NASA Spacecraft Conjunction Assessment and Collision Avoidance Best Practices Handbook

Informational Briefing to the Small Satellite Systems Virtual Institute (S3VI)

October 13, 2021

NASA Office of the Chief Engineer
Mission Resilience and Protection Program
Today’s Discussion

Context

Process and Risk

Gaps / Opportunities

Key elements of the best practices

Forward work
MISSION RESILIENCE AND PROTECTION PROGRAM

NASA Guidance Overview for Conjunction Assessment Topics

Collision Avoidance for Space Environment Protection

NID 7120.132 Effective 2020-11-19

NPR

Expected CY2022

In progress, replaces the NID

NASA Spacecraft Conjunction Assessment Best Practices Handbook

Released December 2020

Next update no sooner than CY2022

Usable by any space operator

NID

NID replaced

HBK

Initial draft early CY2020

STD

STD Initial draft early CY2020

NASA-STD-1007 Conjunction Assessment Standard (DRAFT)

Released no sooner than CY2022

Expected CY2022

NASA-specific

In progress, replaces the NID

Usable by any space operator
Where Does NASA Fit?

NASA …

- Measures orbital debris and helps develop the technical consensus for adopting debris mitigation measures
- Performs research and development for orbital debris mitigation and conjunction risk assessment
- Generates and shares ephemeris data for NASA missions
- Performs conjunction risk assessment for NASA-sponsored missions, certain others
- Shares knowledge and expertise
- Encourages a robust and diverse commercial space industry

Space Policy Directive-3, the National Space Traffic Management Policy (SPD-3), established a goal to develop safety standards and best practices

- NASA’s handbook supports the SPD-3 goals by sharing our current approach
NASA Spacecraft Conjunction Assessment and Collision Avoidance Best Practices Handbook

Addresses general conjunction assessment topics across the mission lifecycle

• Human spaceflight-specific topics, such as rendezvous with the International Space Station, are not fully addressed

Helps space system operators understand existing capabilities and processes

• Includes US Space Command (USSPACECOM) and the US Space Force 18th Space Control Squadron (SPCS)

Offers voluntary best practices for use by any space operator to help protect the space environment
Orbital Debris vs Conjunction Assessment

<table>
<thead>
<tr>
<th>Orbital Debris Mitigation</th>
<th>Active Debris Removal</th>
<th>Conjunction Risk Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducing the introduction of new orbital debris into orbit, including through use of shielding and disposal planning.</td>
<td>Reducing the amount of existing orbital debris from orbit.</td>
<td>Evaluating the risk of close approaches between objects, so that high-risk approaches may be mitigated, such as through a maneuver.</td>
</tr>
<tr>
<td>NASA helps to characterize and model the orbital debris environment, and in developing the technical consensus for adopting mitigation measures.</td>
<td>NASA conducts research and development of technologies that may support active debris removal.</td>
<td>NASA performs conjunction risk assessment for its operating missions.</td>
</tr>
</tbody>
</table>

See also guidance from Inter-Agency Space Debris Coordination Committee (IADC) and United States Government Orbital Debris Mitigation Standard Practices (ODMSP).

Conjunction Assessment (CA) is the process of identifying close approaches between two orbiting objects; sometimes called conjunction screening.

The 18th Space Control Squadron (18 SPCS) at Vandenberg Space Force Base (VSFB) maintains the high accuracy catalog of space objects. Orbital Safety Analysts (OSAs) at VSFB screen protected assets against the catalog, perform tasking requests, and generate close approach data.

CA Risk Analysis (CARA) is the process of assessing collision risk and assisting satellites in planning maneuvers to mitigate that risk, if warranted.

The NASA CARA program performs risk assessment for all NASA operational non-HSF satellites, and some partner missions.

JSC Flight Operations Directorate (FOD) performs risk assessment for all NASA HSF program assets and is the O/O for maneuver decisions and execution.

Collision Avoidance is the process of executing mitigative action, typically in the form of an orbital maneuver, to reduce collision risk.

Each satellite Owner/Operator (O/O) – mission management, flight dynamics, and flight operations – is responsible for making maneuver decisions and executing the maneuvers.
General Collision Avoidance Flow

1. Tracking data from sensors is integrated into the catalog.
2. Each protected asset is screened against all other cataloged objects.
3. Data for identified conjunctions are provided to the owner/operator.
4. Owner/operator performs a risk assessment and determines a mitigation.
5. Owner/operator coordinates with other operators to avoid simultaneous maneuvers.
6. Owner/operator conducts mitigation (e.g., maneuver).
7. Owner/operator provides information for each owned system (i.e., ephemeris with covariance information, maneuver plans/reports, operating status).

1 NASA missions have access to internal services for these functions
Components of Conjunction Risk

Uncertainty with respect to the orbital environment

- Natural objects, e.g., micro-meteorites, Near Earth Objects (NEOs)
- Orbital debris, particularly at small sizes (e.g., mm)

Inaccurate measurements and models

- Ephemeris without covariance information (e.g., two-line elements)
- Atmosphere models, thrust models, computation models

Insufficient coordination between operators, avoided by:

- Sharing ephemeris, de-conflicting maneuvers
- Coordinated automation, particularly for maneuvers
Stressors from Scale

<table>
<thead>
<tr>
<th>Stressor</th>
<th>Risk Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of discrete owners/operators, often with varying expertise with conjunction assessment practices</td>
<td>Ability for operators to coordinate or implement conjunction mitigations</td>
</tr>
<tr>
<td>Launches with large numbers of payloads (50+), and payloads with sub-payloads</td>
<td>Risk to existing systems, including through delayed cataloging of the new objects</td>
</tr>
<tr>
<td>Number of systems in popular orbits</td>
<td>Increased rate of conjunctions, maneuvers</td>
</tr>
<tr>
<td>Technology adoption, e.g., propulsion, autonomous operations</td>
<td>Inaccurate predictions due to model assumptions or state changes</td>
</tr>
<tr>
<td>Trackability with respect to debris, small systems, bulk deployments</td>
<td>Un-detected conjunctions</td>
</tr>
</tbody>
</table>
Gaps / Opportunities

International: space traffic coordination, technical standards
- IADC efforts exist, specific to debris

Space situational awareness data
- Sensor capabilities, integration and fusion, verification and validation

Catalog integration
- Need a common source of truth

Automation
- New capabilities, technical standards, intra-operator coordination
- Intra-operator autonomous conjunction assessment support
Key topics include:

• Make full use of USSPACECOM services
 • Space-Track.org: manage the account, contact information
 • Use screening service to receive notice of identified conjunctions
 • Share ephemeris, Conjunction Data Messages (CDM), and maneuver notifications

• Plan for safety of flight that includes CA screening and risk assessment

• Coordinate large constellation plans with USSPACECOM and NASA during development
Key topics include:

• Consider final, as well as transit to and from, on-station position
 • Estimate close approaches over lifetime, imputed reliability, fuel needs
 • Transiting spacecraft should yield way to on-station spacecraft
 • Use fastest and safest disposal option available

• Address minimizing of new debris, assess existing debris density estimates

• Consider systematic conjunctions with other active systems, coordinate with the other operators

• Address Launch Collision Avoidance (LCOLA) and associated gap

• Ensure deployed systems are trackable and reliable

• Implement end-to-end capabilities for conjunction assessment and mitigation
 • Generate and share accurate ephemerides, plan potential risk mitigations, assess conjunctions (via CDMs) and risk, validate all tools well in advance of deployment
Chapter 5: Pre-Launch Preparation and Early Launch Activities

Key topics include:

• Coordinate with USSPACECOM regarding launch, deployment planning, and other needs
 • Provide spacecraft and planned operations information, injection vectors, ephemerides
 • Identify advanced CA product needs from USSPACECOM
 • Support the space cataloging process, report any anomalies

• Obtain CA screening services (e.g., via USSPACECOM)

• Coordinate with NASA for large constellations (expertise exchange)
Chapter 6: On-Orbit Collision Avoidance

Key topics include:

- Maintain Space-Track.org information, particularly active and maneuverable status flags
- Regularly share ephemerides (with covariances), maneuver plans, and reports
- Actively support a routine screening process, including for all maneuvers and collision mitigations
- Use Probability of Collision (P_c) measure and mitigate high-risk conjunctions
 - Plan mitigating action when $P_c > 1E-04$ (1 in 10,000) or estimated miss distance is less than the hard-body radius (HBR)
 - Mitigate P_c by at least 1.5 orders of magnitude below 1.4E-04 (i.e., to below 3.1E-06)
 - For conjunctions, coordinate with the operators of the other object(s)
- Autonomous control requires additional considerations, including:
 - Accurate ground simulation and ground-sourced abort capabilities
- Consider light pollution in material design and orbit selection
Appendix L: Commercial Data in NASA Conjunction Assessment

The following principles are used to guide NASA’s approach to use of commercial data:

1. Use raw observation data only, and combine them with Space Surveillance Network (SSN) observations for a single solution.
2. All data must be validated.
3. Cost/benefit analysis must be undertaken before purchasing.
Forward Work

Future versions of the handbook
- Integrate feedback from space operators
- Expand coverage to address emerging areas of interest
- Continue to focus on a safe space environment for all operators

Supporting space traffic management and coordination
- Technical standards
- Model practices
NASA Spacecraft Conjunction Assessment and Collision Avoidance Best Practices Handbook (Links)

Comments or suggestions are welcome
• Send to ca-handbook-feedback@nasa.onmicrosoft.com

Downloadable from:
Backup Slides
References

NASA Spacecraft Conjunction Assessment and Collision Avoidance Best Practices Handbook
• https://nodi3.gsfc.nasa.gov/OCE_docs/OCE_51.pdf

NASA Examples of Information to Expedite Review of Commercial Operator Applications to Regulatory Agencies
• https://www.nasa.gov/recommendations-commercial-space-operators

NASA Conjunction Assessment Risk Analysis software repository
• https://github.com/nasa/CARA_Analysis_Tools

NASA Orbital Debris Program Office
• https://orbitaldebris.jsc.nasa.gov/

Inter-Agency Space Debris Coordination Committee
• https://www.iadc-home.org/

USSPACECOM Space-Track web site:
• https://www.space-track.org/

USSPACECOM Spaceflight Safety Handbook for Satellite Operators

US Government Orbital Debris Mitigation Standard Practices (ODMSP)
Handbook Table of Contents

Preface
Acknowledgements
Introduction
Roles and Responsibilities
History
Space Vehicle and Constellation Design
Pre-Launch Preparation and Early Launch Activities
On-Orbit Collision Avoidance
Contact Information

Appendix A: Acronyms
Appendix B: Glossary
Appendix C: Best Practices List
Appendix D: Best Practices for NASA Missions
Appendix E: Use of Analytic Theory Orbital Data in Conjunction Assessment
Appendix F: Expected CA Event Rates
Appendix G: Orbital Debris Density
Appendix H: Satellite Colocation Analysis
Appendix I: Satellite Covariance Realism Assessment Procedures
Appendix J: CARA Risk Assessment Tools Validation
Appendix K: R-15 Message
Appendix L: Commercial Data in NASA Conjunction Assessment
Appendix M: Use of the Probability of Collision (Pc) as the Risk Assessment Metric for Conjunction Assessment
Appendix N: Pc Calculation Approaches
Appendix O: Collision Consequence
Appendix P: Event Actionability
Appendix Q: List of Works Cited

Content developed from inter-agency working group

Document size summary:
• Main document: 40 pages
• Appendices: 117 pages
• 83 best practices
Statistics: Maneuvers per Year, by Orbit Regime, NASA-supported Non-HSF Missions, 2005 – May 2021

~20% of analyzed events require remediation