Systems Capability Leadership Team

• Serve as a community of practice in autonomous systems

• Identify barriers that impact the development and infusion of autonomy capabilities into mission systems

• Identify and assess the NASA workforce and facilities needed to advance autonomous systems

• Recommend research and development in autonomous systems technology for NASA

• Recommend investment/divestment to improve the use of autonomous systems in aeronautics (ARMD), human exploration (HEOMD), science (SMD), and space technology (STMD)

Structure

• Lead: Terry Fong (STMD)
• Deputy: Danette Allen (LaRC)
• Members (34): Center SMEs, (S)CLT leads, Mission Directorate reps
AI, Automation, and Autonomy
Artificial Intelligence (AI)

- AI does NOT have a single, simple, universally accepted definition.
- AI is the “capability of computer systems to perform tasks that normally require human intelligence (e.g., perception, conversation, decision-making.” – Defense Science Board 2016
- AI encompasses many technologies and many applications:
Automation

- Automation is the automatically-controlled operation of an apparatus, process, or system by mechanical or electronic devices that take the place of human labor – *Merriam-Webster*
- Automation is not “self-directed”, but instead requires command and control (e.g., a pre-planned set of instructions)
- A system can be automated without being autonomous

The “Afternoon Train” (A-Train) is a coordinated group of Earth observing satellites that follows the same orbital “track”.
Autonomy

• Autonomy is the ability of a system to achieve goals while operating independently of external control.
 – 2015 NASA Technology Roadmaps
 ▪ Requires **self-directedness**
 (to achieve goals)
 ▪ Requires **self-sufficiency**
 (to operate independently)

• A **system** is the combination of **elements** that function together to produce the capability required to meet a need. The elements include all hardware, software, equipment, facilities, personnel, processes, and procedures needed for this purpose.

The Curiosity rover can autonomously drive from point to point using stereo vision and on-board path planning.
Autonomy involves many functions …

… that can be performed by humans or software
What is NOT autonomy?

Autonomy is NOT artificial intelligence, but may use AI
- Machine learning (deep learning, reinforcement learning, etc.)
- Perception (object recognition, speech recognition, vision, etc.)
- Search, probabilistic methods, classification, neural networks, etc.

Autonomy is NOT automation, but often relies on automation
- Most robotic space missions rely on automation
- Command sequencing (event, order, time triggered)

Autonomy is NOT only about making systems “adaptive”, “intelligent”, “smart”, or “unmanned / uncrewed”
- Autonomy is about making systems **self-directed & self-sufficient**
- Systems **can include humans** as an integral element (human-system integration / interaction, human-autonomy teaming, etc.)
- Software (e.g., decision support) can make **humans more autonomous** of other humans (air traffic control, mission control, etc.)
Why autonomy?

Autonomy is needed ...

- When the cadence of decision making exceeds **communication constraints** (delays, bandwidth, and communication windows)
- When **time-critical decisions** (control, health, life-support, etc) must be made on-board the system, vehicle, etc.
- When decisions can be better made using **rich on-board data** compared to limited downlinked data (e.g., adaptive science)
- When local decisions **improve robustness** and **reduces complexity** of system architecture
- When autonomous decision making can **reduce system cost** or **improve performance**
- When **variability in training, proficiency**, etc. associated with manual control is unacceptable
Where can NASA use Autonomy?

EARTH LAUNCH AND LANDING SYSTEMS
- Launch Vehicles
- Launch Abort Systems
- Entry, Descent and Landing

ROBOTIC EARTH-ORBITING SYSTEMS
- Formation Flying
- Constellations and Swarms
- Rendezvous and Docking
- On-Orbit Servicing
- In-Space Assembly
- In-Space Manufacturing
- Instrument Data Analysis
- Sensor Web

ROBOTIC SPACE SYSTEMS
- Planetary Ascent Vehicles
- Rendezvous and Docking
- Entry, Descent & Landing
- In Situ Access
- Sample Collection
- Orbital Navigation
- Instrument Data Analysis
- In Situ Resource Utilization

EARTH ATMOSPHERIC SYSTEMS
- Unmanned Aerial Systems
- Vehicle Mission Safety
- Vehicle Performance Enhance
- Human-machine teaming
- National Airspace Management
- Distributed Large-scale Collaborative Systems

HUMAN EARTH-ORBITING SYSTEMS
- Life Support
- Rendezvous and Docking
- On-Orbit Servicing
- Visualization and Interaction
- Robotic Assistants
- Mission and Data Analysis
- In-space Manufacturing
- In-space Assembly

HUMAN SPACE SYSTEMS
- Planetary Ascent Vehicles
- Life Support
- Rendezvous and Docking
- Entry, Descent & Landing
- Surface Transport
- Robotic Assistants
- Mission and Data Analysis
- In Situ Resource Utilization

GROUND SYSTEMS
- Mission Operations
- Visualization and Interaction
- Robotic Inspection and Repair
- Propellant/Commodity Loading
Aeronautics

Transforming civil aviation

Autonomy-Pilot Teaming for Complex Ops

Urban Air Mobility (UAM)

UAS Traffic Management (UTM)

Autonomy-Enabled ATM
Human Exploration
From Earth to the Moon and Mars

Earth
- Notional Commercial Platform
- ISS
- Commercial launch Vehicles

Moon
- Orion
- SLS
- Commercial Lunar Lander
- Robotic Surface Missions
- Gateway
 - PPE: Habitat – Airlock – Logistics

Mars
- Mars robotic exploration, technology development

In LEO
Commercial & International partnerships

In Cislunar Space
A return to the moon for long-term exploration

On Mars
Research to inform future crewed missions
Science Missions

Discovering the secrets of the Universe
Space Technology

Technology drives innovation

Early Stage Innovation
- NASA Innovative Advanced Concepts
- Space Tech Research Grants
- Center Innovation Fund/Early Career Initiative

Technology Maturation
- Game Changing Development

Partnerships & Technology Transfer
- Technology Transfer
- Prizes and Challenges
- iTech

Technology Demonstrations
- Technology Demonstration Missions
- Small Spacecraft Technology
- Flight Opportunities

SBIR/STTR

Low TRL

Mid TRL

High TRL
NASA Programs with Autonomy R&D

New algorithms (TRL 1-3)
• **ARMD**: Transformative Aero Concepts
• **SMD**: Planetary Science and Technology from Analog Research, COLDTech
• **STMD**: Space Tech Research Grants

Scaling the technology (TRL 4-7)
• **ARMD**: Airspace Operations & Safety
• **HEOMD**: Adv. Exploration Systems
• **STMD**: Game Changing Development

Flight systems (TRL 8-9)
• **HEOMD**: Adv. Exploration Systems
• **STMD**: Small Satellite Technology
Overview

• The UTM architecture addresses mission planning and execution strategies for UAS operations
• Provide cooperative, interoperable, digital ability to plan and schedule airspace resources; track vehicles; and assist with contingencies
• Support autonomous and remotely piloted vehicle operations

Research Focus

• Capability for operators to interact with each other through predefined data exchanges and application protocol interfaces
• Provide complete situation awareness of airspace use and constraints
• Urban environments and high density operations
Objectives

- Advance autonomy technology for human spaceflight (crew and vehicle)
- Planning and scheduling, fault detection, isolation and impact reasoning, plan execution, and crew decision support

Current activities

- Demonstrate crew decision support system on-board the ISS
- Demonstrate advanced caution and warning for infusion into Orion (for EM-2)
- Demonstrate vehicle systems automation in the iPAS simulation facility (JSC)
Astrobee (STMD)

Free-flying robot for ISS IVA
- 3 robots + docking station
- Open-source software
- Autonomous / telerobotic operations

IVA tasks in human spacecraft
- Mobile surveys (inventory + IVA environment monitoring)
- Mobile camera for mission control

Successor to SPHERES
- Multiple ports for new payloads
- Perform experiments without crew
- 7 guest science projects in devel.

Tech development for Gateway
- Support IVA robotics engineering
- Autonomous caretaking during uncrewed periods
- In-flight maintenance

Launch: NG-11 in April 2019
Scaleable autonomy for multi-spacecraft

- Comm: resilient data distribution
- Fault management: distributed diagnostics engine
- Distributed planning, scheduling, and task execution
- Ops: scaleable ground data system and human-system interaction

Flight demonstration

- Integrated to Starling / Shiver mission
- Reusable core software stack
- Dynamic inter-spacecraft coordination for monitoring variable RF signals

Note: project is completing formulation for FY19 start
Integrating System for Autonomous and Adaptive Caretaking (STMD)

Caretaking of exploration spacecraft
- Autonomous robots + spacecraft infrastructure (avionics, sensors, networking) + ground control
- Develop and test on ISS for future infusion to Gateway

Crewed periods
- Off-load routine work from astronauts
- Tech: safe human-robot interaction, robust navigation

Uncrewed (“dormant”) periods
- Monitor and maintain systems in the absence of astronauts
- Tech: sw architecture, diagnostics/prognostics, smart downlink
Future Autonomy R&D?

Perception for Extreme Environments
- **Autonomous nav** or **target selection** for icy worlds, interior oceans, caves, pits, etc.
- Requires new 3D sensors (lidar, time-of-flight cameras, etc.) & high-performance computing

Reactive Science
- Observe and/or sample **dynamic & transient phenomena** (plumes, seeps, weather, etc)
- Requires autonomous on-board decision making (planning, scheduling & execution)
- Must manage risk and uncertainty on-board

Collective Operations
- Enable a spacecraft swarm (10-100+) to **collectively perform** distributed activities
- Requires a distributed autonomy architecture (including coordination and collaboration)
- Must perform planning, scheduling, health management, etc. at a “collective” level
Autonomous Systems SCLT Activities

ARMD
- TACP TTT: “Autonomous Systems” subproject planning

HEOMD
- Deep Space Gateway Technology Utilization Working Group
- Exploration Capabilities Coordination Group (ExCCG)

SMD
- 2018 “Autonomy for Future Science Missions” workshop

STMD
- “Autonomous Operations” R&D planning (focus on STRG and GCD)
- STRG ESI 2018: "Smart and Autonomous Systems for Space” solicitation
- STRG STRI 2018: "Smart Deep Space Habitats” solicitation
- NSTRF TA04 topic chair
- GCD: advice/feedback to current and proposed projects
- Partnerships: review proposed agreement abstracts
Autonomous Systems SCLT Activities

OCE
- Autonomous Systems taxonomy development and infusion (to OCT, MDs, etc)
- Baseline assessment: state of capability in NASA

OCT
- Interagency Space Science & Technology Partnership Forum

External engagement
- DoD: Autonomy Community of Interest (CoI)
- DARPA: Robotic Servicing of Geosynchronous Satellites (*SME support*)
- NSF: Joint solicitation for the “Smart and Autonomous Systems” (*ESI 2018 topic is a pilot for larger NASA collaboration in FY19+*)
- Briefings from AFRL, ONR, etc.
Top Technical Challenges

Situation and Self Awareness
- The availability of qualified sensors (e.g., lidar for planetary rovers) and difficulty assuring data directly impacts perception performance

Reasoning and Acting
- Scaling to handle more complex problems (# of constraints, etc) with uncertainty (dynamic environments, etc) is an unsolved problem
- Performance is limited by mission computing (CPU, storage, comm)

Collaboration and Interaction
- Humans are complex, but they are a part of any autonomous system. What works for one person may not work for all.
- Human-system integration is a key challenge for NASA (HRP “Risk of Inadequate Design of Human and Automation/Robotic Integration”)

Engineering and Integrity
- Autonomous systems are difficult to V&V and to assure
- Autonomy capability cannot simply be “added” as an afterthought
Questions?