National Aeronautics and Space Administration

Solid-state Architecture Batteries for Enhanced Rechargeability and Safety

CHALLENGE

Current state-of-the-art batteries are not designed to meet the performance and safety requirements of electric aircraft.

SABERS uses new technology to achieve targeted properties for power, energy, safety, packaging, and scalability.

OBJECTIVES

Meet energy density requirements needed to enable electric aircraft.

Optimize recharge speed for efficient turnaround time.

- Avoid parasitic weight from excess packaging and cooling.
 - Increase safety with fully solid design eliminating use of flammable liquids.

5 C a

4

2

Combine materials technologies to achieve scalability.

NASA ADVANTAGES

Bipolar stack design Reduces safety containment weight and improves specific energy and power.

Patented holey graphene Improves cathode conductive architecture and battery performance.

New sulfur-selenium combination Optimizes performance by balancing energy versus power, reduces impedance, and creates a more stable discharge profile.

> **Computational modeling** Guides experiments to accelerate development time.

Collaboration

Engages expertise of mutliple NASA centers, Department of Energy (DOE) National Laboratories, and industry partners.

GOALS

Optimize composition ratio of solid-state electrolyte, active material, and conductive agent to significantly improve battery performance.

A feasibility study sponsored by NASA's Convergent Aeronautics Solutions Project

Fostering Innovation, Pushing Boundaries, and Overcoming Barriers

Contacts

Dr. Rocco Viggiano NASA Glenn Research Center rocco.p.viggiano@nasa.gov

Dr. John Connell NASA Langley Research Center john.w.connell@nasa.gov

Dr. James Wu NASA Glenn Research Center james.j.wu@nasa.gov