

Restore-L Mission Information

Package for NASA Solicitation #NNH15HEOMD001 Spacecraft Bus Concepts To Support The Asteroid Redirect Robotic Mission And In Space Robotic Servicing

NASA Headquarters Ron Ticker, 202-358-2429

Content

This package contains relevant information about the NASA Restore-L mission concept to aid potential respondents to NASA Solicitation #NNH15HEOMD001.

Outline of contents:

- Overview of NASA's In Space Robotic Servicing Efforts
- Restore-L Mission Overview
- Restore-L Concept of Operations
- Restore Servicing Vehicle Notional Design
- Bus High-Level Requirements
- Servicing Payload Description
- Servicing Payload (SP) Mass and Power Budgets

All images are notional and all content is in draft form.

Overview of NASA's In Space Robotic Servicing Efforts

Concept/Tech Development

Mission Concept Studies

Restore-G 2009-2014 study. GEO servicer.

Restore-L 2014 onwards study. LEO servicer.

Technology Development Areas

Restore Reviews

Systems Engineering Aug 2012

Payload Systems Requirements Mar 2013

Community Engagement & Research

RFIs & RFQs

Ongoing engagement with:

- Legal community
- Investment bankers
- Commercial bus manufacturers
- Fleet owners/operators

International Workshops 2010 & 2012

http://ssco.gsfc.nasa.gov/

Restore-L Mission Overview

NASA

Mission Objectives

- Refuel Government-owned client satellite in low Earth orbit (LEO)
 - Notional client: Landsat 7
- Technology demonstration mission
 - Advance robotic servicing technologies to operational status
- Program Option to service additional satellites

Restore Servicing Vehicle (RSV) (bottom, with conceptual Bus shown) mated to notional client (top)

Restore-L Concept of Operations

Restore-L High-Level Requirements

Title	Description			
Design Life	Restore-L shall have a primary mission lifetime of 1 year.			
Rendezvous and Inspection	Restore-L shall rendezvous with and inspect a client satellite in Low Earth Orbit (LEO).			
Autonomous Capture	Restore-L shall perform an autonomous capture of a client satellite.			
Teleoperated Robotics	Restore-L shall perform teleoperated robotic servicing tasks.			
Refueling	Restore-L shall refuel a Government-owned satellite in LEO.			
Relocation	Restore-L shall demonstrate relocation of a client satellite.			
Re-deploy	Restore-L shall release and safely depart from a client satellite.			

Restore Servicing Vehicle – Notional Design

Servicing Payload

 Government Furnished Equipment

Spacecraft Bus*

- Electrical Power System
- Mechanical
- Propulsion
- Communication
- Data
- Thermal

*See Bus functions on next slide

Bus High-Level Functions

Electrical Power System

- Support Servicing Payload Power (see Power Budget, slide 9)
- Low Voltage 28 + 4 VDC
- High Voltage 100 + 10 VDC
- Prime and Redundant Heater power
 - Native Bus voltage
 - Approximately 60 heater services

Mechanical

 Support Servicing Payload Mass (see Mass Budget, slide 9)

Propulsion

- 6-DOF chemical maneuverability
- Program Option: reduced-performance
 version of the ARRM SEP system

Communication

- Assumes bus carries communication mass and power
- S-band low data downlink / high rate uplink for robot teleoperations
- Ka-band high data rate for video / TLM
- CCSDS protocols
- Encryption

Data

- MIL-STD-1553B, RS-422, and/or RS-485 for bus-payload CMD & TLM interface
- LVDS for high speed data

Thermal

- Payload thermally isolated from Bus
- Bus controls heaters on payload

Servicing Payload (SP) Mass and Power Budgets

SP Mass Budget

	Total Mass CBE* (kg)	Total Mass MEV** (kg)	
Client transferred hydrazine (per client)	100	100	
SP Total (dry)	785	940	
SP Total (wet)	885	1040	

No contingency

With contingency

*CBE: Current Best Estimate

**MEV: Maximum Expected Value

SP Power Budget

	Heaters Only (W)	Rendezvous*** (W)	Capture*** (W)	Robotic Ops*** (W)	Refueling*** (W)
Total Avg.	540	870	1340	1055	1065
Total Peak	540	870	1790	1495	1145

***Includes heater power