Disclaimer - The cost information contained in thisdocument is of a budgetary and planning nature and is intended for informational purposes-only. It does not constitute a commitment on the part of JPL and/or Caltech.

## NASA and Smallsat Cost Estimation Overview and Model Tools

Michael Saing, Jet Propulsion Laboratory, California Institute of Technology Systems Engineer
NASA S3VI - Webinar Talk Series 06/10/2020

JPL CL\#20-2416 © 2020. California Institute of Technology. Government sponsorship acknowledged.
The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with

## Agenda

- Introduction/Background
- Cost estimating Basics
- Cost model overview (applicable for small missions)
- Generating a Small Sat Cost Estimate Example
- Introduction to Cubesats/Microsats and NASA COMPACT
- Recommendations
- Questions


## Introduction/Background

## NASA smallsats and microsats cost estimating

- Small sat cost estimating record dated about ~25 years
- Mix of NASA and DOD mission
- Small Sat Satellite technology very different from today
- Not a lot of commercial vendor
- Limited launch rides
- Spacecraft unstable due to limited technology and hardware
- Battery powered
- Utilization for smallsats/cubesats increased in mid to end of 2000s


NASA and DoD Microsat Cost/Mass Data (1995)

## Definition of Small Sat* for duration of this talk

- Small mission references to any mission <~\$250M (such as MIDEX, SMEX, EVM, etc...)
- Small Sat <150kg to $1,500 \mathrm{~kg}$
- Examples - WISE, SWIFT, etc...
- Microsats ~30kg to <150kg
- Examples - Cygnss
- Cubesats 1U to to ~27U (~35kg)
- Examples - MarCO, Asteria, etc...
- *The definition here does not reflect NASA/JPL/Industry as everyone has a different view what small sat means to their project and organization. This reflects the author's view.


## CML and Commonly Used Cost Approach



## Concept Maturity Level

## JPL Design/Study and Proposal Teams on the CML levels



# Cost Estimating Basics 

## NASA Work Breakdown Structure (WBS)

- Standard WBS used in NASA and (other industries/academia)

| WBS | Description |
| :---: | :--- |
| 1 | Project management |
| 2 | Systems Engineer |
| 3 | Safety and Mission Assurance |
| 4 | Science and Technology |
| 5 | Payload Instruments |
| 6 | Spacecraft |
| 7 | Mission Operations |
| 8 | Launch Vehicle / Services |
| 9 | Ground System(s) |
| 10 | Systems Integration and Testing |
| Education and Public Outreach <br> 1\% of total (not including LV) |  |
|  | Subtotal (Phase A-D) |
|  | Costs Reserve (25\%, Phase A-D and 15\% <br> Phase E) |



Cost reserve varies by mission type and organization

Total with Reserve

- Link to the Complete NASA Standard WBS
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110012671.pdf


## Cost Estimating Methods - 3 types

## Analogy

- Data Driven
- Based on similarity / analogous
- Extrapolation and adjustments to actual
- Pros: Quick rough order magnitude (ROM) estimate with a few known characteristic
- Cons: Getting good data (normalized) might be difficult; Analogy data might not be available because of new systems uniqueness


## Parametric

- Data Driven
- Statistical relationship model based on historic actuals between costs and a system or performance characteristics
Typical parametric cost models are based on mass and power
- Pros: Provides estimate confidence based on actual data and statistical relationship
- Cons: very time consuming to go through initialize data for modeling
- Need to vet the data to make sure its good clean data (normalize)
- Questionable when modeling outside of its relevant data range


## Grassroots

- Data Driven
- Also known as "bottoms-up" Experienced and / or knowledge from subject matter expert on proper staffing, procurements, etc...

Pros: Defensible with detailed and credible basis of estimate (vendors quote, institutional commitment, etc...)

- Cons: Time and costly activityvery heavy on resource loading estimates and ensuring correct labor and inflation rates; not suitable for a quick ROM


## Analogy based example

## Small spacecraft bus

- Estimate the cost of the spacecraft by analogy method
- New Spacecraft = ~200kg will cost $\$$ ?
- Based on historic SMEX missions, average spacecraft mass $=\sim 150 \mathrm{~kg}$ and \$50M
- $\frac{150 \mathrm{~kg}}{\$ 50 \mathrm{M}}=\frac{200 \mathrm{~kg}}{\$ x M(\text { New Spacecraft })}=\$ 67 \mathrm{M}$ New Spacecraft


## Parametric based example

- A look into the past, present, and future
- Estimate flight software cost by parametric method for inner and outer planetary mission if your spacecraft cost $\$ 100 \mathrm{M}$
- Dependent variable = Total Spacecraft Development Costs, \$100M
- Estimated Software Cost = \$11.2M


Total Software Development Estimated Cost
11.46 \$M $\pm 7.73$ \$M

Statistics
$\hat{\mathrm{Y}}=0.04 \times(\mathrm{sc}$ cost $)+7.24$
$t_{\text {int }}=3.34$
tsc cost $=6.77$
$\mathrm{R}^{2}=0.74$
$\mathrm{F}=46$
$\mathrm{n}=17$

Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

## Grass-Roots Cost Estimation

- Resource loading
- Typical cost categories includes:
- Direct Labor (FTE/WYE)
- Procurements
- Travel
- Services
- Equipment
- CM\&O (Center Operations and Management - NASA centers)
- Example:
- 3 FTE at \$150k/year per FTE (institutional labor rates) = \$450k (FY20\$)
- Travel (Use institution/GSA rates for per diem and meals), etc....
- Procurements - some organization charges


## Steps to getting started with generating a cost estimate

## For early CML 1-5

1. Know what type of mission you want to estimate cost for (Earth orbiting, planetary, observatory, etc...)
2. Gather the data (similar like missions, spacecraft bus, instrument type - telescope, remote sensing, etc...)
3. Some knowledge of design parameters such as mass, power, instrument aperture, s/c volume, etc...
4. Choose and know your cost models tools to estimate the hardware costs
-WBS 5. Payload instrument (Remote sensing, in-situ)
-WBS 6. Spacecraft (cubesat, small sat, etc...)
5. Use your data to generate wraps to the costs by WBS (PM, SE, S\&MA, etc...)
6. In some cases, some cost model will already have this set of wraps for you
7. Perform multiple cost estimations using various cost model tools and compare results
8. Consider cumulative probabilistic analysis
9. Refine and update your estimate
10. With commercial vendor's quote, etc...
11. Defend your estimate with a strong basis of estimate (BOE)

## COST MODEL OVERVIEW

## Cost Models available to NASA Community*

| COST MODELS AND TYPE OF COST ESTIMATION |  | Spacecraft |  | Instruments | Full Mission Costs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cost Models | Estimation Type | Small Sats | Cubesats/ <br> Microsats |  |  |
| NASA Instrument Cost Model (NICM) | Parametric |  |  | $\checkmark$ |  |
| NASA Project Cost Estimating Capabilities (PCEC) | Parametric | $\checkmark$ |  |  | $\checkmark$ |
| PRICE True Planning | Parametric | $\checkmark$ |  | $\checkmark$ |  |
| Small Spacecraft Cost Model (SSCM-19) | Parametric | $\checkmark$ |  |  |  |
| NASA CubeSat Or Microsat Probabilistic Analogy Cost Tool (COMPACT) | Analogy/ (Parametric model coming soon) |  | $\checkmark$ |  | $\checkmark$ |

*Check with NASA HQ OCFO's Strategic Investment Division (SID) james.k.johnson@nasa.gov or your Cost Estimation Division/Section. Not all tools listed might be available due to changing license agreements.

## NASA Instrument Cost Modeling Tool (NICM)

- Current version is NICM 8.5
- Version 9.0 releasing soon
- Data collection of $250+$ NASA and industry built instruments
- All normalized
- Capable of Class D cost estimation
- Cost and Schedule Rule of Thumb (ROT) by phase and instrument type
- Cryocooler also now added to the model


Contact: Joseph Mrozinski Email: nicm@ipl.nasa.gov

## NASA Project Cost Estimating Capability Tool (PCEC)

- Previous version known as NAFCOM (NASA Air Force Cost Model Capabilities)
- Current Version v2.2
- Data set based on actual NASA launched missions
- Wide range of mission types (EO, Planetary, etc... and mission size (small, medium, etc..)
- Cost output to NASA Standard WBS
- Normalized data

Download https://www.software.nasa.gov
Main Support: MSFC-PCEC@mail.nasa.gov


| MISSION | $\begin{aligned} & \text { Launch } \\ & \text { Date } \end{aligned}$ | $\begin{gathered} \text { Lead Org } \\ \text { PM } \end{gathered}$ | Lead Org Fit Sys | NASA Program |
| :---: | :---: | :---: | :---: | :---: |
| 1 TDRSS K-L | 1/23/14 | GSFC | Boeing | Space Comm |
| 2 Maven | 11/18/13 | GSFC | IMA | Planetary |
| 3 Ladee | 9/6/13 | GSFC | ARC | Planetary |
| 4 IRIS | 6/27/13 | GSFC | LMMs | Astrophysics/SMEX |
| 5 Van Allen Probes | 8/30/12 | GSFC | APL | Heliophysics/Lws |
| 6 NuStar | 6/13/12 | JPL | osc | Astrophysics/Explorer |
| 7 MSL | 11/26/11 | JPL | JPL/LMA | Planetary/Mars Expl |
| 8 Grall | 9/10/11 | JPL | IMA | Planetary/Discovery |
| 9 Juno | 8/5/11 | JPL | IMA | Planetary/New Frontiers |
| 10 Glory | 3/4/11 | GSFC | OSC/swales | Earth Sciences |
| 11 Goes (-P) | 3/4/10 | GSFC/NOAA | Boeing/SGT | Earth Sciences |
| 12 SOO | 2/11/10 | GSFC | GSFC | Heliophysics |
| 13 WISE | 12/14/09 | JPL | BATC | Astrophysics/Explorer |
| 14 LCROSS | 6/18/09 | ARC | NG | Planetary/Discovery |
| 15 LRO | 6/18/09 | GSFC | GSFC | Planetary |
| 16 KEPLER | 3/6/09 | JPL | BATC | Astrophysics/Discovery |
| 17 oco | 2/24/09 | JPL | osc | Earth Science |
| 18 IBEX | 10/19/08 | SwRI | osc | Astrophysics/Explorer |
| 19 Dawn | 9/27/07 | JPL | OSC/JPL | Planetary/Discovery |
| 20 Phoenix | 8/4/07 | JPL | IMA | Planetary |
| 21 AIM | 4/25/07 | LASP | osc | Heliophysics |
| 22 themis | 2/17/07 | ucb | Swales | Astrophysics/Explorer |
| 23 Stereo | 10/26/06 | GSFC | APL | Heliophysics |
| 24 cloudsat | 4/28/06 | GSFC | BATC | Earth Sciences |
| 25 NEW HORIZONS | 1/19/06 | APL | APL | Planetary/New Frontiers |
| 26 MRO | 8/12/05 | JPL | UMA | Planetary/Mars Expl |
| 27 DEEP IMPACT | 1/12/05 | JPL | batc | Planetary/Discovery |
| 28 swift | 11/20/04 | GSFC | Spectrum Astro | Astrophysics/Explorer |
| 29 MESSENGER | 8/3/04 | APL | APL | Planetary/Discovery |
| 30 Spitzer | 8/25/03 | JPL | IMA | Astrophysics |
| 31 MER | 6/10/03 | JPL | JPL | Planetary/Mars Expl |
| 32 GALEX | 4/28/03 | JPL | osc | Astrophysics/Explorer |
| 33 RHESSI | 2/5/02 | UCB | Spectrum Astro | Heliophysics |
| 34 TIMED | 12/7/01 | APL | APL | Earth Sciences |
| 35 Genesis | 8/8/01 | JPL | IMA | Planetary/Discovery |
| 36 Mars Odyssey | 7/7/01 | JPL | IMA | Planetary/Mars Expl |
| 37 WMAP | 6/30/01 | GSFC | GSFC | Astrophysics/Explorer |
| 38 WIRE | 3/5/99 | GSFC | GSFC | Astrophysics/Explorer |
| 39 trace | 4/2/98 | GSFC | GSFC | Astrophysics/Explorer |
| 40 Cassini | 10/15/97 | JPL | JPL | Planetary/Outer Planets |
| 41 Mars Global Surveyor | 11/7/96 | JPL | IMA | Planetary/Mars Expl |
| 42 NEAR | 2/17/96 | APL | APL | Planetary/Discovery |

## PRICE - True Planning, NASA Space Mission Catalog

- NASA Space Mission Catalog
- ~50+ NASA space mission Astrophysics, Heliophysics, Earth Science, and Planetary Missions
- Cost estimate for system and subsystem level (CDH, Propulsion, Power, etc...)
- Heavily detailed on inputs
- Mission types Mission Class A/B, B/C, and C/D



## Aerospace Small Spacecraft Cost Model (SSCM)

- Current version 2019
- Started in mid-1990's by Dr. Eric Mahr and Dave Bearden
- Data based on NASA and DoD missions
- Parametric based
- Used for up to $1,000 \mathrm{~kg}$ fight system mass
- Subsystem costs breakout
- Probabilistic analysis


Figure 6. Cost Breakdown Plots. The chart on the right shows the subsystem-level cost breakdown. The chart on the right shows the system-level cost breakdown.

Contact: sscmrequests.mailbox@aero.org
Download Instructions:
https://aerospace.org/sscm

## NASA CubeSat Or Microsat Probabilistic Analogy Cost Tool (COMPACT)

- Full mission Cubesat and Microsat cost estimating tool
- Part of the NASA ONSET - Online NASA Space Estimation Tool (ONSET)
- Web-based tool
- Beta version release Summer 2020 through the NASA ONCE website:
- Requires NASA credential log-ins

Contact:

- joseph.mrozinski@jpl.nasa.gov

- michael.saing@jil.nasa.gov


## Generating a Small Sat Cost Estimate Example

## Example - Astrophysics Mission

- Estimate the cost of Small Sat Ultra Violet (UV) Telescope Mission, FY2020\$
- Telescope $=35 \mathrm{~cm}$ aperture
- Small Spacecraft
- Assumes mass below

| Instrument | Mass, $\mathbf{~ k g}$ |
| :--- | :---: |
| Telescope | $\mathbf{1 0 0}$ |
| Spacecraft | 150 |
| Structure | 39 |
| Thermal | 4 |
| C\&DH | 20 |
| Electrical Power | 48 |
| Attitude Control Subsystem | 33 |
| Communication Subsystem | 7 |
| Dry Mass | 250 |
| Wet Mass | 100 |
| Total Launch Mass | 350 |



Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

## Steps to getting started with generating a cost estimate

1. Know what type of mission you want to estimate cost for (Earth orbiting, planetary, observatory. etc...)
2. Gather the data (similar like missions, spacecraft bus, instrument type - telescope, remote sensing, etc...)
3. Some knowledge of design parameters such as mass, power, instrument aperture, s/c volume, etc...
4. Choose your cost model to estimate cost (in this small sat example, we will use the following)
5. Instrument - NICM
6. Spacecraft - SSCM, PRICE TP (NASA Space Mission), and NASA PCEC
7. Use your data to generate wraps for WBS 1. PM, 2. SE, 3. S\&MA, etc...
8. Astrophysics Small Sat Cost ROT
9. Perform multiple cost estimations using various cost model tools and compare results
10. Consider cumulative probabilistic analysis
11. Refine and update your estimate
12. With commercial vendor's quote, etc...
13. Defend your estimate with a strong basis of estimate (BOE)

Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

## Instrument Cost Estimation using NICM

- $50^{\text {th }}$-percentile costs $=\$ 53.6 \mathrm{M}$
- Costs estimation uncertainty - "Extrapolating" outside the data set in the model
- Will require you to do more homework to refine costs


Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

## Spacecraft cost estimate using SSCM (1 of 3)

- The model only estimates development phases C and D, and according to the SSCM user guide, must add $10 \%$ for Phase B costs


Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

## Spacecraft cost estimate using SSCM (1 of 3) (continued)

SSCMI
Cost Risk
Cost Risk


- Option to Generate Probabilistic Estimate
- Uncertainty inputs based on engineering judgement, historic data, etc...
- Select the $50^{\text {th }}$ percentile estimate based on the adjusted inputs, $\$ 54.5 \mathrm{M}$ then add $10 \%$ for Phase B (per SSCM guidance). = \$62.2M


## Spacecraft cost estimating using PRICE - True Planning, NASA Space Mission Catalog (2 of 3)

- Spacecraft costs of $\$ 48.94 \mathrm{M}$


Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

## Spacecraft and full mission costs using PCEC Cost output (3 of 3)

- Total Mission costs without reserve
- Spacecraft costs of \$53.6M

| FY2020 \$M |  | Units Conversion Factor: Inflation Factor: | $\begin{aligned} & 1.000 \\ & 1.131 \end{aligned}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WBS\# | Level | WBS Element |  | Noncurring |  | rring uction |  | ocated |  | tions |  |  |
| 0 | 1 | System Name | \$ | 105.19 | \$ | 49.28 | \$ | 50.32 | \$ | 12.42 | \$ | 217.21 |
| 1.0 | 2 | Project Management | \$ | 3.04 | \$ | 5.21 | S | - | \$ | - | \$ | 8.25 |
| 2.0 | 2 | Systems Engineering | S | 5.16 | S | 8.86 | S | - | S | - | \$ | 14.02 |
| 3.0 | 2 | Safety and Mission Assurance | S | 1.80 | \$ | 3.08 | S | - | \$ | - | \$ | 4.88 |
| 4.0 | 2 | Science/Technology | \$ | 4.44 | S | - | S | - | \$ | - | \$ | 4.44 |
| 5.0 | 2 | Payload(s) | S | 53.64 | S | - | S | - | \$ | - | \$ | 53.64 |
| 5.01 | 3 | Payload Management | S | - | S | - | s | - | S | - | \$ | - |
| 5.02 | 3 | Payload System Engineering | S | - | \$ | - | S | - | \$ | - | \$ | - |
| 5.03 | 3 | Payload Product Assurance | \$ | - | S | - | S | - | S | - | \$ | - |
| 5.10 | 3 | Instruments - EMPTY ROLLUP | \$ | 53.64 | \$ | - | S | - | \$ | - | \$ | 53.64 |
| 5.x | 3 | Payload I\&T | S | - | S | - | S | - | S | - | \$ | - |
| 6.0 | 2 | Flight System \ Spacecraft | S | 32.32 | S | 21.28 | S | - | S | - | \$ | 53.60 |
| 6.01 | 3 | Flight System Project Management | S | 1.72 | \$ | 2.85 | S | - | \$ | - | \$ | 4.56 |
| 6.02 | 3 | Flight System Systems Engineering | S | 2.92 | \$ | 4.84 | S | - | \$ | - | \$ | 7.75 |
| 6.03 | 3 | Flight System Product Assurance | \$ | 1.01 | S | 1.68 | S | - | S | - | \$ | 2.70 |
| 6.10 | 3 | Spacecraft | S | 24.80 | \$ | 8.80 | S | - | \$ | - | \$ | 33.60 |
| -- | 4 | Structures \& Mechanisms | S | 2.16 | \$ | 1.49 | S | - | \$ | - | \$ | 3.65 |
| -- | 4 | Thermal Control | S | 1.76 | S | 0.34 | S | - | S | - | \$ | 2.10 |
| -- | 4 | Electrical Power \& Distribution | S | 4.36 | \$ | 4.37 | S | - | \$ | - | \$ | 8.73 |
| -- | 4 | GN\&C | S | 2.58 | \$ | 2.60 | S | - | \$ | - | \$ | 5.18 |
| -- | 4 | Communications (SSPA) | s | 3.12 | S | - | S | - | S | - | \$ | 3.12 |
| -- | 4 | C\&DH | \$ | 10.81 | \$ | - | S | - | \$ | - | \$ | 10.81 |
| 6.x | 3 | Flight System I\&T | S | 1.87 | S | 3.11 | S | - | s | - | \$ | 4.99 |
| 7.0 | 2 | Mission Operations System (MOS) | \$ | 1.47 | \$ | 5.15 | S | - | \$ | 12.42 | \$ | 19.04 |
| -- | 3 | MOS/GDS Development (Phase B-D) | S | 1.47 | \$ | 5.15 | S | - | S | - | \$ | 6.62 |
| -- | 3 | Mission Ops \& Data Analysis (Phase E) | \$ | - | S | - | S | - | \$ | 12.42 | \$ | 12.42 |
| 8.0 | 2 | Launch Vehicle/Services | \$ | - | \$ | - | S | 50.32 | s | - | \$ | 50.32 |
| 9.0 | 2 | Ground Data System (GDS) | \$ | - | S | - | S | - | \$ | - | \$ | - |
| 10.0 | 2 | System Integration, Assembly, Test \& Check Out | S | 3.32 | S | 5.70 | s | - | S | - | \$ | 9.02 |
| 11.0 | 2 | Education \& Public Outreach | S | - | S | - | S | - | S | - | \$ | - |

Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

## Cost Wraps - ROT ${ }^{\dagger}$

## SMEX Total Lifecycle Phase A-F* By WBS*



Astrophysics Missions: GALEX, NuSTAR, SWAS, WIRE

Heliophysics Missions:
AIM, FAST, IBEX, IRIS, RHESSI, SAMPEX, TRACE

* Data shows that average breakout for Phase A-D and E/F cost is ~90\% Formulation/Development and ~10\% Operations
**Launch Ride/Services not included
$\dagger$ Ref to: Saing, M., Freeman, T., "NASA SMEX Mission Explorer Past, Present, and Future", Aug $14^{\text {th }}-16^{\text {th }} 2018$, NASA Cost and Schedule Symposium, NASA GSFC Greenbelt Maryland


## Piecing it all together

## Compare the results, refine it, run uncertainty analysis

| WBS | Description | Total Cost, FY20\$M <br> Small Spacecraft <br> Cost Model (SSCM) |  | Total Cost, FY20\$M PRICE True Planning Cost Model |  | Approach | Total Cost, FY20\$\$M, NASA PCEC Explorer Class, All WBS from Cost Model |  |  | Grass-Roots <br> Estimate by Project <br> Team, FY20\$̣M |  | Average Across All Estimate |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Project management | \$ |  | \$ | 15.5 | Wraps - Analogy |  | \$ 27.0 |  |  | \$ 15.0 | \$ | \$ 18.7 |
| 2 | Systems Engineer |  | 17.2 |  |  |  |  |  |  |  |  |  |  |
| 3 | Safety and Mission Assurance |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | Science and Technology | \$ | 27.5 | \$ | 24.9 |  | \$ |  | 4.4 | \$ | 15.0 | \$ | 18.0 |
| 5 | Payload Instruments | \$ | 53.6 | \$ | 53.6 | Parametric | \$ |  | 53.6 | \$ | 40.0 | \$ | 50.2 |
| 6 | Spacecraft | \$ | 60.0 | \$ | 48.9 | Parametric | \$ |  | 53.6 | \$ | 40.0 | \$ | 50.6 |
| 7 | Mission Operations | \$ | 13.8 | \$ | 12.4 | Wraps - Analogy | \$ |  | 19.0 | \$ | 15.0 | \$ | 15.1 |
| 8 | Launch Vehicle / Services | \$ | 50.0 | \$ | 50.0 | NASA Catalog | \$ |  | 50.0 | \$ | 50.0 | \$ | 50.0 |
| 9 | Ground System(s) | Include In WBS 7 Include in WBS 6 |  | Included in WBS 7 Included in WBS 6 |  | Wraps - Analogy | Included in WBS 7 |  |  | Included in WBS 7 Included in WBS 6 |  | Included in WBS 7 |  |
| 10 | Systems Integration and Testing |  |  | \$ |  |  | 9.0 | \$ | 9.0 |  |  |  |  |  |
| 11 | Education and Public Outreach 1\% of total (not including LV) | \$ | 2 |  |  | \$ | 2 |  | \$2 |  |  |  | \$ |  | \$ 2 |
|  | Subtotal (Phase A-D) | \$ | 224 | \$ | 207 |  | 217 |  |  | \$ | 176 | \$ | 206 |
|  | Costs Reserve (25\%, Phase A-D and 15\% Phase E) | \$ | 36 | \$ | 33 |  | \$35 |  |  |  | \$ 26 |  | \$ 33 |
|  | Total with Reserve | \$ | 260 | \$ | 240 |  |  | 252 |  | \$ | 203 | \$ | 239 |

Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

## Introduction to Cubesats/Microsats and NASA COMPACT

## What is a CubeSat? Microsat?

- CubeSat = nanosatellite in a form of a cube, with each " $U$ " measuring $10 \mathrm{~cm} x$ $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ and weighs $\sim 1.33 \mathrm{~kg}$ (weight by ROT)
- The "U" cube are stackable
- Common form factors are: 1U, 3U, 6U's
- MicroSat = microsatellite with mass ranging from 10-100 kg
- Type and estimated mass range:
- Mini-satellite, 100-180 kilograms
- Microsatellite, 10-100 kilograms
- Nanosatellite, 1-10 kilograms
- Picosatellite, 0.01-1 kilograms
- Femtosatellite, 0.001-0.01 kilograms


Sporesat (3U), 5 kg


TechEdSat 8 (1x6U), ~8 kg


Cygnss, Microsats, ~30 kg each


## The need for a cubesat/microsat cost model tool

How Does COMPACT fit within the need?

- NASA CubeSat Or Microsat Probabilistic Analogy Cost Tool (COMPACT)
- Official NASA agency cost model tool, started 2014
- Estimate cost specifically for cube/micro-sat class missions
- Providing confidence on cost estimate as model is based on normalized actual NASA funded cubesat/microsat missions


## Why do we need a CubeSat/MicroSat cost model?

- Microsat Cost model?
- Early cost estimation and sanity check
- Keep projects from over running and under funded
- Common misconception that costs scales with size of flight system
- Many cost models has many tuning knobs/switch that will lower the costs, but how real is that to actual design and development practice? How do you defend the basis of estimate (BOE)?




## Key Cubesat Data

| CubeSat | Launch Date (Actual or Planned) | Mission Type | Developer Type | \# U's | Mass (kg) | Power <br> (W) | Development Schedule (B/C/D) | Design Life (months) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASTERIA | 8/14/2017 | Science | JPL | 6 | 11 | 20 | 28 | 3 |
| CINEMA (1) | 9/13/2012 | Science | University | 3 | 3.15 | 2.9 | 44 | 12 |
| CSUNSat-1 | 4/18/2017 | Educational | University | 2 | 2 | 4 |  |  |
| DHFR | 8/26/2017 | Tech Demo | JPL | 3 | 5.03 | 10 |  | 3 |
| EDSN | 11/3/2015 | Tech Demo | Civil | 1.5 | 2 | 1 | 10 | 24 |
| Firefly (1) | 11/20/2013 | Science | Civil | 3 | 3.51 | 3.62 | 36 | 3 |
| GRIFEX | 1/31/2015 | Tech Demo | JPL | 3 | 4 |  |  |  |
| ISARA | 11/10/2017 | Tech Demo | JPL | 6 | 5 | 56 | 48 | 5 |
| KickSat (1) | 4/18/2014 | Tech Demo | University | 3 | 6 |  | 4 | 24 |
| LMRST | 10/8/2015 | Tech Demo | JPL | 3 | 4.6 | 8 |  |  |
| MarCO | 5/5/2018 | Tech Demo | JPL | 6 | 12.7 | 64 | 21 | 6.5 |
| M-Cubed | 10/28/2011 | Tech Demo | University | 1 | 1 | 1.2 | 30 |  |
| M-Cubed2 | 12/5/2013 | Tech Demo | University | 1 | 1 | 1.2 |  |  |
| NanoSail-D (2) | 11/20/2010 | Tech Demo | Civil | 3 | 4 |  |  | 4 |
| NEA Scout | 7/1/2018 | Tech Demo | JPL and MSFC | 6 | 12.3 | 50 |  |  |
| O/OREOS | 5/19/2009 | Science | Civil | 3 | 5.2 |  | 12 | 18 |
| PharmaSat (1) | 5/19/2009 | Science | Civil | 3 | 5 |  |  |  |
| PolySat (CP8) "IPEX" | 12/5/2013 | Tech Demo | University | 1 | 1 | 1.5 | 24 | 6 |
| PSSC-2 | 7/10/2011 | Tech Demo | Civil | 2 | 3.7 | 5 | 6 |  |
| RACE | 10/28/2014 | Tech Demo | JPL | 3 | 5 | 1.5 |  |  |
| RainCube | 5/20/2018 | Tech Demo | JPL | 6 | 12 | 35 | 17 | 2 |
| RAX 1 (USA 218) | 11/20/2010 | Science | University | 3 | 3 | 8 |  | 12 |
| SkyCube | 1/9/2014 | Educational | Commercial | 1 | 1.3 | 4 | 24 | 3 |
| SporeSat-1 | 4/18/2014 | Tech Demo | Civil | 3 | 5.2 |  | 36 | 2 |
| Tempest-D | 2/1/2018 | Tech Demo | JPL | 6 | 14 | 21 | 21 | 3 |

## CubeSat Cost Estimating Approaches

- Using the data collected in the previous effort, we examined 2 cost estimation approaches and web base platform development:

1. K-Nearest Neighbors (k-NN) - Completed
2. Parametric Cost Modeling - Sneak Peak
3. Web base platform development - Sneak peak

## K-Nearest Neighbors

- Created a K-Nearest Neighbors Analogy-drive cost model for CubeSats utilizing the framework developed by the NASA Analogy Software Cost Tool (ASCoT) Team
- Demo and pre-Beta version working its way to the NASA ONCE website (at the time of this presentation)


## K-Nearest Neighbors

- KNN is a simple form of analogy cost estimation. Here's how it works:


## User Inputs

- Mass (kg)
- \# of U's
- \# of Spacecraft
- Developertype
(university, commercial,
civil, JPL)


Algorithm Outputs

- Names of K most similar CubeSats
- Cost estimate for set of inputs
"Closest" here is determined by Euclidean distance between points. Now, the only thing left to do is to choose the number of neighbors, K.


## K-Nearest Neighbors Web Tool User interface

(6) onss


Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

## Web Tool Distance

K-Nearest Neighbors

## Results: Estimated <br> Cost Compared to Nearest Neighbors and all other Missions <br> Missio




Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

## K-Nearest Neighbors Web Tool Parameter Variation



## Parametric Models - Sneak Peak

- Apply stepwise and best-subsets regression methods to identify potential CubeSat parametric cost models.
- Utilize ANOVA, standard significance tests and R2 to identify potential cost drivers and compare/select best models.


## Draft Preliminary Beta Candidate Model \#1

 AKA "Not ready for use in Proposal Development/Evaluation"CubeSat Cost vs. CubeSat Mass


$$
\text { Cost }=491(\text { Mass })^{1.102}
$$

## Draft Preliminary Beta Candidate Model \#2

AKA "Not ready for use in Proposal Development/Evaluation"


## NASA COMPACT Cost Model Tool

- Division Director, J. Craig McArthur, NASA HQ Strategic Investment Division (SID)
- Questions in regards to COMPACT directed to NASA HQ Sponsor, contact james.k.johnson@nasa.jov
- Thank you to SID for funding the COMPACT tool development. SID has also funded most/all (research/development) cost tools used across NASA agency wide
- Ref to conference papers and presentation:
- "COMPACT KNN: Developing an Analogy-Based Cost Estimation Model for CubeSats", IEEE 2020, Big Sky, Montana
- COMPACT - NASA Cost and Schedule Symposium, 2015, 2016, 2017, 2018, and 2019 (NASA OCFO's website)


## Conclusion - Recommendation when cost estimating for Small Missions

Top 10 things on cost estimation

1. Be Realistic
2. Seek help when needed (sooner the better)
3. Treat cost parameter like engineering parameter such as mass and power
4. Not all costs scales with size of the spacecraft
5. Capturing small sat market trend is challenging. Understanding data will guide to better decision making and understanding risks and design decision
6. Risk analysis - factor in uncertainty
7. There's no such thing as one size fits all cost model. Generate multiple estimates using different models and see what the range of variance are and try to understand the Why if there is a huge disconnect
8. Defend your cost estimate with a strong basis of estimate
9. Cost estimating is a form of art and science. There's no right/wrong way to do it, but use good judgement
10. "There are only two objectives in Formulation. To win, and to not regret it when you do." by Dr. Alfred Nash, JPL Principle Engineer and TeamX Lead

## QUESTIONS

jpl.nasa.gov

