National Aeronautics and Space Administration

EXPLORE

Navigating SmallSat Development: Where to Begin and What to Expect

Dr. Charles D. Norton

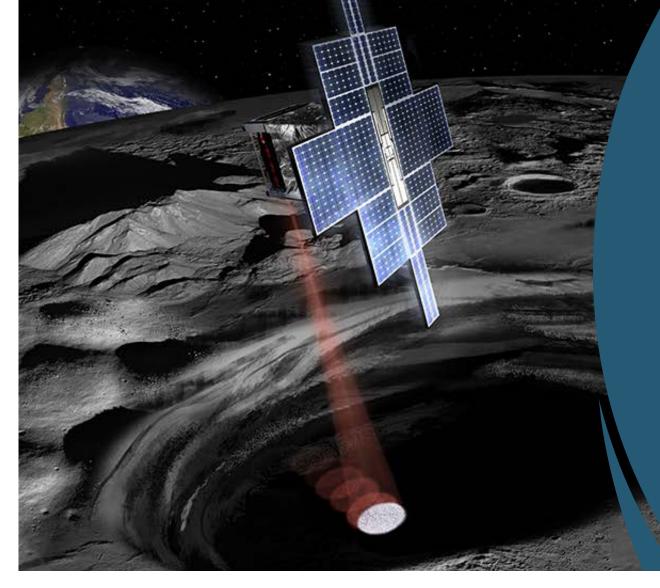
Special Advisor, Small Spacecraft Missions, NASA SMD Associate Chief Technologist, NASA Jet Propulsion Laboratory / CalTech

August 2020 Clearance: NF-1676 20205006873

Apollo Subsatellites

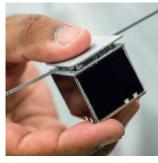
Met objectives to study the plasma, particle, and magnetic field environment of the Moon and to map the lunar gravity field

Mass of 35.6 kg carrying 3 instruments: magnetometer, Sband transponder, and charged particle detector



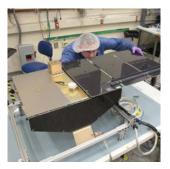
Courtesy: NASA Space Science Data Center Catalog

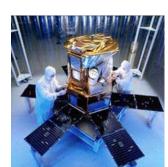
NASA Annual Expenditures for Science Missions


In FY15 Millions of Dollars for 57 Years (1969 - 2026) 2 500 National Academies of Sciences, Engineering, and Medicine. 2017. Powering Science—NASA's Large Strategic Science Missions. Washington, DC: The National Academies Press. https://doi.org/10.17226/24857 2,000 Terra Shuttle Parker Solar Probe 1,500 Launches MMS \$ (millions) Aqua Aura Magellan Cassini lunc 1,000 MSL **ICESat 2** MO MER Voyager Mars 2020 SIM Galileo Chandra Spitze 500 Europa Viking JWST Hubble WFIRST (w/servicing, no ops) 0 1969 1979 1989 1999 2009 2019 **Fiscal Year**

The Basics Mission Formulation Realities of Flight Development Access to Space Mission Operations Closing Remarks

Fundamentals of Small Spacecraft


Spectrum of Satellite Development


Picosatellite PocketSat (0.1 – 1 kg)

CubeSat/Nanosatellite MCubed (1 – 10 kg)

Microsatellite CYGNSS (10 – 100 kg)

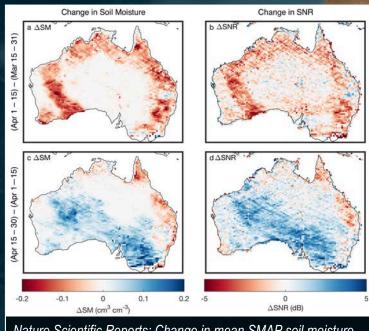
Small Satellite SORCE (100 - 500 kg)

ESPA-Ring Payload Port Limit (450 kg)

New SMD Working Definition

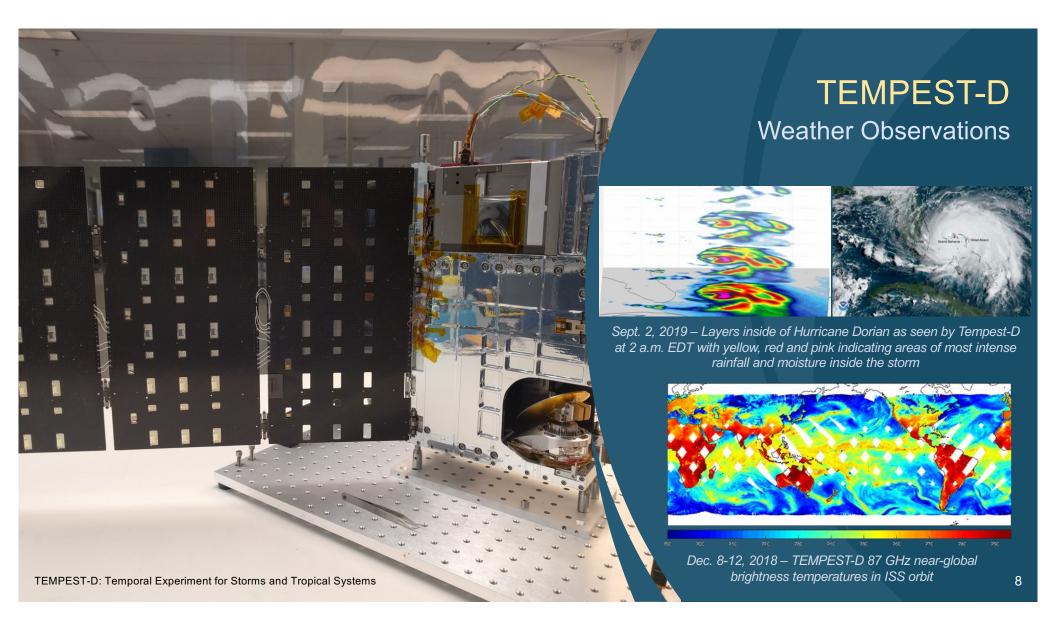
A spacecraft that is interface compatible with an ESPA Ring, a dedicated small or medium-lift launch vehicle, or a containerized dispenser, and with an upper mass limit of approximately 500 kg

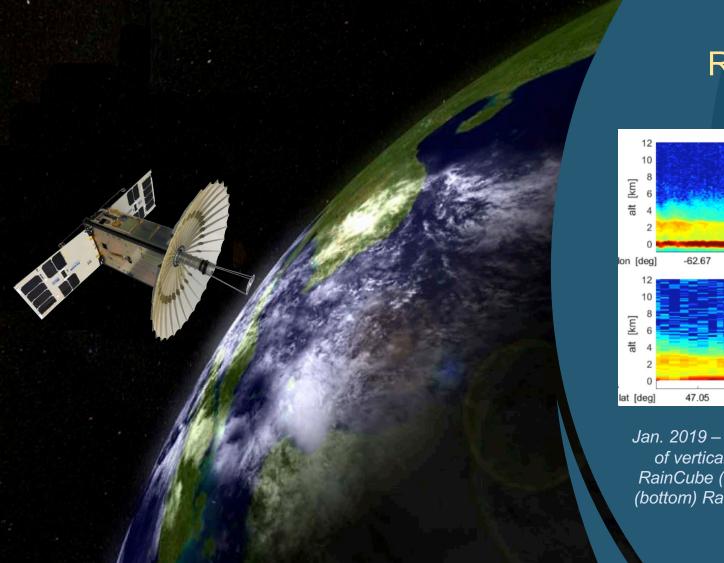




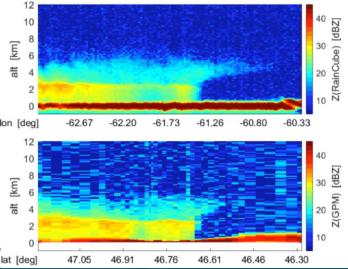
Basics

Dedicated


CYGNSS Land Hydrology Opportunistic Measurement Near-Surface Soil Moisture



Nature Scientific Reports: Change in mean SMAP soil moisture compared to change in CYGNSS SNR



7

RainCube / GPM Precipitation Radar

Jan. 2019 – Near-collocated measurements of vertical rain reflectivity profiles from RainCube (top) and GPM's Ka-band radar (bottom) RainCube points Nadir while GPM scans along-track

RainCube/TEMPEST-D Observing Typhoon Trami

Spacecraft constellation separated by 5 minutes revealing 3D storm structure

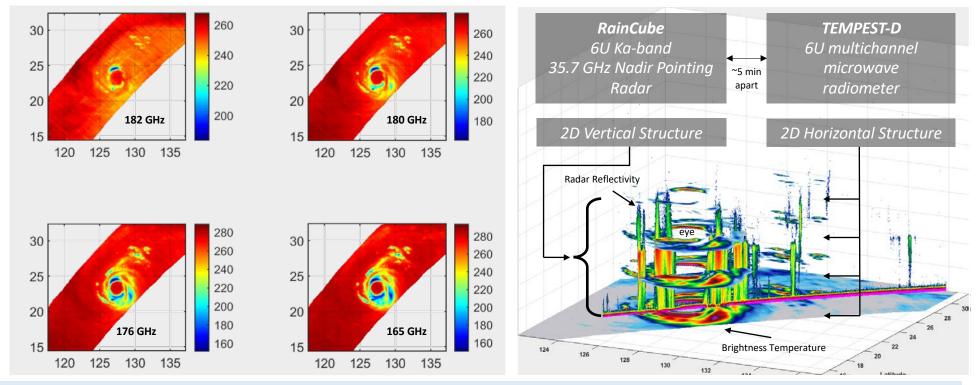
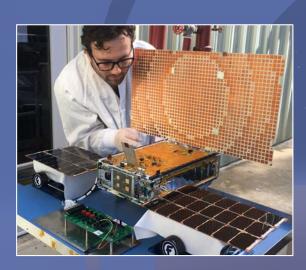
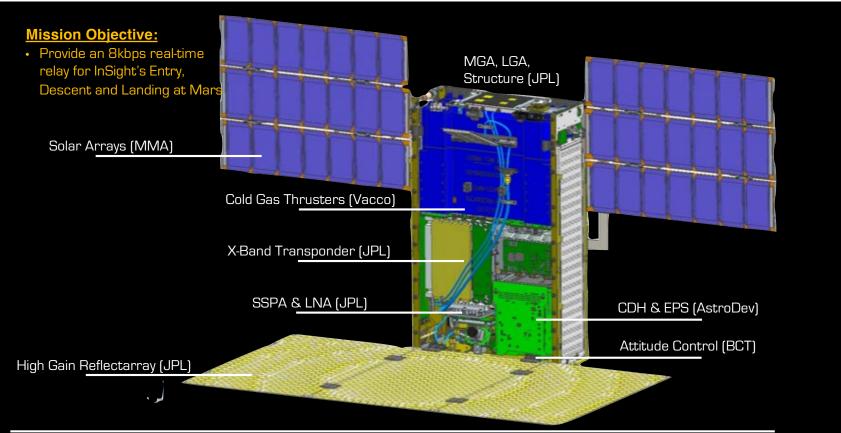




Illustration of complementary nature of these sensors flown in constellation for observing precipitation


RainCube Flight S Anatomy of the Spacecraft System Design	System Design	😺 Rain	Cube
		SubsystemsC&DH ProcessorsADCS ProcessorsBattery ModulesBattery ModulesSolar PanelsUHF RadioS-Band RadioADCS ControlThermal ControlAntennasGPS	The Basics
CAD System Model	Flight Model Design		
			11

Mars Cube One

Nov. 26, 2018 - MarCO-B image of Mars from approximately 4,700 miles away during its flyby

MarCO Overview:

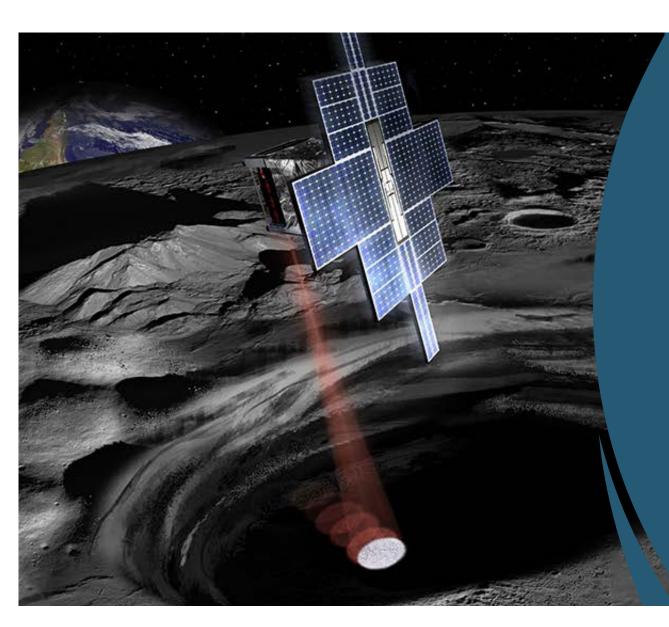
Volume: 2 x 6U (12x24x36cm) Mass: 14.0 kg Power Generation: Earth: 35 W Data Rates: 62-8,000 bps Delta-V: >40 m/s

Software: FSW: protos (JPL) GSW: AMPCS (NASA/JPL)

<u>I&T:</u>

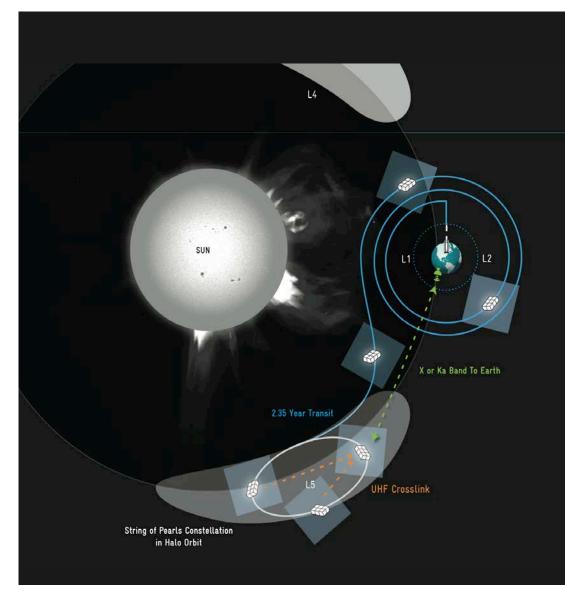
In-house S/C I&T, testing, Tyvak NLAS/ Launch Integration <u>Operations:</u> Primary: DSN 34m EDL: Madrid 70m

Evolution of SmallSats (Past 5 Years)


Growth and establishment of commercial flight systems

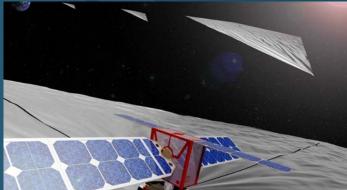
Expansion of measurement capability from innovative miniaturized instruments


Increased design space of measurement opportunities


Diversity of options for access to space (ISS, dedicated launch, and containerized/ESPA rideshare)

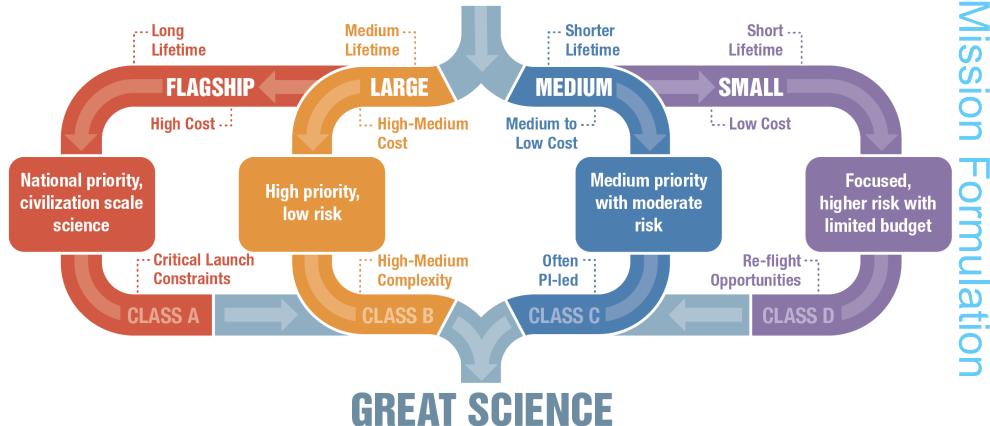
TEMPEST-D and CubeRRT ISS Deployment

The Basics <u>Mission Formulation</u> Realities of Flight Development Access to Space Mission Operations Closing Remarks


Heliospheric Science

Heliospheric Imager

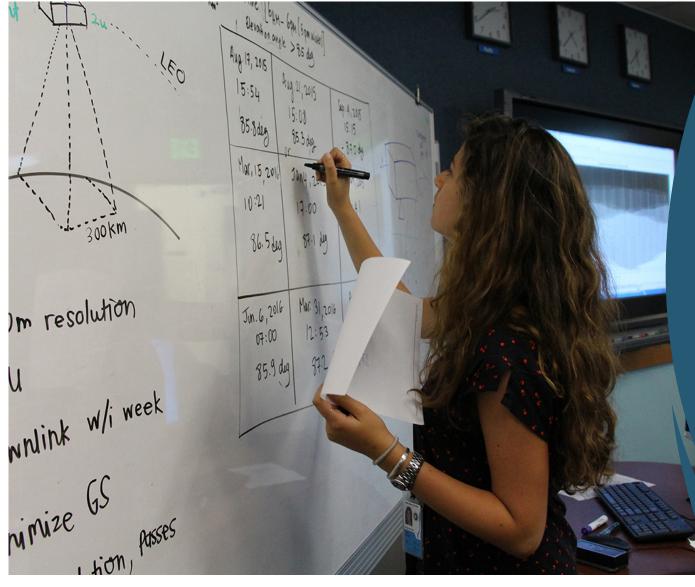
Coronagraph



L5SWS

L5 Space Weather Sentinel Constellation Concept For Prediction and Understanding of Solar Variability

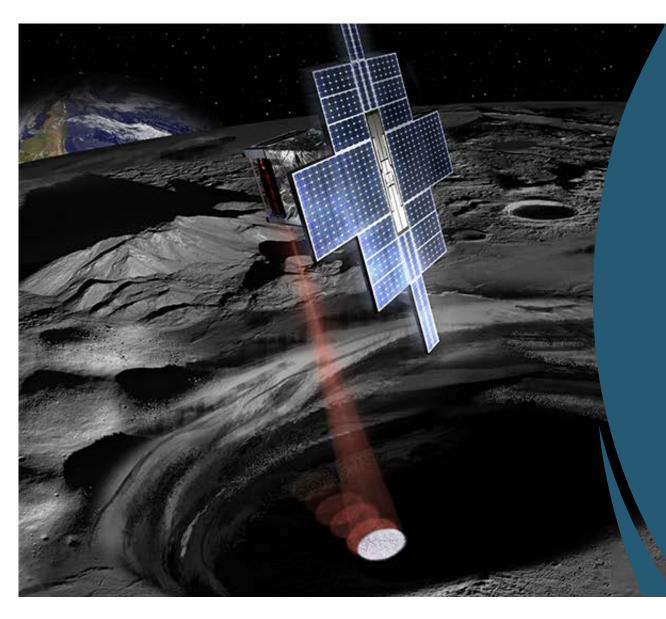
BALANCED MISSION PORTFOLIO



Mission Formulation

Utilize expertise from NASA's concurrent design formulation teams

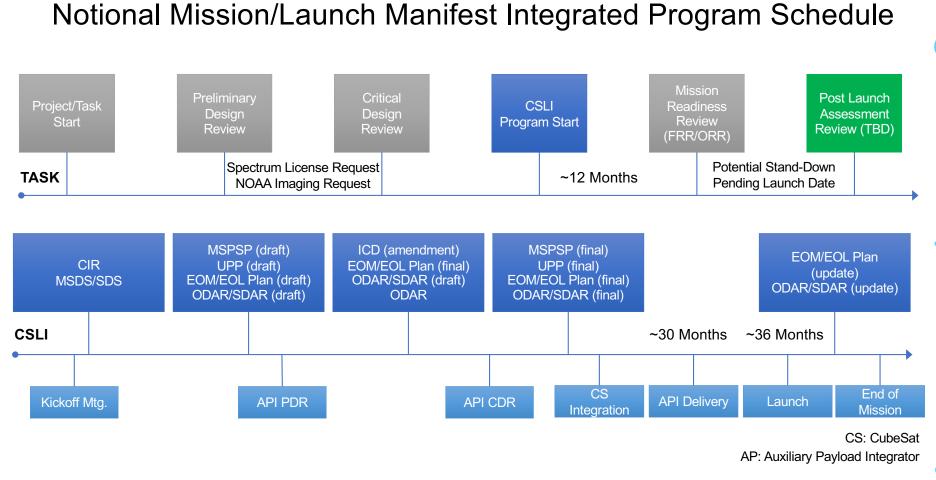
Such services are appearing more frequently within the mission solicitation process


SunRISE

Sun Radio Interferometer Space Experiment Heliophysics Explorer Program Small Complete Mission

Revealing How Energetic Particles are Accelerated and Released into Interplanetary Space

20



Mission Formulation Realities of Flight Development Access to Space Mission Operations **Closing Remarks**

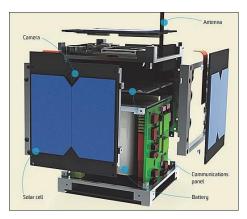
Mission Assurance Requirements Lifecycle Reviews **Mission Success Criteria** Formal and Informal **Review Boards** Independent Cost and Schedule Estimates Managing The Unexpected

Overview of Key Documentation Required (Not Comprehensive)

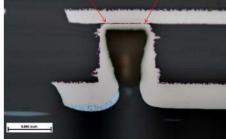
Acronym	Document	Comments
CIR	CubeSat Interface Review	General information from flight projects
MSDS	Mission Safety Data Sheet	Documentation of materials hazards
MSPSP	Missile System Pre-Launch Safety Package	Documents range safety hazards and containment
ODAR/SDAR	Orbital/Space Debris Assessment Report	Documents orbital debris hazards and containment
EOM/EOL Plan	End-of-Mission / End-of-Life Plan	End-of-Life passivation and de-orbit plan
UPP	Uplink Protection Plan	Documents plan to maintain spacecraft control
ICD	Interface Control Document	Integration Status, Risk Assessment, Open Items
ODR	Orbital Data Request	JFCC Space / JSpOC Collision/Conjunction Request
CDS	CubeSat Design Specification	Standards document for fit-check requirements
CAC	CubeSat Acceptance Checklist	Verifies form factor adherence to CDS guidelines

Flight Development Real 24

Please submit your spectrum allocation request early as an approved Radio Frequency Authorization (RFA) is required for mission integration


RFA should include all Earth stations planned for mission operations

Should exceptional issues arise a Special Temporary Authority (STA) request may be requested


Read your RFA for special directions

Microvia Separation in SpaceCube-Mini Subsystem

Burled via

NASA Destructive testing confirms microvia separation (arrows)

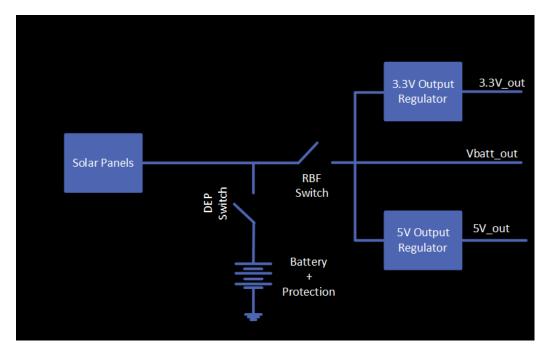
PCB manufacture passed vendor QA, but NASA detected open circuits

Computer Tomography (CT) scans were inconclusive thus destructive testing and microsection analysis were required

Subsystem descoped and replaced with contingency gumstix processor as SpaceCube-Mini was not a Level-1 requirement Flight Development Realit 26

More on Testing

Table 1 – Dispenser and CubeSat Environments Test Table


General Guidelines:

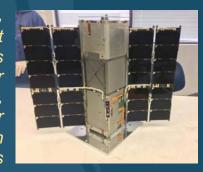
- Project team is responsible for all testing up to delivery where acceptance testing is performed under the CubeSat Acceptance Checklist (CAC)
- If you build an EM for <u>qualification</u> testing build it as a flight spare
- Paths are qualification to acceptance test on an EM (promoted to an FM) or protoflight to acceptance on an FM
- Photo document all build/test activities, processes and procedures
- If you will have Test-As-You-Fly (TAYF) Exceptions seek waivers early (where allowed)

Tests	Qualification by Test	Protoflight Test	Acceptance Test
Random vibration ⁶ (CubeSat and Dispenser) Ref Mil-Std 1540C	MPE + 6 dB for (3) minutes, each of (3) axes ¹	MPE+3 dB for (2) minutes, each of (3) axes ¹	MPE for (1) minute, each of (3) axes
Sinusoidal Vibration ⁶ (CubeSat and Dispenser) Ref Mil-Std 1540C	MPE + 6 dB. Testing shall be performed for content that is not covered by random vibration testing	1.25 x MPE. Testing shall be performed for content that is not covered by random vibration testing	MPE. Testing shall be performed for content that is not covered by random vibration testing ¹
Shock ⁶ (CubeSat and Dispenser) Ref Mil-Std 1540C	MPE + 6 dB, 3 times in both directions of 3 axes ^{1,3}	MPE + 3 dB, 1 times in both directions of 3 axes ^{1,3}	N/A
Thermal Vacuum Cycle (Dispenser Only) Ref.: MIL-STD 1540 B, GSFC-STD-7000	MPE ² +/- 10° C Minimum Range = -14 -3/+0°C to +71 - 0/+3°C Cycles = 8 Dwell Time = 1 hour min. @ extreme Temp. after thermal stabilization Transition = < 5° C/minute Vacuum = X10 ⁴ Torr	$\begin{split} MPE^2 + /- 10^{\circ} C \\ Minimum Range & -14 - 3/+0^{\circ} C \text{ to} \\ + 71 - 0/+3^{\circ} C \\ Cycles & = 4 \\ Dwell Time & = 1 \text{ hour min. } @ \text{ extreme} \\ Temp. after thermal stabilization \\ Transition & < 5^{\circ} C/minute \\ Vacuum & = 1x10^{+1} \text{ Torr} \end{split}$	MPE ² +/- 5° C Minimum Range = -9 -3/+0°C to +66-0/+3°C Cycles = 2 Dwell Time = 1 hour min. @ extrem Temp. after thermal stabilization Transition = < 5° C/minute Vacuum = 1x10 ⁻⁴ Torr
Thermal Vacuum Bake out (Dispenser Only) Ref.: MIL-STD 1540 B, GSFC-STD-7000	N/A	Min. Temp 70°C ^{4,7} Cycles = 1 Dwell Time = Min. 3 hour after thermal stabilization Transition = N/A Vacuum = 1x10 ⁻⁴ Torr	
Thermal Vac Bake out (CubeSat Only) Ref.: MIL-STD 1540 B, GSFC-STD-7000	N/A	Min. Temp 70°C 5.8 Cycles = 1 Dwell Time = Min. 3 hour after thermal stabilization Transition = < 5° C/minute Vacuum = 1x10-4 Torr	Min. Temp 70°C S = Cycles = 1 Dwell Time = Min. 3 hour after thermal stabilization Transiton = < 5° C/minute Vacuum = 1x10° Torr
Hardware Configuration	Dispenser – Flight identical unit (includes NEA, cable and connector) CubeSat – Flight Identical unit	Dispenser – Flight unit (includes flight NEA, cable and connector) CubeSat – Flight unit	Dispenser – Flight unit (includes flight NEA, cable and connector) CubeSat – Flight unit

Flight Development Realit

Remove Before Flight (RBF) Pin Functionality, Power, and Inhibits

Power system design used successfully in multiple flight projects


With the RBF pin in place the batteries and the solar panels are isolated from the spacecraft bus

However, once the RBF is removed (in the dispenser) an electron flow path does exist from the solar panels to the spacecraft bus

Analysis proved insufficient current to drive the flight hardware during P-POD integration, but careful inhibit design must be followed

Radiation effects from SEPs, and the SAA, do impact missions with unprotected COTS parts

Symptoms include increased current draw, random command execution, SD card failures, data corruption, ...

Safe modes, watchdog reset timers, as well as backups for failed devices, have allowed for recovery from SEUs

> An aside...watch out for the impact of helium on MEMs devices

Accounting for orbital debris ensures good stewardship of the space environment

It's also required and directly impacts your spacecraft and mission design

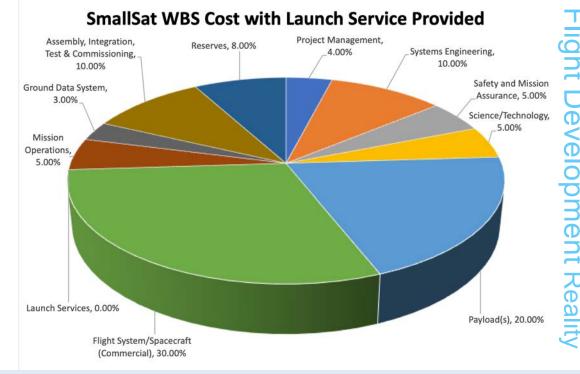
Avoid high melting point materials to satisfy reentry energy and risk of human casualty requirements

Additional Practical Advice

All export control rules apply even if you develop and launch your spacecraft within the US

Be mindful of the import of components from foreign countries and their potential export when repairs are needed

Have appropriate protections in place to firewall FNs from ITAR/EAR data and always secure and/or encrypt sensitive information

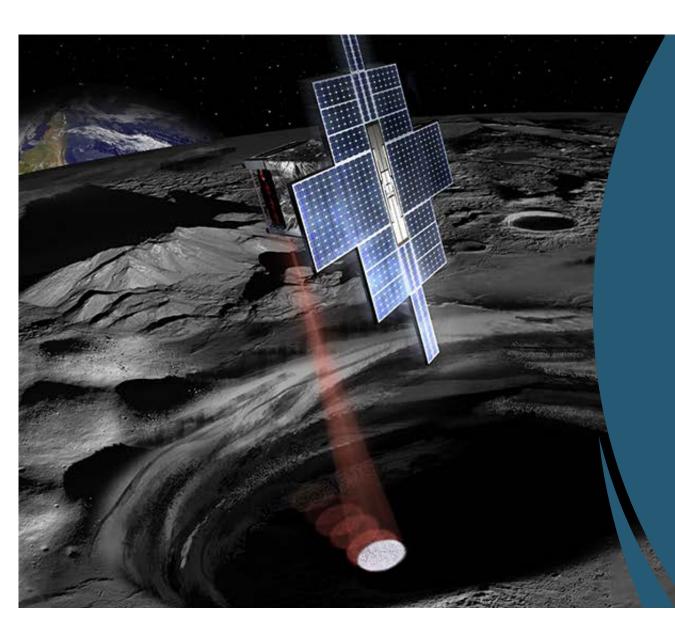

TRUMAN BUILDIN

Always consult with an authorized export control authority at your institution

Reality of Mission Cost Estimation

ROM example work breakdown structure (WBS) for typical SmallSat mission

Notional view of WBS by budget percentage for typical SmallSat Personal opinion and not a basis for future proposed cost breakdown



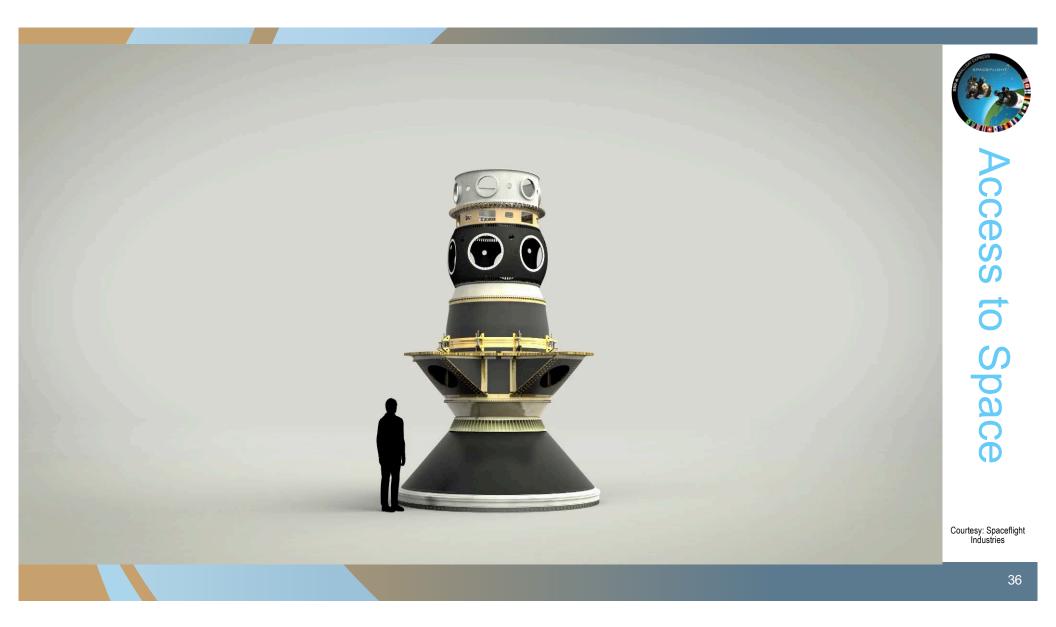
SmallSat ROM Estimate (no launch cost)

Note: Under CSLI the first \$300K of services is covered

	WBS Element	Percent
1	Project Management	4 %
2	Systems Engineering	10 %
3	Safety and Mission Assurance	5 %
4	Science/Technology	5 %
5	Payload(s)	20 %
6	Flight System/Spacecraft (Commercial)	30 %
7	Launch Services	0 %
8	Mission Operations	5 %
9	Ground Data System	3 %
10	Assembly, Integration, Test, & Commissioning	10 %
11	Reserves	8 %

Solicitation caps, cost estimation, tracking, analysis, and database tools (i.e. COMPACT) need attention

The Basics Mission Formulation Realities of Flight Development <u>Access to Space</u> Mission Operations Closing Remarks


Commercial and Government Rideshare is a hot topic, but there is complexity

Some industry forecasts show SmallSat lunar activity will triple in the next 5 years

Respondents may need to reimburse NASA for integration and launch activities if contract obligations are not met

ISS Deployment HaloSat/RainCube deploy from the ISS

o Spa

Access to Space

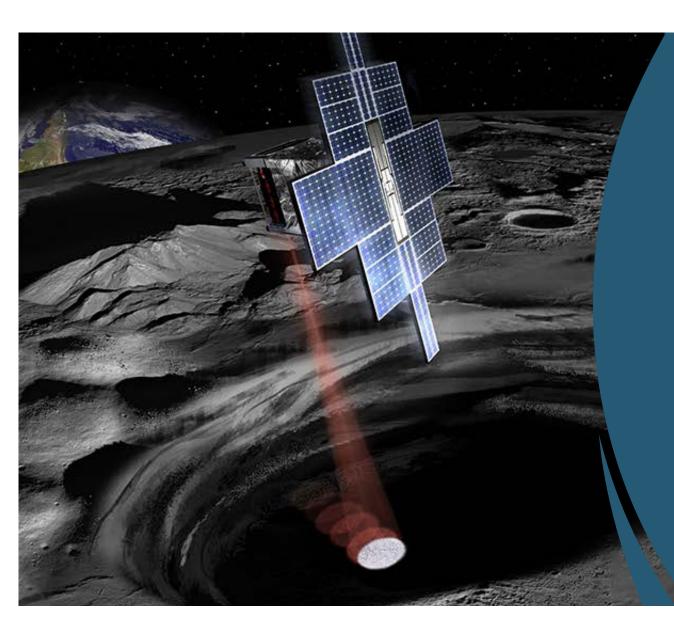
Future mission architectures will leverage propulsive ESPA as the complete spacecraft bus

Could provide a mission unique capability for managing complex deployments for a single mission application

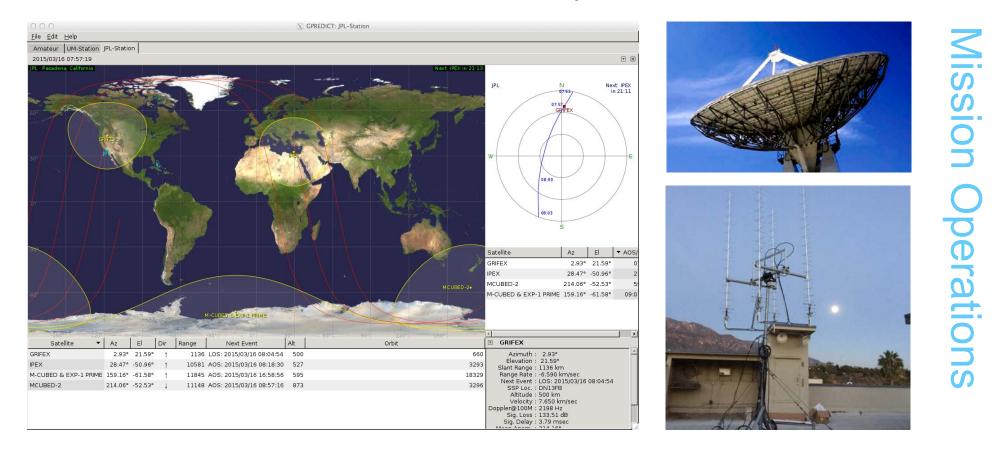
Emerging Launch Capabilities Beyond LEO

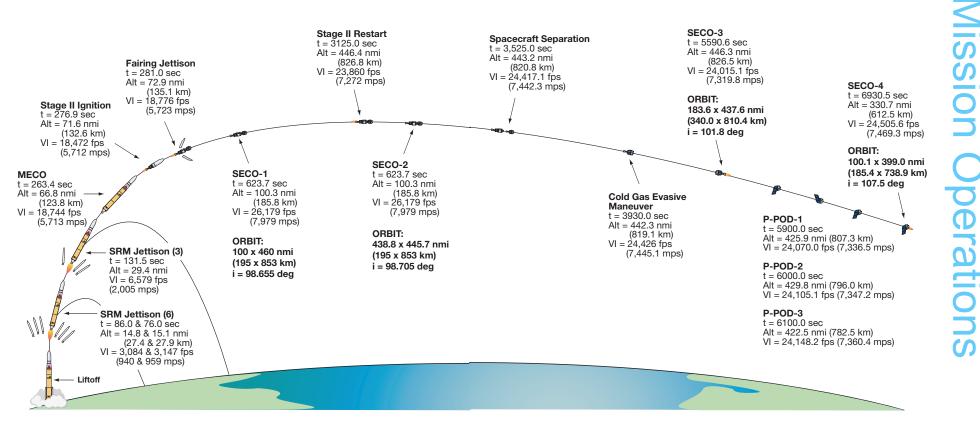
Rideshare and Direct Inject Vehicle Development

Industry transition to higher capability launch vehicles will provide greater opportunities


Partnerships, via multi-mission or secondary payload manifests, will be essential to the future of beyond LEO science and exploration

Future launch vehicles will drive greater innovation in mission design and science return

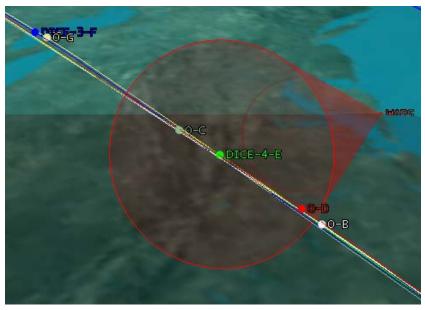

Image Courtesy: eBaum's World



The Basics Mission Formulation Realities of Flight Development Access to Space <u>Mission Operations</u> Closing Remarks

Ground Station Preparation

Launch Profile and Deployment Sequence NPP Mission Flight Profile


42

Two-Line Element (TLE) Identification and Analysis

USSTRATCOM (28th Air Force Wing) Provides Position Estimates and Radar Cross Section (RCS)

M-CUBED & EXP-1 PRIME

1 37855U 11061F 11346.19686108 .00005502 00000-0 44695-3 0 412 2 37855 101.7076 296.1999 0254710 165.5785 195.2864 14.78355333 6590

WFF October 29th Pass

WFF November 2nd Pass

USSTRATCOM tracked NPP and 6 other objects from launch (Objects B, C, D, E, F, G) Object B was not an NPP launch object

Telemetry Housekeeping Data Beacons from Global HAM Operators

×

Producing telemetry beacons, with a public client for global tracking of spacecraft health, is a valuable status monitoring tool

Must ensure compliance with all regulatory agencies

THE FIRST MARINA RUN WAS SUCCESSFUL!! In the screenshot below, you can see the data points that indicate that the first run was completed successfully. Over the next three days, we will downlink the experimental data and GRIFEX's first image from orbit! Following that, we will continue to gather payload data for the JPL researchers. Thank you again to NASA, Cal Poly, and the countless operators around the world who made this a possibility!

Summary Panel Beacon Data List			Application-specific Responses			Set callsign: KD8IPK	
EPS	1		FCPU			MARINA	
Name	Value	Unit	Name	Value	Unit	Name	e Value
Battery Tem		degC	FCPU 3V3 Voltag		V	Marina GPIO st	
Battery Curr		А	FCPU 3V3 Curren		mA	Marina Comple	
Battery Volt		V	FCPU TEMP 0	36.1571	deg C	Marina Aborteo	
Battery Bus		A	Datamnt Usage	24.862	MB	MARINA VBATT	
5V Bus Volta 5V Bus Curr		Δ	SD Usage ADCS Enable St	64.753	MB	MARINA VBATT MARINA Tempe	
3.3V Bus Vol		A	freeMem	46568	kB	MARINA 10Hpe	
3.3V Bus Vol		Δ	totMem	126904	kB	MARINA 1.0V V	
Output Regu		degC	lastProcessPID	17171		MARINA exit sta	
Channel 1 o		A	totNumProcesse			and the second second	
Channel 2 o		A	curNumRunnabl.				
Channel 3 o		A	avgNumActiveT	0.16			
Channel 4 o	0.007	A	avgNumActiveT	0.31			
EPS IOE STATE	1	N/A	avgNumActiveT	0.81			
EPS IOE MODE	252	N/A	RTC Unix Time	142369	sec		
			NumResets	2			
			FCPU TEMP 1	37.1753	deg C		
RADIO			- SOLAR			г ТСВ	
Name	Valu	e Unit	Name Va	alue	Unit	Name	Value U
LI VBATT Curren		mA	-X MAG X 0.9269	1000 C	uss	TCB TEMP 0	31.9068 deg
LI 3V3 Current	3.9	mA	-X MAG Y 0.0868		uss	TCB TEMP 1	31.992 deg
LI 3V3 Voltage	3.316	V	-X MAG Z 1.4064	Ga	uss	TCB TEMP 2	31.396 deg
Lithium #TX	53559.	Bytes	+Y inte 37.721	5 de	g C	ADCS1 IOE STA	TE 192 N/A
Lithium #RX	27588	Bytes	+Y ext 37.825	de	g C	ADCS1 IOE MOI	DE 0 N/A
Lithium MSP430		deg C	+X inte 26.135		g C		
Lithium RSSI	102	dBm	+X ext 26.292		g C		
Lithium Op Cou	nt 28847		-Y inter 19.130		g C	_111	
			-Y exte 18.763		g C		
			-X inter 31.186		g C		
			-X exte 31.809 -X Phot 1.4624		g C		
			-X P1101 [1:4024	V			
10. 0 310. 00							
id: 0 Sid: 66							<u> </u>
id: 0 Sid: 66							
id: 0 Sid: 66							
id: 0 Sid: 66							
		11 17:55:59 E					
id: 0 Sid: 66							

New NASA Directive has defined criteria for uplink protection for cybersecurity and enterprise protection

Directive does not apply to SmallSats without propulsion capability

Propulsion capability and maneuverability are not the same thing

Image: Courtesy of KSAT

Cybersecurity

Protecting space and ground-based assets via encryption and monitoring network security

Schedule rehearsals prior to launch, focusing on anomaly procedures

Perform field testing to verify, to the extent possible, link budget and margins

Operation budgets are not flight delivery reserve funds, so plan accordingly

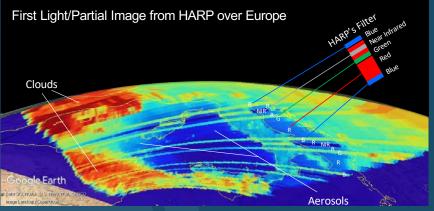
The Basics Mission Formulation Realities of Flight Development Access to Space Mission Operations <u>Closing Remarks</u>

ESCAPADE

Escape, Plasma and Acceleration Dynamics Explorer

Martian SmallSats

Understanding how solar wind momentum and energy flows throughout Mars' magnetosphere to drive ion and sputtering escape shaping Mars' climate evolution



MarCO's interplanetary transit and radio occultation experiment paves the way for future Mars planetary atmosphere SmallSat science, such as ESCAPADE

SpaceX Falcon Heavy Rideshare planned with PSYCHE Image Courtesy: Robert Lillis, Shannon Curry, et. al

NRP 2020 AIAA SmallSat of the Year CUBESAT

HARP Hyperangular Rainbow Polarimeter

Nov. 2, 2019 – HARP launches to the ISS aboard S.S. Alan Bean (NG-12). HARP will demonstrate the ability to characterize aerosol particles and measure properties of cloud particles including their thermodynamic phase (ice or water) and the size of cloud water droplets

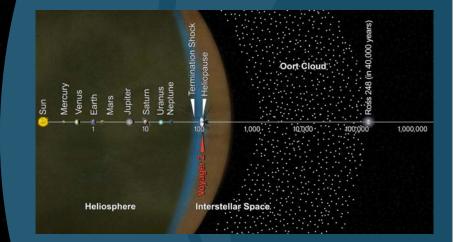
> 100th CubeSat under CSLI Feb. 17, 2020 ISS Deployment

49

Information Systems Needs Data Science and Analytics

Autonomous constellation operations, observation planning, data fusion, and execution

Distributed science data system management


Technology for flight system design verification and validation

Analysis of mission design-trade options

50

Interstellar Missions Beyond Voyager

Opportunity to study material from beyond the heliosphere

New technologies could reduce travel time to <40 years

Voyager 1 (2012) and 2 (2018) cross the heliopause entering interstellar space

Future of SmallSats

Minisatellites (30-150 kg) for sustained decadal-class observations

Data products from large/small missions become indistinguishable

New insights from multi-instrument constellation data fusion and analytics

Cooperative synergies among large and small missions

International cooperation on key community science measurements

Costs will keep rising, but plateau

ISOs and LPCs

Exploring Once-in-a-Lifetime Targets: Creating Habitable Worlds Image: Courtesy of Karen Meech

