Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

NASA and Smallsat Cost Estimation Overview and Model Tools

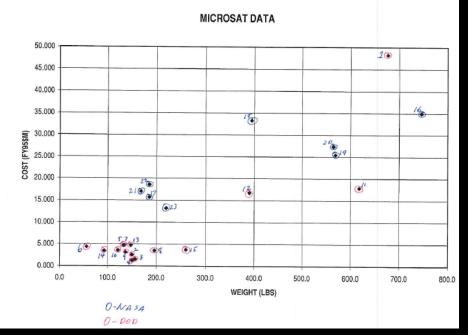
Michael Saing, Jet Propulsion Laboratory, California Institute of Technology

Systems Engineer

NASA S3VI - Webinar Talk Series 06/10/2020

JPL CL#20-2416

© 2020. California Institute of Technology. Government sponsorship acknowledged. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration

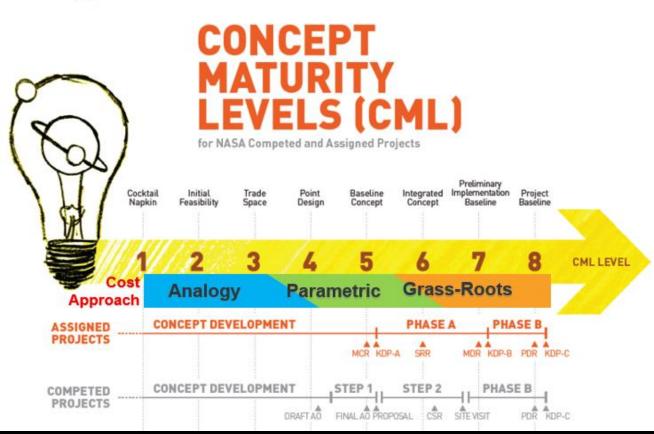

Agenda

- Introduction/Background
- Cost estimating Basics
- Cost model overview (applicable for small missions)
- Generating a Small Sat Cost Estimate Example
- Introduction to Cubesats/Microsats and NASA COMPACT
- Recommendations
- Questions

Introduction/Background

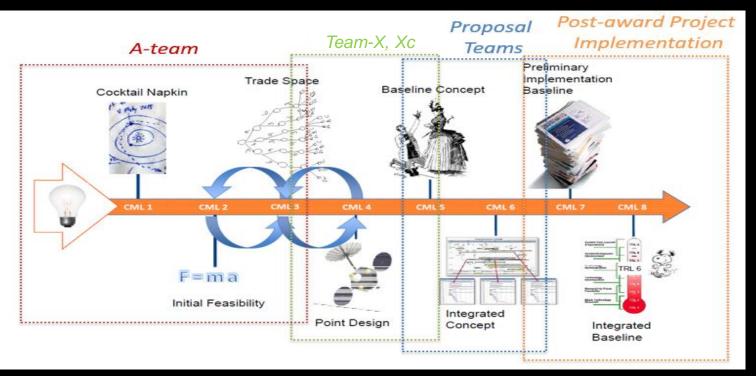
NASA smallsats and microsats cost estimating

- Small sat cost estimating record dated about ~25 years
 - Mix of NASA and DOD mission
- Small Sat Satellite technology very different from today
 - Not a lot of commercial vendor
 - Limited launch rides
 - Spacecraft unstable due to limited technology and hardware
 - Battery powered
- Utilization for smallsats/cubesats increased in mid to end of 2000s



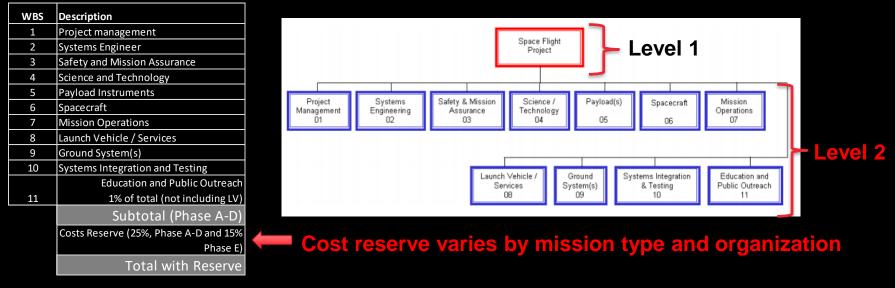
NASA and DoD Microsat Cost/Mass Data (1995)

Definition of Small Sat* for duration of this talk


- Small mission references to any mission <~\$250M (such as MIDEX, SMEX, EVM, etc...)
- Small Sat <150kg to 1,500kg
 - Examples WISE, SWIFT, etc...
- Microsats ~30kg to <150kg
 - Examples Cygnss
- Cubesats 1U to to ~27U (~35kg)
 - Examples MarCO, Asteria, etc...
- *The definition here does not reflect NASA/JPL/Industry as everyone has a different view what small sat means to their project and organization. This reflects the author's view.

CML and Commonly Used Cost Approach

Concept Maturity Level


JPL Design/Study and Proposal Teams on the CML levels

Cost Estimating Basics

NASA Work Breakdown Structure (WBS)

• Standard WBS used in NASA and (other industries/academia)

Link to the Complete NASA Standard WBS

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110012671.pdf

Cost Estimating Methods – 3 types

0

Analogy

- Data Driven
- Based on similarity / analogous
- Extrapolation and adjustments to actual

Pros: Quick rough order
magnitude (ROM) estimate with a
few known characteristic

 Cons: Getting good data (normalized) might be difficult; Analogy data might not be available because of new systems uniqueness

Parametric

- Data Driven
- Statistical relationship model based on historic actuals between costs and a system or performance characteristics
- Typical parametric cost models are based on mass and power
 - Pros: Provides estimate
 confidence based on actual data
 and statistical relationship
- Cons: very time consuming to go
 through initialize data for modeling
- Need to vet the data to make sure its good clean data (normalize)
- Questionable when modeling outside of its relevant data range

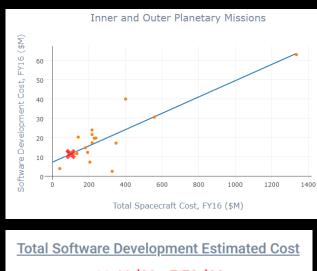
<u>Grassroots</u>

- Data Driven
- Also known as "bottoms-up"
 Experienced and / or knowledge from subject matter expert on proper staffing, procurements,

etc...

Pros: Defensible with detailed and credible basis of estimate (vendors quote, institutional commitment, etc...)

Cons: Time and costly activity– very heavy on resource loading estimates and ensuring correct labor and inflation rates; not suitable for a quick ROM


Analogy based example

Small spacecraft bus

- Estimate the cost of the spacecraft by analogy method
- New Spacecraft = ~200kg will cost \$?
- Based on historic SMEX missions, average spacecraft mass = ~150 kg and \$50M
- $\frac{150 \ kg}{\$50 \ M} = \frac{200 \ kg}{\$ \ x \ M \ (New \ Spacecraft)} = \$67 \text{M New Spacecraft}$

Parametric based example

- A look into the past, present, and future
- Estimate flight software cost by parametric method for inner and outer planetary mission if your spacecraft cost \$100M
- Dependent variable = Total Spacecraft Development Costs, \$100M
- Estimated Software Cost = \$11.2M
- Example and screenshot reference to actual NASA ASCoT Tool.

Grass-Roots Cost Estimation

- Resource loading
- Typical cost categories includes:
 - Direct Labor (FTE/WYE)
 - Procurements
 - Travel
 - Services
 - Equipment
 - CM&O (Center Operations and Management NASA centers)
- Example:
 - 3 FTE at \$150k/year per FTE (institutional labor rates) = \$450k (FY20\$)
 - Travel (Use institution/GSA rates for per diem and meals), etc....
 - Procurements some organization charges

Steps to getting started with generating a cost estimate For early CML 1-5

- 1. Know what type of mission you want to estimate cost for (Earth orbiting, planetary, observatory, etc...)
- 2. Gather the data (similar like missions, spacecraft bus, instrument type telescope, remote sensing, etc...)
- 3. Some knowledge of design parameters such as mass, power, instrument aperture, s/c volume, etc...
- Choose and know your cost models tools to estimate the hardware costs
 -WBS 5. Payload instrument (Remote sensing, in-situ)
 - -WBS 6. Spacecraft (cubesat, small sat, etc...)
- 1. Use your data to generate wraps to the costs by WBS (PM, SE, S&MA, etc...)
 - 1. In some cases, some cost model will already have this set of wraps for you
- 2. Perform multiple cost estimations using various cost model tools and compare results
- 3. Consider cumulative probabilistic analysis
- 4. Refine and update your estimate
 - 1. With commercial vendor's quote, etc...
- 5. Defend your estimate with a strong basis of estimate (BOE)

COST MODEL OVERVIEW

Cost Models available to NASA Community*

COST MODELS AND TYPE OF COST ESTIMA	TION	Spac	cecraft		
	Estimation		Cubesats/		Full Mission
Cost Models	Туре	Small Sats	Microsats	Instruments	Costs
NASA Instrument Cost Model (NICM)	Parametric			1	
NASA Project Cost Estimating					
Capabilities (PCEC)	Parametric	star and a star and a star a sta star a star a sta			1
PRICE True Planning	Parametric	×		×	
Small Spacecraft Cost Model (SSCM-19)	Parametric	1			
	Analogy/				
	(Parametric				
	model				
NASA CubeSat Or Microsat Probabilistic	coming				
Analogy Cost Tool (COMPACT)	soon)		1		1

*Check with NASA HQ OCFO's Strategic Investment Division (SID) james.k.johnson@nasa.gov or your Cost Estimation Division/Section. Not all tools listed might be available due to changing license agreements.

NASA Instrument Cost Modeling Tool (NICM)

- Current version is NICM 8.5
- Version 9.0 releasing soon
- Data collection of 250+ NASA and industry built instruments
- All normalized
- Capable of Class D cost estimation
- Cost and Schedule Rule of Thumb (ROT) by phase and instrument type
- Cryocooler also now added to the model

Contact: Joseph Mrozinski Email: nicm@jpl.nasa.gov

	Optical Earth Orbiting	Earth Planetary		Particles Earth Orbiting Particles Planetary		Active Microwave	Passive Microwave	
A	~	~	~	~	~	-	-	
В	×.	~	× .	~	~	×	~	
c	X	Х	~	~	Х	X	X	
C: NICM-E	× .	Х	× .	X	~	X	Х	
D	X	х	Х	Х	Х	N/A	N/A	
		Service Mat	rix					
A		Service Mat	rix ✓	~	~	~	~	
		Service Mat	rix ✓	*	* *	*	*	
A		Service Mat	rix ✓	* * *	* * *	* * *	* * *	

i<mark>7 jpl.nasa.gov</mark>

NASA Project Cost Estimating Capability Tool (PCEC)

- Previous version known as NAFCOM (NASA Air Force Cost Model Capabilities)
- Current Version v2.2
- Data set based on actual NASA launched missions
- Wide range of mission types (EO, Planetary, etc... and mission size (small, medium, etc..)
- Cost output to NASA Standard WBS
- Normalized data

Download https://www.software.nasa.gov Main Support: MSFC-PCEC@mail.nasa.gov

Earth Sci	Heliophy
Astrophy	Planetary

	Launch	Lead Org	Lead Org	
MISSION	Date	PM	Fit Sys	NASA Program
1 TDRSS K-L	1/23/14	GSFC	Boeing	Space Comm
2 MAVEN	11/18/13	GSFC	LMA	Planetary
3 LADEE	9/6/13	GSFC	ARC	Planetary
4 IRIS	6/27/13	GSFC	LMMS	Astrophysics/SMEX
5 Van Allen Probes	8/30/12	GSFC	APL	Heliophysics/LWS
6 NuSTAR	6/13/12	JPL	OSC	Astrophysics/Explorer
7 MSL	11/26/11	JPL	JPL/LMA	Planetary/Mars Expl
8 GRAIL	9/10/11	JPL	LMA	Planetary/Discovery
9 Juno	8/5/11	JPL	LMA	Planetary/New Frontiers
10 Glory	3/4/11	GSFC	OSC/Swales	Earth Sciences
11 GOES (-P)	3/4/10	GSFC/NOAA	Boeing/SGT	Earth Sciences
12 SDO	2/11/10	GSFC	GSFC	Heliophysics
13 WISE	12/14/09	JPL	BATC	Astrophysics/Explorer
14 LCROSS	6/18/09	ARC	NG	Planetary/Discovery
15 LRO	6/18/09	GSFC	GSFC	Planetary
16 KEPLER	3/6/09	JPL	BATC	Astrophysics/Discovery
17 000	2/24/09	JPL	OSC	Earth Science
18 IBEX	10/19/08	SwRI	OSC	Astrophysics/Explorer
19 Dawn	9/27/07	JPL	OSC/JPL	Planetary/Discovery
20 Phoenix	8/4/07	JPL	LMA	Planetary
21 AIM	4/25/07	LASP	OSC	Heliophysics
22 THEMIS	2/17/07	UCB	Swales	Astrophysics/Explorer
23 STEREO	10/26/06	GSFC	APL	Heliophysics
24 CLOUDSAT	4/28/06	GSFC	BATC	Earth Sciences
25 NEW HORIZONS	1/19/06	APL	APL	Planetary/New Frontiers
26 MRO	8/12/05	JPL	LMA	Planetary/Mars Expl
27 DEEP IMPACT	1/12/05	JPL	BATC	Planetary/Discovery
28 Swift	11/20/04	GSFC	Spectrum Astro	Astrophysics/Explorer
29 MESSENGER	8/3/04	APL	APL	Planetary/Discovery
30 Spitzer	8/25/03	JPL	LMA	Astrophysics
31 MER	6/10/03	JPL	JPL	Planetary/Mars Expl
32 GALEX	4/28/03	JPL	OSC	Astrophysics/Explorer
33 RHESSI	2/5/02	UCB	Spectrum Astro	Heliophysics
34 TIMED	12/7/01	APL	APL	Earth Sciences
35 GENESIS	8/8/01	JPL	LMA	Planetary/Discovery
36 Mars Odyssey	7/7/01	JPL	LMA	Planetary/Mars Expl
37 WMAP	6/30/01	GSFC	GSFC	Astrophysics/Explorer
38 WIRE	3/5/99	GSFC	GSFC	Astrophysics/Explorer
39 TRACE	4/2/98	GSFC	GSFC	Astrophysics/Explorer
40 Cassini	10/15/97	JPL	JPL	Planetary/Outer Planets
41 Mars Global Surveyor	11/7/96	JPL	LMA	Planetary/Mars Expl
42 NEAR	2/17/96	APL	APL	Planetary/Discovery

PRICE – True Planning, NASA Space Mission Catalog

- NASA Space Mission Catalog
- ~50+ NASA space mission -Astrophysics, Heliophysics, Earth Science, and Planetary Missions
- Cost estimate for system and subsystem level (CDH, Propulsion, Power, etc...)
- Heavily detailed on inputs
- Mission types Mission Class A/B, B/C, and C/D

G PRICE TruePlanning 14.1 - [Dawn at Launch v13*]		1 tor top	X
	Tables and Calculators		
Sinple Detailed	Component Type		
1 🕀 🛄 Dewn at Launch v13			Show Descriptions
2 🛞 🔳 Spacecraft	Section Name	Input Field	
3 E- Canada WBS 6 Spacecraft Subsystem Subtot 4 E- Canada Structures			
9 8-15 Thermal	Subsystem Type	Propulsion 💌	
20 B Reaction Control System 25 B Electric Propulsion	Component Type	Propulsion - Lines/Valves/Fi 💌	
25 Bright Electric Propulsion	Platform	Planetary 💌	
27 IPS Structure/Misc	Parts Class	S1 🔽	
28 - Di Electric Propulsion Powe 29 - Di Ion Thruster	Component Inputs		
30 Ion Prop - Lines/Valves/1	Unit Mass	21.201	
31 - C Xe Tank 32 - C DCIU		31.304	
33 Harness/Cabling	Right	1.00	
34 B Guidance, Navigation, & Contro	Spares	0.00	
40 8 Communications 48 8 Command & Data Handling	Protos	0.00	
67 B- Power	Heritage Structure	New 💌	
78 ⊕ ■ Payload (NASA WBS 5) 79 ⊕ □ WBS 6 Individual Payload Element 5	Advanced Technology Development	No 💌	
80 B-Fi Framing Camera	Material		
54 8-10 VIR 567 8-10 GRaND	Matenal	Titanium 💌	
107 E GRAND 108 R GRAND Assembly			
109 BGO detector			
110 BGO R/O electronics 111 CZT detector	Quantity Per Next Higher Level	1.00	*
112 CZT R/O electronics	Number of Additional Production Units	0.00	E
113 - MTs 114 Scintilators	Number of Additional Prototypes	0.00	
115 Control Bectronics	Operating Specification	2.25	
116 Memory 117 HVPS		2.25	
117 - HVPS 118 - Misc PMAD	Weight of Structure		
119 Structure	Space Syst	tem	
	Space	Subsystem	OK Cancel
	Sp Sp	ace Assembly	
Ready		Space Component	xal)' as 'TruePlanningAdmin'
	- 01	Space Ion Thruster	
		Space Laser	
		Space Radar Altimeter	
		Space Thermal Protection	
		Space Parachute	

Aerospace Small Spacecraft Cost Model (SSCM)

- Current version 2019
- Started in mid-1990's by Dr. Eric Mahr and Dave Bearden
- Data based on NASA and DoD missions
- Parametric based
- Used for up to 1,000 kg fight system mass
- Subsystem costs breakout
- Probabilistic analysis
- Budget schedule

Contact: <u>sscmrequests.mailbox@aero.org</u> Download Instructions: <u>https://aerospace.org/sscm</u>

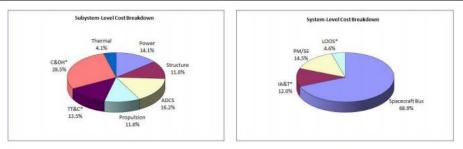


Figure 6. Cost Breakdown Plots. The chart on the right shows the subsystem-level cost breakdown. The chart on the right shows the system-level cost breakdown.

NASA CubeSat Or Microsat Probabilistic Analogy Cost Tool (COMPACT)

- Full mission Cubesat and Microsat cost
 estimating tool
- Part of the NASA ONSET Online NASA Space Estimation Tool (ONSET)
- Web-based tool
- Beta version release Summer 2020 through the NASA ONCE website:
 - <u>https://oncedata.hq.nasa.gov</u>
- Requires NASA credential log-ins
 - <u>https://www.nasa.gov/offices/ocfo/functions/models</u>
 <u>tools/CADRe_ONCE.html</u>
- Data NASA funded cubesat/micosat missions

Contact:

- joseph.mrozinski@jpl.nasa.gov
- michael.saing@jpl.nasa.gov

ONSET			Admin								
	Compact Knn Cost	Estimator									
ASCoT ~											
сомраст 🗸	The K-Nearest Neighbor Regression Algorithm is a simple non-parametric method used to estimate total cost to develop a CubeSat mission based on previous missions. Using a handful of inputs, the										
& KNN ∽	assigns a distance metric	that ranks each mission	n order of similarity to the estimate mission.								
Cost Estimate	-										
Cost Parameter Variation	Create New Estimate		Current Estimate								
	Estimate Name	JPL / NASA Developed	Estimated Cost: k\$								
	1U CubeSat Example	Yes •									
	Mass	U's	KNN Results Summary								
	1.30	1	Neighbors Cost (kS) Distance								
			EDSN								
	Number of Spacecraft		PSSC-2								
			Firefly (1)								
	Import Inputs (CSV File)	Create Estimate									
		Export Inputs (CSV File)									

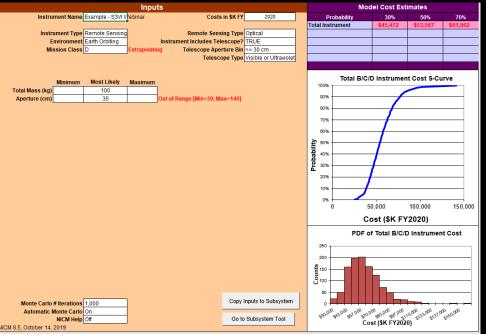
Generating a Small Sat Cost Estimate Example

Example – Astrophysics Mission

- Estimate the cost of Small Sat Ultra Violet (UV) Telescope Mission, FY2020\$
- Telescope = 35 cm aperture
- Small Spacecraft
- Assumes mass below

Instrument	Mass, kg
Telescope	100
Spacecraft	150
Structure	39
Thermal	4
C&DH	20
Electrical Power	48
Attitude Control Subsystem	33
Communication Subsystem	7
Dry Mass	250
Wet Mass	100
Total Launch Mass	350

Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.


Steps to getting started with generating a cost estimate

- Know what type of mission you want to estimate cost for (Earth orbiting, planetary, observatory, etc...) 1.
- Gather the data (similar like missions, spacecraft bus, instrument type telescope, remote sensing, 2. etc...)
- Some knowledge of design parameters such as mass, power, instrument aperture, s/c volume, etc... 3.
- Choose your cost model to estimate cost (in this small sat example, we will use the following) 4.
 - 1. Instrument NICM
 - 2. Spacecraft SSCM, PRICE TP (NASA Space Mission), and NASA PCEC
- Use your data to generate wraps for WBS 1. PM, 2. SE, 3. S&MA, etc... 5.
 - Astrophysics Small Sat Cost ROT
- Perform multiple cost estimations using various cost model tools and compare results 6.
- Consider cumulative probabilistic analysis 7.
- Refine and update your estimate 8.
 - 1. With commercial vendor's quote, etc...
- Defend your estimate with a strong basis of estimate (BOE) 9.

Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Instrument Cost Estimation using NICM

- 50th-percentile costs = \$53.6M
- Costs estimation uncertainty "Extrapolating" outside the data set in the model
 - Will require you to do more homework to refine costs

Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Spacecraft cost estimate using SSCM (1 of 3)

 The model only estimates development phases C and D, and according to the SSCM user guide, must add 10% for Phase B costs

l				SSC		Cost Mod	del										SSCNI Small Satellite Cost Model
Inputs			INPU	Γ						Cost Estimate	\bigcirc	U	TI	2	JT		RESULTS
Technical Parameter	Units	Value	Notes	Technical Parameter	Low	Minimu	Range m Value	Maximum High			$\overline{}$	Estimat	te (FY20\$K)		% of	% of	
Programmatic				Development Time					/		Non-Rec	Rec	Total	Std Error	r Sub-level	el Sys-level	I Range
Fiscal Year for Estimate	77777	2020		Design Life		0.2	24.0	96.0	1	Spacecraft Bus Subsystems							
Inflation Methodology	-	NASA		Satellite Dry Mass	<u></u>					Power	3,234	4,970	8,204	3,077	18.9%	4	41
	months	40.0		Spacecraft Bus Dry Mass		52.00	150.00	598.00		Structure	1,549	1,423	2,973	1,329	6.8%	1	4
System				Number of Instruments			1		1	ADCS	3,167	3,484	6,651	2,374	15.3%	1	Pointing Control is 66.7% low.
Destination	-	Earth-Orbiting		Power Subsystem Mass		14.77	48.00	201.00		Propulsion	0	0	0	0	0.0%	1	Select Monopropellant or Bipropellant
Design Life	months	24.0		BOL Power (Power)		150	800	2200	1	π&C*	3,975	3,897	7,872	8,709	18.1%		
Satellite Wet Mass	kg	350.00		BOL Power (Structure)			· · · · ·			C&DH*	8,413	8,248	16,661	0,.00	38.3%	******	1
Satellite Dry Mass	kg			BOL Power (Thermal)		81	800	10500	1	Thermal	587	542	**** ******************	493	2.6%	4	
Spacecraft Bus Dry Mass	kg	150.00	1	Structure Subsystem Mass		6.70	39.00	298.00	1				1,129				A
Number of Instruments				ADCS Subsystem Mass		0.60	33.00	103.80	1	Spacecraft Bus		22,565	43,489				4
Power				Pointing Control	66.7%	0.003	0.001	5.000		IA&T*	3,856	4,519	8,375	4,759		12.7%	
Solar Cell Type	-	Gallium Arsenide		Propulsion Subsystem Dry Mass		7.06		118.20		PM/SE	4,908	5,913	10,820	5,810		16.4%	
Battery Type				TT&C/C&DH Subsystem Mass	-	4.70	24.00	115.40	1	LOOS*	0	3,177	3,177		4	4.8%	
Power Subsystem Mass	kg	48.00		Transmit Power		1	100	100	1	S/C Development & First Unit	29,688	36,173	65,861	12,222		100%	
BOL Power	W	800		Downlink Data Rate		32	24000	150000		*TT&C/C&DH and IA&T/LOOS costs	are genera	ted from sir	igle CERs and	d standard e	error is pres	ented as such	h. Per subsystem cost presented is based on database data.
Structure				Thermal Subsystem Mass		0.70	4.00	53.00	1						'		
Primary Structure Material	-	Aluminum		· · · · · · · · · · · · · · · · · · ·					1	Subyste	tem-Level Cos	st Breakdow	'n		- I '	1	System-Level Cost Breakdown
Structure Subsystem Mass	kg	39.00		4					1	1					- I '	1 C	
ADCS				4					1	1					- I '	1 C	
Star Tracker?	-	Yes		4						1	Thermal	,			- 1 P	1	LOOS*
ADCS Subsystem Mass	kg	33.00		4					1	1	2.6%		Power 18.9%		- I '	1 C	PM/SE 4.8%
Pointing Control	deg	0.001		4					1	1			3.970		- I '	1 C	15.4%
Propulsion				4					1	C&DH*			Struc	et ire	- I '	1	
Monopropellant or Bipropellant?	-			4					1	38.3%			5.8		1 1	1 C	
Propulsion Subsystem Dry Mass	kg			4					1	1				179	- I '	1 C	
TT&C/C&DH				4					1						- I '	1	IA&T*
Communications Band	I			4					1	1			ADCS		- I '	1 C	12.7% Spacecraft Bus
TT&C/C&DH Subsystem Mass	kg	24.00		4					1				15.3%		- I '	1	66.0%
Transmit Power	w	100		4					1	1			ropulsion		- I '	1	
Downlink Data Rate	kbps	24000		4					1	1	TT&C		0.0%		- I '	1	
Thermal	-			4					1	1	18.1%	ó			- I '	1	
Thermal Subsystem Mass	kg	4.00		4						1					- L '	1	
AEROSPACE	~			4						2							
AERUSPACE										A AEROSPACE							

Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Spacecraft cost estimate using SSCM (1 of 3) (continued)

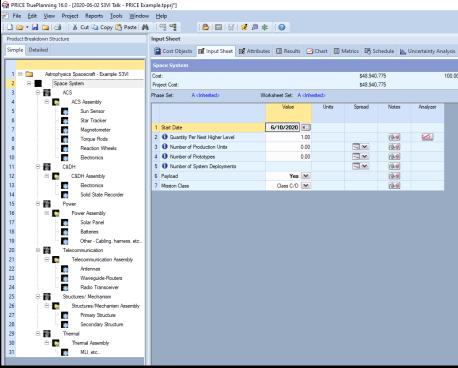
- Option to Generate Probabilistic Estimate
- Uncertainty inputs based on engineering judgement, historic data, etc...
- Select the 50th percentile estimate based on the adjusted inputs, \$54.5M then add 10% for Phase B (per SSCM guidance). = \$62.2M

	Small Satellite Cost M										
Cost Risk											
	Perc	entages	1	Distribution Point	te	Estimate	e (FY20\$K)				
	Low	High	Low	Most Likely	High	Mean	Std Dev				
Spacecraft Bus Subsystems			i								
Power	60%		3,282	8,204	8,204	6,563	2,721				
Structure	50%		1,486	2,973	2,973	2,477	1,161				
ADCS	50%		3,326	6,651	6,651	5,543	2,128				
Propulsion			0	0	0	0	0				
TT&C/C&DH	20%		19,626	24,532	24,532	22,897	8,210				
Thermal		30%	1,129	1,129	1,467	1,242	548				
Spacecraft Bus			28,848	43,489	43,828	38,722	10,827				
ATLO	75%		2,888	11,552	11,552	8,664	4,112				
PM/SE	60%		4,328	10,820	10,820	8,656	4,894				
S/C Development & First Unit			36,064	65,861	66,200	56,042	13,223				
							Percentil				
		Cost Probability	Distribution				(FY2				
							Percentile	Co			
		\frown					10%	40,4			
		$\langle \rangle$					15%	40,			
	,	/					20%	44,8			
	/	\ \					25%	46,0			
λ	/	\					30%	48,2			
en se	/		\backslash				35%	49,8			
A D	/		\backslash				40%	51,4			
pilit	/		$\langle \rangle$				45%	52,9			
Probability Density	/		$\langle \rangle$				50%	54,5			
ă	/		$\langle \rangle$				55%	56,1			
	/						60%	57,8			
	/		$\langle \rangle$				65%	59,6			
	/						70%	61,6			
	/						75%	63,8			
							80%	66,3			
	,			,							

Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

A AEROSPACE

27 jpl.nasa.gov


69.426

85%

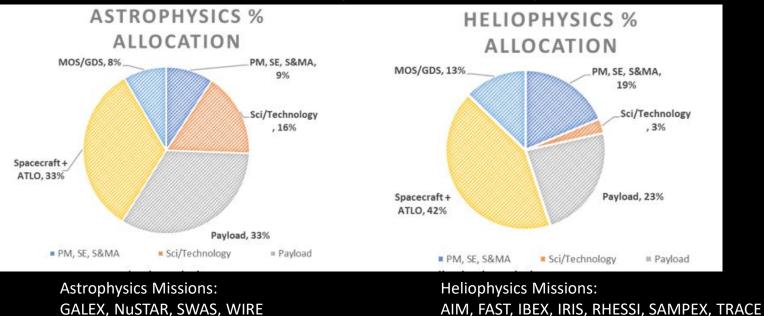
909

Spacecraft cost estimating using PRICE – True Planning, NASA Space Mission Catalog (2 of 3)

 Spacecraft costs of \$48.94M

Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Spacecraft and full mission costs using PCEC Cost output (3 of 3)


- Total Mission costs
 without reserve
- Spacecraft costs of \$53.6M

Units Conversion Factor:											
FY2020 \$	M	Inflation Factor:		1.131							
				Non-	R	ecurring					
WBS #	Level	WBS Element	Re	ecurring	Pr	oduction	No	n-Allocated	O	perations	Total
o	1	System Name	\$	105.19	\$	49.28	\$	50.32	\$	12.42	\$ 217.21
1.0	2	Project Management	\$	3.04	\$	5.21	\$	-	\$	-	\$ 8.25
2.0	2	Systems Engineering	\$	5.16	\$	8.86	\$	-	\$	-	\$ 14.02
3.0	2	Safety and Mission Assurance	\$	1.80	\$	3.08	\$	-	\$	-	\$ 4.88
4.0	2	Science/Technology	\$	4.44	\$	-	\$	-	\$		\$ 4.44
5.0	2	Payload(s)	\$	53.64	\$	-	\$	-	\$	-	\$ 53.64
5.01	3	Payload Management	\$	-	\$	-	\$	-	\$	-	\$ -
5.02	3	Payload System Engineering	\$	-	\$	-	\$	-	\$	-	\$ -
5.03	3	Payload Product Assurance	\$	-	\$	-	\$	-	\$		\$ -
5.10	3	Instruments - EMPTY ROLLUP	\$	53.64	\$	-	\$	-	\$	-	\$ 53.64
5.x	3	Payload I&T	\$	-	\$	-	\$	-	\$	-	\$ -
6.0	2	Flight System \ Spacecraft	\$	32.32	\$	21.28	\$	-	\$	-	\$ 53.60
6.01	3	Flight System Project Management	\$	1.72	\$	2.85	\$	-	\$		\$ 4.56
6.02	3	Flight System Systems Engineering	\$	2.92	\$	4.84	\$	-	\$	-	\$ 7.75
6.03	3	Flight System Product Assurance	\$	1.01	\$	1.68	\$	-	\$	-	\$ 2.70
6.10	3	Spacecraft	\$	24.80	\$	8.80	\$	-	\$	-	\$ 33.60
	4	Structures & Mechanisms	\$	2.16	\$	1.49	\$	-	\$	-	\$ 3.65
	4	Thermal Control	\$	1.76	\$	0.34	\$	-	\$	-	\$ 2.10
	4	Electrical Power & Distribution	\$	4.36	\$	4.37	\$	-	\$	-	\$ 8.73
	4	GN&C	\$	2.58	\$	2.60	\$	-	\$	-	\$ 5.18
	4	Communications (SSPA)	\$	3.12	\$	-	\$	-	\$	-	\$ 3.12
	4	C&DH	\$	10.81	\$	-	\$	-	\$	-	\$ 10.81
6.x	3	Flight System I&T	\$	1.87	\$	3.11	\$	-	\$	-	\$ 4.99
7.0	2	Mission Operations System (MOS)	\$	1.47	\$	5.15	\$	-	\$	12.42	\$ 19.04
	3	MOS/GDS Development (Phase B-D)	\$	1.47	\$	5.15	\$	-	\$	-	\$ 6.62
	3	Mission Ops & Data Analysis (Phase E)	\$	-	\$	-	\$	-	\$	12.42	\$ 12.42
8.0	2	Launch Vehicle/Services	\$	-	\$	-	\$	50.32	\$	-	\$ 50.32
9.0	2	Ground Data System (GDS)	\$	-	\$	-	\$	-	\$	-	\$ -
10.0	2	System Integration, Assembly, Test & Check Out	\$	3.32	\$	5.70	\$	-	\$	-	\$ 9.02
11.0	2	Education & Public Outreach	\$	-	\$	-	\$	-	\$	-	\$ -

Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Cost Wraps – ROT^{\dagger}

SMEX Total Lifecycle Phase A-F^{*} By WBS^{**}

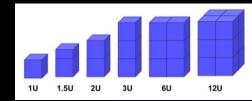
* Data shows that average breakout for Phase A-D and E/F cost is ~90% Formulation/Development and ~10% Operations

**Launch Ride/Services not included

[†] Ref to: Saing, M., Freeman, T., "NASA SMEX Mission Explorer Past, Present, and Future", Aug 14th – 16th 2018, NASA Cost and Schedule Symposium, NASA GSFC Greenbelt Maryland

Piecing it all together

Compare the results, refine it, run uncertainty analysis


WBS	Description	Total Cost, FY20\$M Small Spacecraft Cost Model (SSCM)	Total Cost, FY20\$M PRICE True Planning Cost Model	Annesh	Total Cost, FY20\$M, NASA PCEC Explorer Class, All WBS from Cost Model	Estimate by Project	Average Across All Estimate
	Description Project management	Cost Model (SSCIM)	woder	Approach	Cost Model	Team, FY20\$M	Estimate
	, ,	\$ 17.2	\$ 15.5		\$ 27.0	\$ 15.0	\$ 18.7
	Systems Engineer Safety and Mission Assurance	Ş 1/.2	Ş 13.3	Wraps - Analogy	Ş 27.0	Ş <u>1</u> 5.0	Ş 10.7
		\$ 27.5	ć 24.0		\$ 4.4	\$ 15.0	ć 19.0
	Science and Technology		•			· ·	
	Payload Instruments	\$ 53.6		Parametric	\$ 53.6		
6	Spacecraft	\$ 60.0		Parametric	\$ 53.6		
7	Mission Operations	\$ 13.8	\$ 12.4	Wraps - Analogy	\$ 19.0	\$ 15.0	\$ 15.1
8	Launch Vehicle / Services	\$ 50.0	\$ 50.0	NASA Catalog	\$ 50.0	\$ 50.0	\$ 50.0
9	Ground System(s)	Include In WBS 7	Included in WBS 7	Wraps - Analogy	Included in WBS 7	Included in WBS 7	Included in WBS 7
10	Systems Integration and Testing	Include in WBS 6	Included in WBS 6	wraps - Analogy	\$ 9.0	Included in WBS 6	\$ 9.0
	Education and Public Outreach						
11	1% of total (not including LV)	\$ 2	\$ 2		\$2	\$ 1	\$ 2
	Subtotal (Phase A-D)	\$ 224	\$ 207		217	\$ 176	\$ 206
	Costs Reserve (25%, Phase A-D and 15%						
	Phase E)	\$ 36	\$ 33		\$35	\$ 26	\$ 33
	Total with Reserve		\$ 240		252	\$ 203	\$ 239

Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

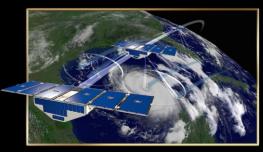
Introduction to Cubesats/Microsats and NASA COMPACT

What is a CubeSat? Microsat?

- CubeSat = nanosatellite in a form of a cube, with each "U" measuring 10cm x 10cm x 10cm and weighs ~1.33kg (weight by ROT)
 - The "U" cube are stackable
- Common form factors are: 1U, 3U, 6U's
- MicroSat = microsatellite with mass ranging from 10-100 kg
- Type and estimated mass range:
 - Mini-satellite, 100-180 kilograms
 - Microsatellite, 10-100 kilograms
 - Nanosatellite, 1-10 kilograms
 - Picosatellite, 0.01-1 kilograms
 - Femtosatellite, 0.001-0.01 kilograms



Raincube, ~6U, 12 kg each


PhoneSat (1U), ~1 kg

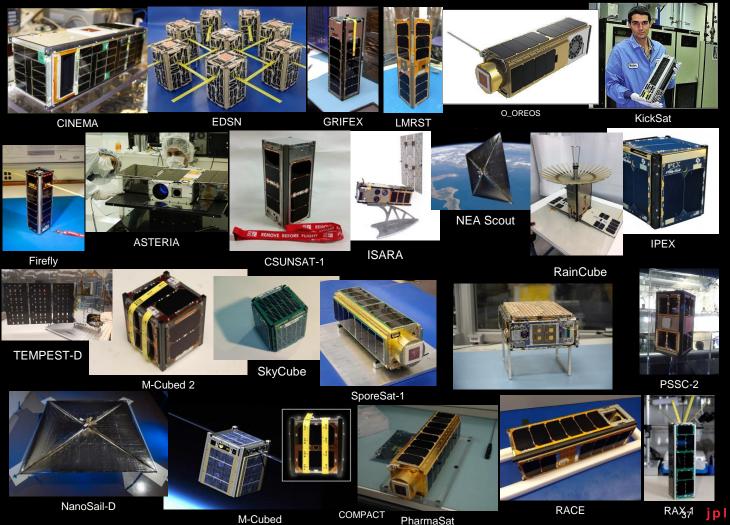
Sporesat (3U), 5 kg

TechEdSat 8 (1x6U), ~8 kg

Cygnss, Microsats, ~30 kg each 33 jpl.nasa.gov

SPHEREX	PHARMASAT **	CEF	RES PETITSAT SPORT	
NUSTAR BURSTCUBE	OIOREOS* GENESAT*+	AERO	MINXSS ⁺ VISTA	
STARLING SPORESAT* PHONESA	NEASCOUT JANUS DART T ⁺ ALBUS ⁺ T ⁺ ALBUS ⁺ TEMPEST-D HYTI CUBERRT OCSD-A ⁺	LLITED CIRBE SORTIE CUSP DAILI ELFIN ENTINEL GTOSAT DI SWFO-L1	DELLINGR* CURIE REAL PUNCH CUPID AEPEX TRACERS ONE SHIELDS-1* TBEX SUNRISE	QPACE
	TROPICS NACHOS MC/COVE CTIM-F SNOO CSIM-FC MAP	TECHEDSAT-8* TECHEDSAT-7* RADSAT-G CHOMPTT* CLICK-A* D DUPLEX PJ COURIER DEMO	ESCAPADE	JASU () EARTH SCIENCE () HELIOPHYSICS () DANETARY SCIENCE () ASTROPHYSICS () INARBIT ANOMALY () INARBIT ANOMALY () INARBIT ANOMALY () INTURE MISSIONS IN BOLD PARTNER-LED MISSIONS ¹ COMPLETED MISSIONS ¹
Ref LUNIR https://www.nasa.gov/sites/delault/files/styl	es/full_width_feature/pub		MALLSAT/CUBESA	T FLEET

The need for a cubesat/microsat cost model tool


How Does COMPACT fit within the need?

- NASA CubeSat Or Microsat Probabilistic Analogy Cost Tool (COMPACT)
- Official NASA agency cost model tool, started 2014
- Estimate cost specifically for cube/micro-sat class missions
- Providing confidence on cost estimate as model is based on normalized actual NASA funded cubesat/microsat missions

Why do we need a CubeSat/MicroSat cost model?

- Microsat Cost model?
 - Early cost estimation and sanity check
 - Keep projects from over running and under funded
 - Common misconception that costs scales with size of flight system
 - Many cost models has many tuning knobs/switch that will lower the costs, but how real is that to actual design and development practice? How do you defend the basis of estimate (BOE)?

6/10/2020

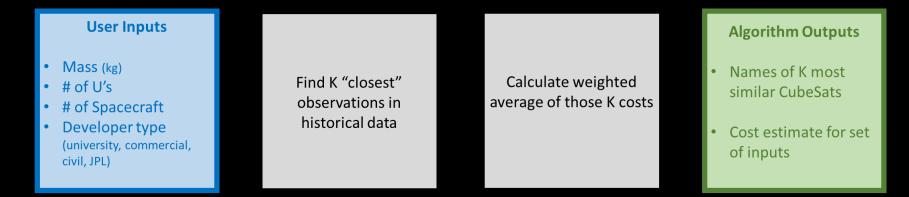
PharmaSat

RAX₃₇1 jpl.nasa.gov

Key Cubesat Data

CubeSat	Launch Date (Actual or Planned)	Mission Type	Developer Type	# U's	Mass (kg)	Power (W)	Development Schedule (B/C/D)	Design Life (months)
ASTERIA	8/14/2017	Science	JPL	6	11	20	28	3
CINEMA (1)	9/13/2012	Science	University	3	3.15	2.9	44	12
CSUNSat-1	4/18/2017	Educational	University	2	2	4		
DHFR	8/26/2017	Tech Demo	JPL	3	5.03	10		3
EDSN	11/3/2015	Tech Demo	Civil	1.5	2	1	10	24
Firefly (1)	11/20/2013	Science	Civil	3	3.51	3.62	36	3
GRIFEX	1/31/2015	Tech Demo	JPL	3	4			
ISARA	11/10/2017	Tech Demo	JPL	6	5	56	48	5
KickSat (1)	4/18/2014	Tech Demo	University	3	6		4	24
LMRST	10/8/2015	Tech Demo	JPL	3	4.6	8		
MarCO	5/5/2018	Tech Demo	JPL	6	12.7	64	21	6.5
M-Cubed	10/28/2011	Tech Demo	University	1	1	1.2	30	
M-Cubed2	12/5/2013	Tech Demo	University	1	1	1.2		
NanoSail-D (2)	11/20/2010	Tech Demo	Civil	3	4			4
NEA Scout	7/1/2018	Tech Demo	JPL and MSFC	6	12.3	50		
O/OREOS	5/19/2009	Science	Civil	3	5.2		12	18
PharmaSat (1)	5/19/2009	Science	Civil	3	5			
PolySat (CP8) "IPEX"	12/5/2013	Tech Demo	University	1	1	1.5	24	6
PSSC-2	7/10/2011	Tech Demo	Civil	2	3.7	5	6	
RACE	10/28/2014	Tech Demo	JPL	3	5	1.5		
RainCube	5/20/2018	Tech Demo	JPL	6	12	35	17	2
RAX 1 (USA 218)	11/20/2010	Science	University	3	3	8		12
SkyCube	1/9/2014	Educational	Commercial	1	1.3	4	24	3
SporeSat-1	4/18/2014	Tech Demo	Civil	3	5.2		36	2
Tempest-D	2/1/2018	Tech Demo	JPL	6	14	21	21	3

CubeSat Cost Estimating Approaches


- Using the data collected in the previous effort, we examined 2 cost estimation approaches and web base platform development:
- 1. K-Nearest Neighbors (k-NN) Completed
- 2. Parametric Cost Modeling Sneak Peak
- 3. Web base platform development Sneak peak

K-Nearest Neighbors

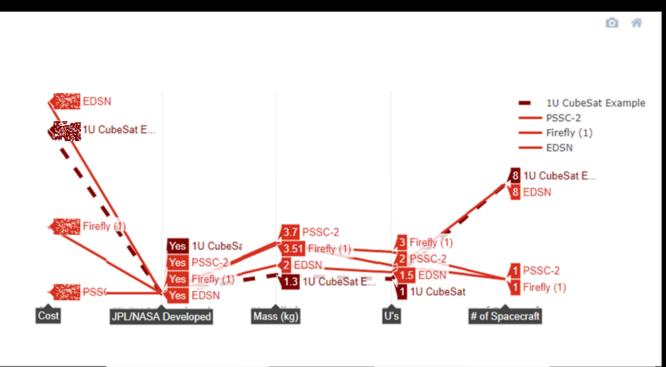
- Created a K-Nearest Neighbors Analogy-drive cost model for CubeSats utilizing the framework developed by the NASA Analogy Software Cost Tool (ASCoT) Team
- Demo and pre-Beta version working its way to the NASA ONCE website (at the time of this presentation)

K-Nearest Neighbors

• KNN is a simple form of analogy cost estimation. Here's how it works:

"Closest" here is determined by Euclidean distance between points. Now, the only thing left to do is to choose the number of neighbors, K.

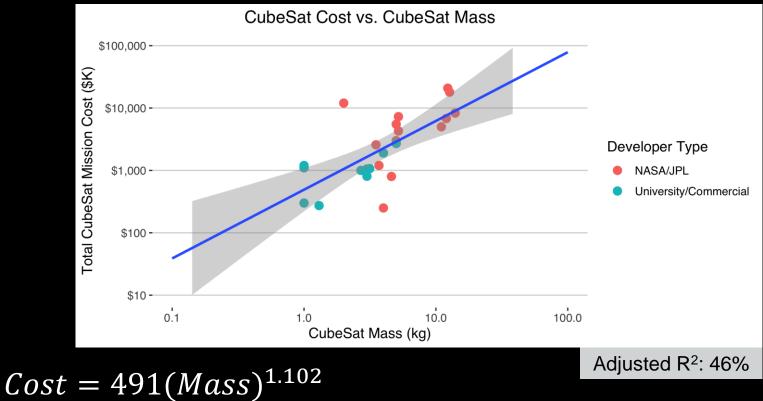
K-Nearest Neighbors Web Tool User interface


•	DNSET	Admin							
Contract No.	CoT v	Compact Knn Cost Estin							
بر چ	MPACT ~ § KNN ~ Cost Estimate	The K-Nearest Neighbor Regression Algorithm is a simple non-parametric method used to estimate the total cost to develop a CubeSat mission based on previous missions. Using a handful of inputs, the model assigns a distance metric that ranks each mission in order of similarity to the estimate mission.							
	Cost Parameter Variation	Create New Estimate Estimate Name JPL / 10 CubeSat Example Yet	NASA Developed	Current Estimate		Output Estimate			
Early known high		Mass U's		KNN Results Summary Neighbors Cost (k\$)	Distance				
level Input parameter		Number of Spacecraft		EDSN PSSC-2		Analogies			
			ate Estimate I Inputs (CSV File)	Firefly (1)					

Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

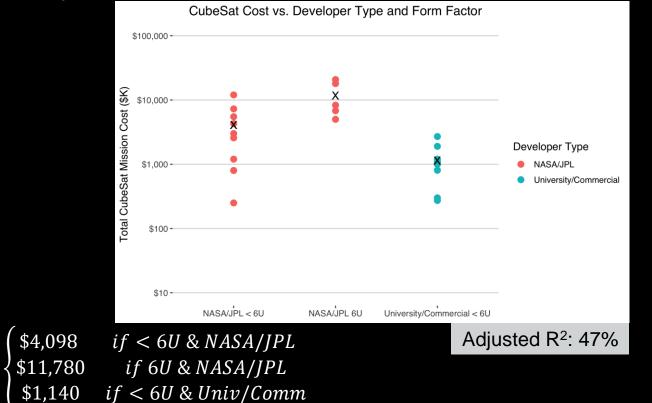
K-Nearest Neighbors Web Tool Parameter Variation


Disclaimer - The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Parametric Models – Sneak Peak

- Apply stepwise and best-subsets regression methods to identify potential CubeSat parametric cost models.
- Utilize ANOVA, standard significance tests and R2 to identify potential cost drivers and compare/select best models.

Draft Preliminary Beta Candidate Model #1


AKA "Not ready for use in Proposal Development/Evaluation"

Draft Preliminary Beta Candidate Model #2

AKA "Not ready for use in Proposal Development/Evaluation"

Cost =

NASA COMPACT Cost Model Tool

- Division Director, J. Craig McArthur, NASA HQ Strategic Investment Division (SID)
- Questions in regards to COMPACT directed to NASA HQ Sponsor, contact james.k.johnson@nasa.gov
- Thank you to SID for funding the COMPACT tool development. SID has also funded most/all (research/development) cost tools used across NASA agency wide
- Ref to conference papers and presentation:
 - "COMPACT KNN: Developing an Analogy-Based Cost Estimation Model for CubeSats", IEEE 2020, Big Sky, Montana
 - COMPACT NASA Cost and Schedule Symposium, 2015, 2016, 2017, 2018, and 2019 (NASA OCFO's website)

Conclusion - Recommendation when cost estimating for Small Missions

Top 10 things on cost estimation

- 1. Be Realistic
- 2. Seek help when needed (sooner the better)
- 3. Treat cost parameter like engineering parameter such as mass and power
- 4. Not all costs scales with size of the spacecraft
- 5. Capturing small sat market trend is challenging. Understanding data will guide to better decision making and understanding risks and design decision
- 6. Risk analysis factor in uncertainty
- 7. There's no such thing as one size fits all cost model. Generate multiple estimates using different models and see what the range of variance are and try to understand the *Why* if there is a huge disconnect
- 8. Defend your cost estimate with a strong basis of estimate
- 9. Cost estimating is a form of *art* and *science*. There's no right/wrong way to do it, but use good judgement
- 10. "There are only two objectives in Formulation. To win, and to not regret it when you do." by Dr. Alfred Nash, JPL Principle Engineer and TeamX Lead

QUESTIONS

