VES16 cells and batteries for LEO & small GEO

Dr. Y. BORTHOMIEU and S. REMY, Saft Speciality Battery Group

November 2014, NASA Aerospace Battery Workshop
Agenda

1. VES16 Cell design and performances
2. LEO and GEO testing
3. Battery Module design and qualification plan
4. Conclusions
1-VES16 Cell
VES16 chemistry based on Generation 5

- Qualification on July 2011 in the frame of CNES contract

Negative electrode
- Specific LEO graphite blend
- Non-fluorinated binder

Positive electrode
- Li-Ni\textsubscript{x}Co\textsubscript{y}Al\textsubscript{z}O\textsubscript{2}
- Carbon
- PVDF

Electrolyte:
- Carbonate blend
- LiPF\textsubscript{6} based

Mechanical circuit-breaker

3-layer shutdown effect separator
VES16 cell main features (presented in 2012)

Main characteristics

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (Ø x H)</td>
<td>33 x 60 mm (D-size)</td>
</tr>
<tr>
<td>Weight</td>
<td>≤ 115 g</td>
</tr>
<tr>
<td>Volume</td>
<td>0.051 dm3</td>
</tr>
<tr>
<td>Voltage range</td>
<td>[2.7 ; 4.1] V</td>
</tr>
<tr>
<td>Nominal capacity</td>
<td>4.5 Ah on 4.1-2.7V @ C/2, 20°C</td>
</tr>
<tr>
<td>Nominal energy</td>
<td>16 Wh on 4.1-2.7V @ C/2, 20°C</td>
</tr>
<tr>
<td>Av Specific energy</td>
<td>> 150 Wh/kg</td>
</tr>
<tr>
<td>Internal resistance</td>
<td>≤ 35 mΩ @ 20% DoD</td>
</tr>
<tr>
<td>Best cycling temp.</td>
<td>[+10 ; +30] ºC</td>
</tr>
<tr>
<td>Mechanical design margins</td>
<td>EWR & ECSS compliant</td>
</tr>
</tbody>
</table>

- **Positive polarity**
- **Negative polarity**
- **Circuit-breaker**
- **Stainless steel case**
VES16 energy vs discharge rate and temperature

VES16 characterization from -20°C to +50°C, from 2C to C/5:

- Energy vs discharge rate
- Energy vs discharge temperature
VES16 charge current vs temperature

<table>
<thead>
<tr>
<th>TRP Temp</th>
<th>-20°C</th>
<th>-15°C</th>
<th>-10°C</th>
<th>-5°C</th>
<th>0°C</th>
<th>+5°C</th>
<th>+10°C</th>
<th>+15°C</th>
<th>+20°C</th>
<th>+30°C</th>
<th>+40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Cell Ich</td>
<td>C/20</td>
<td>C/17</td>
<td>C/15</td>
<td>C/12</td>
<td>C/10</td>
<td>C/5</td>
<td>C/3</td>
<td>C/2</td>
<td>C/2</td>
<td>C/2</td>
<td>C/2</td>
</tr>
<tr>
<td>Max Cell I (A)</td>
<td>0.23 A</td>
<td>0.26 A</td>
<td>0.30 A</td>
<td>0.38 A</td>
<td>0.45 A</td>
<td>0.90 A</td>
<td>1.50 A</td>
<td>2.25 A</td>
<td>2.25 A</td>
<td>2.25 A</td>
<td>2.25 A</td>
</tr>
</tbody>
</table>

![Graph showing VES16 charge current vs temperature](image-url)

- TRP Temperature [°C]
- Max Cell Charge Current [A]
2-LEO and GEO Cycling results
Accelerated 20 % DOD 4.05 V 20°C

- 35000 cycles in accelerated conditions on EM and QM cells
- Test conditions:
 - 20 % DOD with charge rate C/3 45 mins, Discharge 1.5 C rate 12 minutes
Real Life test at 20 and 30 % DOD

- Real time test EOCV=4.05 V, 20°C.
- 20 % DOD: charge 65 mins C/5, Discharge 35 mins C/2.9
- 30 % DOD: charge 65 mins C/3, Discharge 35 mins C/1.9
- Less than 20 % energy loss at 50000 cycles for 30%
20 % and 40 % DOD/charge current comparison

- Real time test with EOCV=4.05 V, 20°C
 - 20 % DOD : charge 65 mins C/5, Discharge 35 mins C/2.9
 - 40 % DOD : Charge 65 mins C/2.5 Discharge 35 mins C/1.45
- VES16 can sustain LEO mission at 40 % DOD
LEO – VES16 SLIM model vs real-time life-test
LEO – VES16 SLIM model vs real-time life-test

4.05V EoCV, 20%DoD, +20°C

- 14% losses at 50k cycles

4.05V EoCV, 30%DoD, +20°C

- 20% losses at 50k cycles

4.05V EoCV, 20%DoD, +30°C

SLIM model predictions at 4.05V EoCV, +20°C

- 5% DOD
- 10% DOD
- 20% DOD
- 30% DOD
4C rate Discharge Peak capability

- 20% DOD LEO standard plus 4 C rate peaks, limited impact on degradation.

![Graphs showing EOD VES16 Cell Voltage evolution under ten 4C - 15 sec. discharge pulses per orbit in LEO Cycling at ≈19%DoD and VES16 Accelerated LEO Life-Tests with 3C, 3.5C & 4C radar pulses at ≈20%DoD @20°C.]
VES16 performances at extended low temperature

- Charge at -20°C and various current
- Discharge at +20°C and C/2

VES16 cycling performances in LEO at 0°C
750 cycles (completed)

Graphs and Data

- Voltage (V) vs. Capacity (Ah)
- Voltage (V) vs. Energy (Wh)
- Resistance (mOhm) vs. Cycle Number (RI 5 sec)

Key Points

- Charge at -20°C and various current
- Discharge at +20°C and C/2
- VES16 cycling performances in LEO at 0°C
- 750 cycles (completed)

Graph Details

- Voltage Range: 2.7 V to 4.1 V
- Capacity Range: 0 Ah to 5 Ah
- Energy Range: 2.7 Wh to 4.1 Wh
- Resistance Range: 0 mOhm to 25 mOhm
- Cycle Number Range: 0 to 750

Legend

- C/10, C/20, C/30, C/40, C/50
- 10% DOD, 15% DOD, 20% DOD
Accelerated GEO cycling at 80% DoD, 20°C, EOCV = 4.05 V and 4.075 V: Voltage loss ~45mV from season 1 to season 35.
GEO – Synthesis of life-test at 60, 70 & 80% DoD

- VES16 cycling performance in GEO:
 - Accelerated GEO life-test w/o solstice (worst case compared to real-time or semi-accelerated life-test) 60, 70, 80% DOD; EOCV = 4.05 and 4.075 V
 - Very good stability of end-of-discharge voltage (EoDV) during 23rd discharge (72 min)
GEO – synthesis of check-up at 60, 70 & 80% DoD

- VES16 cycling performance in GEO:
 - Accelerated GEO life-test w/o solstice (worst case compared to real-time or semi-accelerated life-test)
 - Energy loss: ~2% loss after 30 seasons (15 years of GEO cycling)

Variation of energy in check-up

Variation of internal resistance at 40%SoC in check-up
3- Battery Module Designs and qualification
Battery modules design range

- Voltage steps: from 6S to 10S / Capacity steps: 4P, 5P / 6P, 8P
- Building blocks and modular approach for LEO and GEO missions
- Including autonomous balancing system
- Others configuration & customization possible on request

Double deck modules

Single deck modules
Battery modules design range

- Cells connected in **serial-parallel** (SP) architecture with tabs & bus bars
- Re-use Saft flight proven **mechanical resining assembly** btw plates
- Modular **balancing circuit on each string** (SBS)
- Cells individual **voltage access**, thermal **sensors**, heaters...

![Diagram](image-url)
SBS : Simplified Balancing System

- **Purpose:**
 Homogenize cells’ voltage at end of charge to extend cycling life, autonomously

- **Principle:**
 Derive individual cell charge current from a Voltage trigger level

- **Design:**
 One dedicated SBS function per cell, one SBS board per cells string

- **Space environments demonstrated:**
 140krad level, 2000h @ 125°C life test, 3400g shock, 20g sine, 36grms
Battery Qualification Plan

- Extensive characterization phase
 - Electrical characterisation
 - Self discharge study
 - Balancing demonstrations

- Environmental phase
 - Vibrations tests (sine & random)
 - Shock tests
 - Thermal/Vacuum cycling
 - Corona & Magnetic Moment

- LEO life test on 8S4P VES16 battery
ESA Battery Qualification Plan

3 qualification vehicles:

- **QM1**: 2x10S8P
 - Electrical and Environmental tests
 - L x W x H: 406 x 196 x 165 mm³ / 10S8P
 - Mass (Max): 27.6 kg

- **QM2**: 10S5P
 - Environmental tests
 - L x W x H: 376 x 216 x 90 mm³
 - Mass (Max): 7.5 kg

- **QM3**: 8S4P
 - LEO Life tests running
 - L x W x H: 308 x 180 x 90 mm³
 - Mass (Max): 4.9 kg

<table>
<thead>
<tr>
<th>Energy</th>
<th>2,560 Wh at C/3, 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>1520 W for GEO under 70% DoD</td>
</tr>
<tr>
<td></td>
<td>1040 W for LEO under 20% DoD</td>
</tr>
<tr>
<td>L x W x H</td>
<td>406 x 196 x 165 mm³ / 10S8P</td>
</tr>
<tr>
<td>Mass (Max)</td>
<td>27.6 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy</th>
<th>800 Wh at C/3, 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>465 W for GEO under 70% DoD</td>
</tr>
<tr>
<td></td>
<td>320 W for LEO under 20% DoD</td>
</tr>
<tr>
<td>L x W x H</td>
<td>376 x 216 x 90 mm³</td>
</tr>
<tr>
<td>Mass (Max)</td>
<td>7.5 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy</th>
<th>512 Wh at C/3, 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>300 W for GEO under 70% DoD</td>
</tr>
<tr>
<td></td>
<td>205 W for LEO under 20% DoD</td>
</tr>
<tr>
<td>L x W x H</td>
<td>308 x 180 x 90 mm³</td>
</tr>
<tr>
<td>Mass (Max)</td>
<td>4.9 kg</td>
</tr>
</tbody>
</table>
Mechanical successful validation: *Random Vibrations*

- On **10S5P single deck** battery
 - 9.5 Grms in plane & 14.6 Grms vertical

- On **10S8P double deck** battery
 - 11.2 Grms in plane & 13.9 Grms vertical
Battery Qualification Plan

- Mechanical successful validation: *Shock Test*
 - On 10S8P *double deck* battery
 - 3400g from 2000Hz to 10000Hz
 - No frequency drift before/after test
 - No battery degradation

Battery shock test

Required spectrum
Battery 10S5P energy tests @ various rates & temperatures
Battery qualification campaign

- SBS balancing efficiency **test** in LEO and GEO:
 - Initial cells unbalance (60mV) within 8S4P QM3 battery
 - Battery **unbalance** recovered after **<15 days** in LEO (<15mV)
4. Conclusions
Conclusions

- VES16 cell performances demonstrated its capability to answer both LEO and GEO missions

- High DOD (up to real 40 %) or high peak power LEO missions are achievable thanks to the specifically chosen negative electrode (with a specific blend)

- VES16 is well adapted for low power GEO satellites with DOD up to 80 %.

- Qualification tests on battery modules are successful.

- 120 VES16 batteries are already delivered or in manufacturing. More in order.

VES16 batteries behave as designed and demonstrated long duration LEO/GEO missions …

Acknowledgments to CNES and ESA to have supported the qualification plan
Philae on Chouryomov-Gerasimenko Comet

- Saft LSH20 Primary Battery powered Philae lander during 60 hours for experiments, analysis, transmission and communications on the Chouryomov-Gerasimenko comet.
- Great success for the Universe evolution understanding