
The James Webb Space Telescope (JWST) will be the
world’s largest infrared, space-based observatory.

It features a more than 21-foot primary mirror and is
expected to launch in 2018. A successor to the well-
known Hubble telescope, JWST will be able to see
back to the beginnings of the known universe, the
earliest formation of galaxies, and the birth of planetary
systems. To allow JWST to look back in time, the software
development team at GSFC took an integrated computer-
aided software engineering (CASE) approach to design
the complex software. The team employed a modern
suite of modeling and development tools based on the
Unified Modeling Language (UML).

Enhancing systems integration
Two critical systems, the integrated science instrument
module (ISIM), which integrates all the hardware and
software to support the JWST science instruments, and
the core command and data handling (C&DH) software,

were developed this way, as were all the applications
controlling the specific science instruments. “The use
of an integrated CASE tool suite for development was
primarily to reduce the complexity of integration of all
the independently developed instrument software,” said
Mr. Michael Aguilar, NASA Technical Fellow for Software.
Several NASA Centers, along with partners from industry,
academia, and the European Space Agency were involved
in the software development at their individual facilities,
following their own review processes.

Standardized development tools
The project team standardized the use of IBM’s Rational
Rose CASE tool for the JWST software design, coding,
testing, as well as integration. Taking full advantage of the
tool, “The ISIM Flight Software Development Team was
one of a few organizations in the high reliability spaceflight
environment to use the tool’s auto-source code generation
aspects,” Aguilar added. The team coded within the UML

Continued on next page

The first 6 of 18 segments that will form the James Webb Space Telescope primary mirror.
Ball Aerospace

17

Preparing to See into the Past

featured knowledge

http://www.nasa.gov/sites/default/files/atoms/files/techup2014_pdf9-1pageview.pdf

make is
controlled

by a
makefile

1. Rational Rose
RealTime invokes
external
Generate/Compile

2. Make
invokes
compiler

3. Compiler
compiles
C source
files ...

UNIX: Top
Win32: Top.exe

make/n make

Executable

C compiler

makefile

C
source files

RTS
Library

4. ... and
links with RTS
Library

5. The result is
an executable
program

Scope of this Porting Guide

make is
controlled

by a
makefile

design model elements, ensuring code and design were
always in sync, significantly increasing productivity as
design and code reviews no longer required resource-
intensive review material preparation.

A built-in software documentation tool and document
templates were used for automated creation of code
and design review documentation using model elements
and database contents. The IBM Rational Requisite
Pro tool suite was used for requirements management.
Requisite Pro was part of the integrated tool suite that
provided links to the configuration management and
defect tracking tools and enabled traceability down to
the source code implementation levels. “The tools helped
facilitate concurrent development by the multi-developer
teams,” Aguilar noted.

Accruing benefits
The ISIM Ground System Support Team delivered more
than 21 commercial-off-the-shelf-based development,
test, and integration systems to validate and qualify
flight instrument hardware for space. ISIM flight software
was used to qualify flight hardware for space through
formal box-level environmental testing, test procedure
development and operator training, and to develop and
certify operational scripts for spaceflight use. “The cost
and effort in the development and maintenance of these

test systems paid off when the effort of integration of all
the software completed within 1 week of delivery,” said
Aguilar.

The code generated by the CASE tool was found to be
acceptable for the mission. The compiled code passed
unit, subsystem, and system testing in an environment
identical to previous mission testing environments. Static
code checkers performed source code analysis to ensure
specific standards were being followed, coding language
issues were addressed, and coding errors were identified.

Over the course of the project, about 25 software build
cycles were required for the ISIM and C&DH code,
with each build encompassing a feature that could be
functionally tested. Each software build was verified with
a build integration test quality check before being passed
to the test team, which performed an independent
functional build verification test in parallel with the next
software build. Similar build cycles occurred across the
partner teams developing the science instruments. This
overlapping schedule continued until all required features
were implemented.

Ultimately, the choice of a common set of development
tools and incremental and iterative software development
processes could respond to changes in requirements
rapidly and fit into the NASA system-level project waterfall
requirements and schedule. □

Software development environment provided by IBM’s Rational Rose CASE tools.

18

featured knowledge

rtUbound

registerModeLog

restartOneCapsuledeleteOneCapsule

resetCounters

resetCounters

S2

normalMode

sendResetData

True

CP2
C

C

False

rtPortBounds

hsInitCompleted

dumpModeLog

eepromCrcReq

noEEpromCrc

scReady

nvReady

waitForCrcNvResp

H*H*

H*

H* H*

H*

H*

H*

Ccdh_StartupInitialization

Model-Based Systems Engineering (MBSE)
MBSE is a formalized methodology for
implementing the processes and practices of
systems engineering through the use of models
and modeling. In practice, it is the application
of modeling to support system requirements,
design, analysis, verification, and validation
activities beginning in the conceptual design
phase and continuing throughout development
and later life cycle phases. MBSE encompasses
requirements, behavior, architecture, and the
validation and verification in one system-level
model, regardless of hardware or software
implementation.

Model-based engineering has been practiced
for years in discipline-specific areas. Examples
include computer-aided design for developing
two or three-dimensional models of physical
objects, finite element models to examine the
physical behavior and response of structures,
and electronic circuit simulation tools to
examine circuit performance are just a few
examples. Current MBSE efforts are working
to incorporate the discipline-specific models
into the system-level model for increased

accuracy of system-level performance
predictions. To deal with the rise of software-
intensive systems, a new concept of designing
software was introduced in the ‘70s, called
computer-aided software engineering (CASE).
This term is used for a new generation of tools
that applies rigorous engineering principles
to the development and analysis of software
specifications, which have now evolved to
cover the complete software engineering
lifecycle process. The term integrated
computer-aided software engineering (I-CASE)
was introduced and includes tools capable of
generating entire executable applications from
design specifications.

These new methodologies enable rapid
prototyping techniques to develop systems
faster, at lower cost and higher quality. By
using a prototype, the developed system
can be tested more often in between the
development phases. Design decisions can be
validated, and design errors can be detected
and corrected early in development to produce
systems more efficiently and effectively. □

Example of UML statechart used on JWST for state machine modeling.

19

featured knowledge

