradation and/or Separation	I D	١D
HR-16 Inadequate Warning/Caution/Advisory	N/A	N/A
HR-17 Battery Modules Separate from Attach Points	ΙE	ΙE

SCEPTOR CDR Nov 15-17 2016

Session 6, Hazard Review/FMEA 4

SCEPTOR Hazard Summary	Hazard Cat Human	Hazard Cat Asset
HR-18 Abrupt Asymmetric Thrust (Mod III)	I D	I D
HR-19 Electromagnetic Interference in Flight	N/A	IV D
HR-20 Landing Gear Structural Failure (Mod II and III)	li D	I D
HR-21 Failure of Propulsor System (Mod II)	II E	ll D
HR-22 Restricted and/or Obstructed Crew Egress	ΙE	N/A
HR-23 Cockpit Air Contamination	I D	I D
HR-24 Inadvertent Cruise Motor Propeller Rotation	ΙE	III E
HR-25 Equipment Pallet Separates from Attach Points	ΙE	III E
HR-26 Personnel Exposed to High Voltage/Current	ΙE	N/A

SCEPTOR CDR Nov 15-17 2016

Session 6, Hazard Review/FMEA 5

		Probability [P	r] Estimations		
Severity Classifications	A: Frequent (Pr > 10 ⁻¹)	B: Probable (10 ⁻¹ ≥ Pr > 10 ⁻²)	C: Occasional (10 ⁻² ≥ Pr > 10 ⁻³)	D: Remote (10 ⁻³ ≥ Pr > 10 ⁻⁶)	E: Improbable (10 ⁻⁶ ≥ Pr)
I: Catastrophic				HR-1, 2, 7, 8, 9, 12, 13, 15, 18, 23	HR-3, 11, 17, 22 24, 25, 26
II: Critical				HR-20	HR-21
III: Moderate					HR-14
IV: Negligible					

SCEPTOR Loss of Asset/Mission Hazard Action Matrix (HAM)

		Probability	[Pr] Estimations		
Severity Classifications	A: Frequent (Pr > 10 ⁻¹)	B: Probable (10 ⁻¹ ≥ Pr > 10 ⁻²)	C: Occasional (10 ⁻² ≥ Pr > 10 ⁻³)	D: Remote (10 ⁻³ ≥ Pr > 10 ⁻⁶)	E: Improbable (10 ⁻⁶ ≥ Pr)
l: Catastrophic				HR-1, 2, 7, 9, 12, 13, 15, 18, 20, 23	HR-3, 11, 17
II: Critical				HR-21	HR-14
III: Moderate				HR-5, 8	HR-24, 25
IV: Negligible				HR-19	
Requi	res Center Director approva	al and may require approval by	y a higher authority. These ha	azards are defined as "Accepted F	Risks"
Risk a Risk a	cceptance requires Center I cceptance requires Project	Director approval. These are " Manager approval.	'Accepted Risks".		
SCEPTOR CDR Nov 1	5-17 2016			Session 6	, Hazard Review/FM

Page 232

77 AS	FMEA Failure Scenario Matrix						NA																							
Failure Name	Scenario ID	CM (1 or 2)	CM (1 & 2)	MC / Inv. (1 of 4)	MC / Inv. (2 of 4)	MC / Inv. (4 of 4)	Pitch Controller (s)	Cruise Contactor (1 of 4)	Cruise Contactor (4 of 4)	FOBE (s)	SVIM (1 and/or 2)	Tract. Bus (A or B)	Tract. Bus (A & B)	Batt. (A or B)	Batt. (A & B)	Gen. Bus (A or B)	Gen. Bus (A & B)	Av. Bus (A or B)	AV. BUS (A & B)	Wing Av. Bus (A Vi B)	Fes Batt Bus	Backup Batt.	CANBus C	Instr. DC/DC	MOTEC ACL	MOTEC D175	TE (1 or 2)	TE (1 & 2)	Criticality	
Batt. Contactor (1 of 4) (open)	8n		D		I							D		F	_														Mission	
Batt. Contactor (4 of 4) (open)	80		Т			Т							D		F					C			D		D	D		D	Safety	
Batt. Contactor(s) (unresponsive)	8p													F	F	_													Negligible	
Gen. Bus (DC/DC Conv.) A or B	8q															F													Negligible	
Gen. Bus (DC/DC Conv.) A & B	8r						_		_						<u> </u>	_	F		-										Mission	
Avionics Bus A or B	9a		D		D		-			D	D				_	\rightarrow	_		_	_		_	-						Negligible	
Avionics Bus A & B	9b		D			D	D			D	D					$ \rightarrow $		_			2		D		D	D		D	Mission	
Wing AV. Bus A or B (L or R)	10a	D	-	1			_				1		2			_		-											Mission	
Wing AV. Bus A or B (L & R)	100		D .		1					1	1					\rightarrow		_			_	_	_						Mission	
Wing AV. Bus A & B (L & R)	100		1			1				1	1		1		_	_			_										Safety	
Essential Bus	11	· · · · ·											-		D	-		-				1					<u> </u>		Safety	
Avionics Buses & Essential Bus	120		1			4	1			1	1	_			-	\rightarrow	-	_				1	1	1.1	1			1	Safety	
Backup Batten((s) (ille)	130						_		-				2		D	_	- 2		-	-		80 -							Safety	
Degraded Backup Batten/(s)	130														-	-	-	-	-		-	F			-		-		Negligible	
CANBUS-C	14		1							1	1				_	-	-	-	-				E						Safety	
Instr DC/DC	15														-	-	-	-	-	+				E					Mission	
MOTEC ACI	16								_						-	+	-	-	+						F		-		Mission	
MOTEC D175	17	e							-		s	-					-									F			Mission	
TE 1 or 2	18a		D			D		-				-			-	+	-	-									E		Safety	
TE 1 & 2	18b		1			1										-		-			1			\vdash				F	Safety	
LEGEND		402		0	perat	ional		D	Deg	grade	ed Per	rform	ance			I	Ino	perabl	е			F	Comp	onent	t Failu	ire				1
		aaibla			5.41	incion		1.0	nd ac		ac D	ractic	laal			-			logligi	blo	_	Acco	no off	r fligh	at / nr	ninet	docio	lan		1

SCEPTOR X-57 CDR

Causes

SCEPTOR Hazard Analysis

Effects

X-57 HR-2 Structural Failure of Wing (Mod III)

SCEPTOR Hazard Analysis									
Causes	Effects	Mitigations							
 A. Composite delamination B. Defects in composite material/manufacturing C. FOD contact D. Divergence/flutter E. Excessive loading F. Bird strike G. Improper loads cases H. Nacelle/wing interface structural failure I. Fuselage/wing interface structural failure J. Control surface attachment failure K. Failure of attach point hardware L. Improper installation 	 Loss of aircraft control Damage or loss of aircraft Damage to ground assets Injury or death to personnel 	 Adhere to SCEPTOR procedures, mission rules, fact sheets and updated POH (C, D, E) Peer review of design (C, D, E, F, G, H) Analysis review (C, D, E, F, G, H) Control room monitoring of vehicle dynamics (C, D, E, G, H) Control surface system designed to specified factor of safety with positive margins (B, C, E, F, G, H) Composite material system coupon testing to be performed and documented (A, B, G) Aircraft GVT (A, B, C, D, F, G, H, I) Taxi Tests (C, D, G, H, I) Chase Aircraft (C, D, G, H) Wings loads test (A, B, C, E, F, G, H, I) Quality control process (A, B, G, H, I) Fabrication procedure (A, B, G, H, I) 							
AFRC Hazard Action Matrices Probability A B C D E A B C D E Cat I Cat II Cat II Cat IV Human SCEPTOR CDR Nov 15-17 2016		13. Instandul procedure (f) 14. Pre and post flight inspections (A, B, C, G, H, I, J) Session 6, Hazard Review/FMEA 14							

X-57 HR-8 Uncommanded Thrust

Effects Mitigations Causes A. Failure in throttle control hardware (throttle levers or throttle Asymmetric thrust (if failure affects 1. Use Tecnam heritage thrust command system (throttle levers and cockpit switches) (A, B) linkage) single propulsor) 2. Redundancy in throttle encoder (C) Uncommanded aircraft motion or B. Failure in motor controller enable logic 3. Configure motor controllers to perform a graceful shutdown in response to loss of acceleration C. Failure of throttle encoder communication (C) Loss of vehicle control D. Failure of motor controller 4. Peer review of design (A, B, C, D) • Damage to aircraft 5. Ground test (CST) (A, B, C, D) Damage to ground assets 6. V & V (to include software) (A, B, C, D) Injury or death to personnel 7. Taxi tests (A, B, C, D) **AFRC Hazard Action Matrices** Probability A B C D A B C D Е Е Cat I Severity Cat II Cat III Cat IV Human Asset / Mission SCEPTOR CDR Nov 15-17 2016 Session 6, Hazard Review/FMEA 15

X-57 MAXWELL	SCEPTOR Hazard Analysis								
X-57 HR-9 Inadequate Stability and Control	(Mod III)								
Causes	Effects	Mitigations							
 A. Experimental Wing (high aspect ratio and new control surfaces) changes vehicle stability and control characteristics B. Operating above production Tecnam MTOW C. Operating with MOI and CG location different than production Tecnam D. Pilot unfamiliar with new aircraft performance characteristics 	 Reduction of and/or loss of aircraft control Inadequate damping in longitudinal and/or lateral dynamics Increased pilot work load Damage or loss of aircraft Damage to ground assets Injury or death to personnel 	 Wind Tunnel test to obtain S&C derivatives (A) Manage aircraft CG to ensure pitch stability (C) Monte-Carlo analysis to cover uncertainty in aero estimates (A, B, C) Piloted simulation training (D) Taxi tests (A, B, C, D) Flight test build up (envelope expansion) (A, B, C, D) 							
AFRC Hazard Action Matrices									
Probability A B C D E A B C D E Cat I Cat II Cat IV Human Asset / Mission									
SCEPTOR CDR Nov 15-17 2016		Session 6, Hazard Review/FMEA 16							

X-57 HR-12 Whirl Flutter (Mod II & III)

Causes	Effects	Mitigations
 A. Insufficient stiffness in pitch/yaw motion of any or all motors/nacelles B. Coupling between pitch/yaw modes of a nacelle C. Coupling between a nacelle and wing mode D. Rotor or prop imbalance E. Improper propeller blade design (mass distribution, twist distribution, blade stiffness) F. Defects in assembled component design 	 Loss of thrust Asymmetric thrust Damage or Loss of propeller Damage or Loss of motor Damage or Loss of aircraft Damage to ground assets Injury or death to personnel 	 Analysis review (including measured nacelle mode frequencies) (A, B, C, E, M) Peer review of design (wing, nacelle and motor systems to not have interacting unstable modes) (A, B, C, E, M) Quality control process (D, F, H, I, Q) Installation procedure (D, F, H, I, Q) Aircraft GVT (to include nacelle modes) (A, B, C, F, H, I, Q) Control room monitoring of vehicle dynamics (to include nacelle and motor dynamics) (A, B, C, D, E, F, I, K, L, M, N, Q) Large factor of safety applied to whirl flutter margin and propeller design (to include hub and spinner assembly) (A, B, C, D, E, F, H, I, K, L, M, N, Q) Pre and post flight inspections (D, F, H, I, J, M, N, O, P, Q) Listen for abnormal sounds/vibration during engine run-up and taxi (A, B, C, D, E, F, H, I, M, N, Q) Monitor prop RPM (D, K, L, N) Perform regular maintenance/overhaul (D, F, H, I, N, Q) Adhere to SCEPTOR procedures, mission rules, fact sheets and updated POH (B, C, G, K, M) Motor controller design to limit torque based on RPM (B, C, K, L, M) Perform motor and propeller over-speed testing utilizing flight configuration on Airvolt test stand (A, B, D, E, F, H, I, K, L, M, N, Q) Chase Aircraft (B, C, J, N, P, Q) Taxi tests (A, B, C, D, E, F, H, I, K, L, M, N, Q)
SCEPTOR CDR Nov 15-17 20	16	Session 6, Hazard Review/FMEA 17

X-S7 NA	SCEPTOR Hazard Analysis									
X-57 HR-12 Whirl Flutter (Mod II & III) (Cont	t.)									
Causes	Effects	Mitigations								
G. Excessive pilot control inputs H. Defects in fabrication I. Defects in assembly J. FOD contact K. Propeller over-speed L. Failure of propeller governor M. Excessive aero loading N. Mechanical failure (Spinner/Hub) O. Ground strike P. Bird strike Q. Improper Installation AFRC Hazard Action Matrices Frobability A B C D E A B C D E Cat I Cat II Cat	 Loss of thrust Asymmetric thrust Damage or Loss of propeller Damage or Loss of motor Damage or loss of aircraft Damage to ground assets Injury or death to personnel 	 Analysis review (including measured nacelle mode frequencies) (A, B, C, E, M) Peer review of design (wing, nacelle and motor systems to not have interacting unstable modes) (A, B, C, E, M) Quality control process (D, F, H, I, Q) Installation procedure (D, F, H, I, Q) Aircraft GVT (to include nacelle modes) (A, B, C, F, H, I, Q) Control room monitoring of vehicle dynamics (to include nacelle and motor dynamics) (A, B, C, D, E, F, I, K, L, M, N, Q) Large factor of safety applied to whirl flutter margin and propeller design (to include hub and spinner assembly) (A, B, C, D, E, F, H, I, K, L, M, N, Q) Pre and post flight inspections (D, F, H, I, J, M, N, O, P, Q) Listen for abnormal sounds/vibration during engine run-up and taxi (A, B, C, D, E, F, H, I, M, N, Q) Monitor prop RPM (D, K, L, N) Perform regular maintenance/overhaul (D, F, H, I, N, Q) Adhere to SCEPTOR procedures, mission rules, fact sheets and updated POH (B, C, G, K, M) Motor controller design to limit torque based on RPM (B, C, K, L, M) Perform motor and propeller over-speed testing utilizing flight configuration on Airvolt test stand (A, B, D, E, F, H, I, K, L, M, N, Q) Chase Aircraft (B, C, J, N, P, Q) Taxi tests (A, B, C, D, E, F, H, I, K, L, M, N, Q) 								
SCEPTOR CDR Nov 15-17 2016		Session 6, Hazard Review/FMEA 18								

X-57 HR-13 Symmetric Loss of Cruise Propeller Thrust (Partial/Total)

Causes	Effects	Mitigations
A. Failure in power system B. Failure in electric motor C. Failure of motor controller D. Failure in propeller E. Failure of propeller governor F. Throttle encoder failure A B C D E A B C D E Cat I Cat II Cat II Cat IV Human Asset / Mission	 Partial loss of thrust (e.g. single power bus failure) Complete loss of thrust (common cause omission failures) Inability to maintain level flight (stall) Loss of vehicle control Damage or loss of aircraft Damage to ground assets Injury or death to personnel 	 Design propulsion system for single-fault tolerance, able to provide partial takeoff power in event of single fault (A, B, C) Peer review of design (A, B, C, F) Use COTS propellers and governors with an FAA type certificate (D, E) Environmental testing of propulsion system (A, B, C) Taxi tests (A, B, C, D, E, F) Flight test of propulsion system (Mod II) (A, B, C, D, E, F) Redundancy in throttle encoder (F) Design for margin from single power bus and associated motor controller + motor, higher power operation at higher RPM within propeller limits, vehicle drag low enough for level flight/marginal climb after single power bus failure during other than takeoff operations (A) Operational restrictions – operate from long runways with minimal obstructions ahead to eliminate need for V1 (takeoff safety speed) – can always brake or land straight ahead in event of symmetric failure during or just after takeoff (A, B, C, D, E, F)
SCEPTOR CDR Nov 15-17 2016		Session 6, Hazard Review/FMEA 19

	nce Degradation and/or Separation	
Causes	Effects	Mitigations
 A. Composite/wood delamination B. Defects in composite, wood, metal/fasteners C. Fatigue/end of Life D. Improper installation on attachment hardware E. Propeller over-speed F. FOD/bird strike 	 Loss of cruise thrust Untrimable asymmetric thrust condition – inability to maintain level flight Loss of aircraft control Structural failure of nacelle/motor mount Structural failure of motor Damage or loss of aircraft Damage to ground assets Injury or death to personnel 	 Inspect prop and spinner prior to flight (A, B, D, J, L, M) Perform run-up check prior to takeoff to check for excessive vibration, noise, instruments within limits (A, B, G, I, J) Monitor prop RPM (E, J) Perform regular maintenance and overhaul (C, D, J, L, M) Adhere to SCEPTOR procedures, mission rules, fact sheets and updated POH (E, N Implement emergency (manual) motor power shut-down (E, F, G, H, I, J, L, M, N) Motor controller design to limit torque based on RPM (E) Use COTS type-certificated components and design and operate within TCDS limi (A, B, C, F, G, I, J, K, L, M, O) Control room monitoring of vehicle dynamics (G, H, I) Motor and propeller dynamic balancing (A, B, D, G, H, I, J, L, M) Peer review of design (D, H, K, O) Perform motor endurance testing (A, B, G, I, O)

X-57 HR-15 Cruise Propeller Performance Degradation and/or Separation (Cont.)

Causes	Effects	Mitigations
G. Excessive vibration H. Flutter I. Unbalanced prop J. Variable pitch/constant speed system failure K. Excessive aero loading L. Spinner failure M. Hub failure M. Hub failure N. Ground strike O. Inadequate design (new motor and propeller attach point) AFRC Hazard Action Matrices ABC D E A B C D E Cat I Cat II Cat II Cat II Human Asset / Mission	 Loss of cruise thrust Untrimable asymmetric thrust condition – inability to maintain level flight Loss of aircraft control Structural failure of nacelle/motor mount Structural failure of motor Damage or loss of aircraft Damage to ground assets Injury or death to personnel 	 Inspect prop and spinner prior to flight (A, B, D, J, L, M) Perform run-up check prior to takeoff to check for excessive vibration, noise, instruments within limits (A, B, G, I, J) Monitor prop RPM (E, J) Perform regular maintenance and overhaul (C, D, J, L, M) Adhere to SCEPTOR procedures, mission rules, fact sheets and updated POH (E, N) Implement emergency (manual) motor power shut-down (E, F, G, H, I, J, L, M, N) Motor controller design to limit torque based on RPM (E) Use COTS type-certificated components and design and operate within TCDS limits (A, B, C, F, G, I, J, K, L, M, O) Control room monitoring of vehicle dynamics (G, H, I) Motor and propeller dynamic balancing (A, B, D, G, H, I, J, L, M) Perform motor endurance testing (A, B, G, I, O)
SCEPTOR CDR Nov 15-17 2016		Session 6, Hazard Review/FMEA 21

	rd Analysis
Causes Effects	Mitigations
Power system fault Loss of aircraft control Motor mechanical system failure Damage or loss of aircraft Motor controller failure Damage to ground assets Throttle system malfunction Injury or death to Power train structural failure personnel Propeller pitch controller failure personnel Indevertent prop feather Propeller damage Erroneous command (pilot input) Erroneous command (pilot input)	 Motor and power system redundancy (A, B, C, D) Flight Test (Mod II) (A, B, C, D, E, F, G, H, I) Peer review of design (A, B, C, D, E, F, G, H, I) Design margin (B, E) Stress analysis (B, E) Pilot warning light and audible alarm (A, C, D, I) Manual shutdown of opposite side cruise motor (A, B, C, D, E, F, G, H, I) Control room monitoring of health and status (A, B, C, D, E) Piloted simulation training (A, B, C, D, E, F, G, H, I) Environmental acceptance test (A, C, D) Oualification test (A, B, C, D, E)
A B C D E A B C D E at I at II at IV Human Asset / Mission	 Ground test (CST) (A, B, C, D, E, F, G, H, I) Taxi tests (A, B, C, D, E, F, G, H, I) Taxi tests (A, B, C, D, E, F, G, H, I) Propulsion system acceptance testing (Airvolt) (B, C, E, F, H)

X-57 HR-20 Landing Gear Structural Failure (Mod II and III)

Causes	Effects	Mitigations
 A. Increased takeoff/landing speed B. Increased rate of decent C. Exceed MTOW D. Nose wheel shimmy E. Excessive loading 	 Loss of propellers Scattering debris Damage or loss of aircraft Injury to personnel 	 Adhere to SCEPTOR procedures, mission rules, fact sheets and updated POH (A, B) Maintain aircraft CG within specifications (E) Minimize sink rate on landing (B, C, E) Analysis review (A, C, D, E) Taxi tests (A, D)
AFRC Hazard Action Matrices Probability		
A B C D E A B C D E Cat I Cat II Cat IV Human Asset / Mission		
SCEPTOR CDR Nov 15-17 2016		Session 6, Hazard Review/FMEA 23

CCEPTOA X-57 MAXWELL	SCEPTOR Hazard Analysis		
X-57 HR-21 Failure of Propulsor System Causes	(Mod II) Effects	Mitigations	
 A. Electrical short/open in stator windings B. Inadequate design C. Installation error D. Manufacturing defect E. External/environmental abuse (thermal/mechanical) F. Ground isolation fault G. Inadequate grounding H. Lightning strike 	 Asymmetric thrust Loss of propulsion Motor/controller fire inside nacelle Damage to ground assets Separation of propulsor and inadequate trim authority Damage to aircraft Injury to personnel 	 Ground tests (acceptance test and CST) (A, B, C, D, E, F, G, I, L, M, O) Grounding checks (F, G) Design with adequate margins (B, C, D, I, J, K, L, M, N, O) Quality control process (C, D, L, P) Peer review of design (B) VFR operations only (H) Perform visual inspection of system components (C, D, E, G, L, O, P) Adhere to SCEPTOR operational placards and procedures (C, E, H, P) Taxi tests (A, B, C, D, E, F, G, I, L, M, O) Evaluate control authority in the event of a propulsor separation (Q) Propulsion system acceptance testing (Airvolt) (A, B, D, I, J, K, L, M, N, O, Q) 	

SCEPTOR CDR Nov 15-17 2016

Session 6, Hazard Review/FMEA 24

X-57 HR-21 Failure of Propulsor System (Mod II) (Cont.)

Causes	Effects	Mitigations
 I. Rotor structural failure J. Stator structural failure K. Rotor magnet performance degradation L. Magnet bond failure M. Motor controller failure N. Inadequate motor/controller cooling O. Motor drivetrain failure (bearings, driveshaft, hub assembly, attachment hardware) P. FOD Q. Unbalanced propeller AFRC Hazard Action Matrices Cat I Cat II Cat II Cat II Lature Human Asset / Mission 	 Asymmetric thrust Loss of propulsion Motor/controller fire inside nacelle Damage to ground assets Separation of propulsor and inadequate trim authority Damage to aircraft Injury to personnel 	 Ground tests (acceptance test and CST) (A, B, C, D, E, F, G, I, L, M, O) Grounding checks (F, G) Design with adequate margins (B, C, D, I, J, K, L, M, N, O) Quality control process (C, D, L, P) Peer review of design (B) VFR operations only (H) Perform visual inspection of system components (C, D, E, G, L, O, P) Adhere to SCEPTOR operational placards and procedures (C, E, H, P) Taxi tests (A, B, C, D, E, F, G, I, L, M, O) Evaluate control authority in the event of a propulsor separation (Q) Propulsion system acceptance testing (Airvolt) (A, B, D, I, J, K, L, M, N, O, Q)
SCEPTOR CDR Nov 15-17 2016		Session 6, Hazard Review/FMEA 25

X-57 MAXWELL	SCEPTOR Hazard Analysis		
X-57 HR-23 Cockpit Air Contamination	Effocts	Mitigations	
A. Battery venting into cockpit B. Smoke and fumes from electrical fire C. Outgassing due to over heating of electrical components/ harnesses AFRC Hazard Action Matrices Probability A B C D E A B C D E Cat I Cat I	Loss of situational awareness Crew incapacitation Loss of aircraft control Damage or loss of aircraft Damage to ground assets Injury or death to personnel	 Emergency Passenger Oxygen System (EPOS) (A, B, C) Battery Ejecta directed outside of aircraft (A, B) Fire extinguisher (B) Activate vent air system (to include opening pilot window) (A, B, C) Fire/smoke detection system (A, B, C) BMS (A) Shutdown aircraft power system (A, B, C) Adhere to SCEPTOR procedures, mission rules, fact sheets and updated POH (A, B, C) 	
Cat IV Human Asset / Mission		Session 6, Hazard Review/F	MEA 26
SCEPTOR X-57 CDR	Day 2	Package F	Page 241

X-57 HR-5 Aircraft Damage due to Exposure to Excessive Environmental Conditions during Ground Operations

Causes	Effects	Mitigations
A. Sand/FOD intrusion B. Lightning strike C. Moisture intrusion D. High wind E. Temperature out of limits F. Solar radiation	 Damage to motor(s) Damage or loss of electrical components (e.g. instrumentation, propulsion and command system) Damage or loss of wing tip propellers Damage to aircraft 	 Weather limitations to be observed during ground operations (A, B, C, D, E) Exposed components will be wrapped/covered to protect against environmental exposure (custom covers for motors, etc.) (A, C, F) Pre and post-flight inspections (A, C, E, F) Closeout inspections of aircraft maintenance access panels (A, C) Circuit protection (A, C) Thermal reflective coating to be applied to wing (E) Wing tie down points (D)
Probability A B C D E A B C D E Cat I Cat II Cat IV Human Asset / Mission		
SCEPTOR CDR Nov 15-17 2016		Session 6, Hazard Review/FMEA 29

X-57 HR-14 Avionics Bus Failure

Causes	Effects	Mitigations
 A. Traction Battery System Failure B. Avionics DC converter failure C. Avionics/electrical component fault D. Instrumentation system fault E. Faulty wiring F. Inadequate design 	 Loss of instrumentation system Loss of cockpit instruments Loss of throttle control Loss of propeller pitch control Loss of flap control Loss of rudder trim control Damage of aircraft Injury to personnel 	 Peer review of design (F) Backup battery (lead acid) powers avionics essential bus (A, B, C, D, E) Maintaining stock Tecnam bus architecture (redundancy, isolation, protection and battery powered essential bus) (A, B, C, D, E) Audio and visual alarm to alert pilot of degraded system condition and potential hazard (A)
AFRC Hazard Action Matrices		
Probability A B C D E A B C D E Cat I Cat II I		
SCEPTOR CDR Nov 15-17 2016		Session 6, Hazard Review/FMEA 31

X-57 MAXWELL	SCI Hazaro	NAS	
X-57 HR-17 Battery Modules Separate from	Attach Points		
Causes	Effects	Mitigations	
 A. Inadequate design B. Material defect C. Improper installation D. Excessive loads E. Failure of attach point hardware 	 Loss of power Loss of TM Damage to batteries Personnel exposed to hazardous materials Electrical short Loss of aircraft control Damage or loss of aircraft Damage to ground assets Injury or death to personnel 	 Peer review of design (A) Design with positive margins (A, D) Stress analysis (A, D, E) Installation procedure (C) Visual inspection (B, C, E) Quality control process (B, C) 	
AFRC Hazard Action Matrices			
Probability A B C D E A B C D E Cat I Cat II Cat II Cat IV Human Asset / Mission			

X-57 HR-19 Electromagnetic Interference in Flight

X-57 HR-24 Inadvertent Cruise Motor Propeller Rotation

Causes	Effects	Mitigations
A. Inadequate design B. Erroneous command; crew input C. Motor controller fault D. GSE (Test laptop) fault E. Wind	 Damage to propellers Damage to aircraft Scattering debris Damage to ground assets Injury or death to personnel 	 Peer review of design (A, C, D) Adhere to SCEPTOR procedures, mission rules, fact sheets and updated POH (B) Multiple hardware actions required to energize system (A, B, C, D) Propeller tether/tie-down (E) SCEPTOR procedures to include safety critical cautions and warnings (B, C, D, E) System to be operated by trained personnel only (B)
AFRC Hazard Action Matrices Probability A B C D E A B C D E		
Cat I Cat II Cat IV Human Asset / Mission		
Cat IV Human Asset / Mission		Session 6. Hazard Review/EMEA 35

SCEPTOA X-57 MAXWELL	SC Hazar	NASA	
X-57 HR-25 Equipment Pallet Separates	from Attach Points	.	
A. Inadequate design B. Material defect C. Improper installation D. Excessive loads E. Failure of attach point hardware	 Damage to equipment pallet components Loss of TM Electrical short Damage to aircraft Injury or death to personnel 	 Peer review of design (A) Design with positive margin (A, D) Stress analysis (A, D, E) Installation procedure (C) Visual inspection (B, C, E) Quality control process (B, C) 	
AFRC Hazard Action Matrices	Several		
SCEPTOR CDR Nov 15-17 2016			Session 6, Hazard Review/FMEA 36

X-57 HR-26 Personnel Exposed to High Voltage/current

