BENEFICATION OF TERRISTRIAL RESOURCES FOR THE PRODUCTION OF LUNAR SIMULANT SEPARATES

By

R. S. Lambson, S. M. Nordwick, J. N. Graham, E. J. Dahlgren, and C. A. Young

Montana Tech of The University of Montana 1300 West Park Street Butte, MT 59701

Objectives:

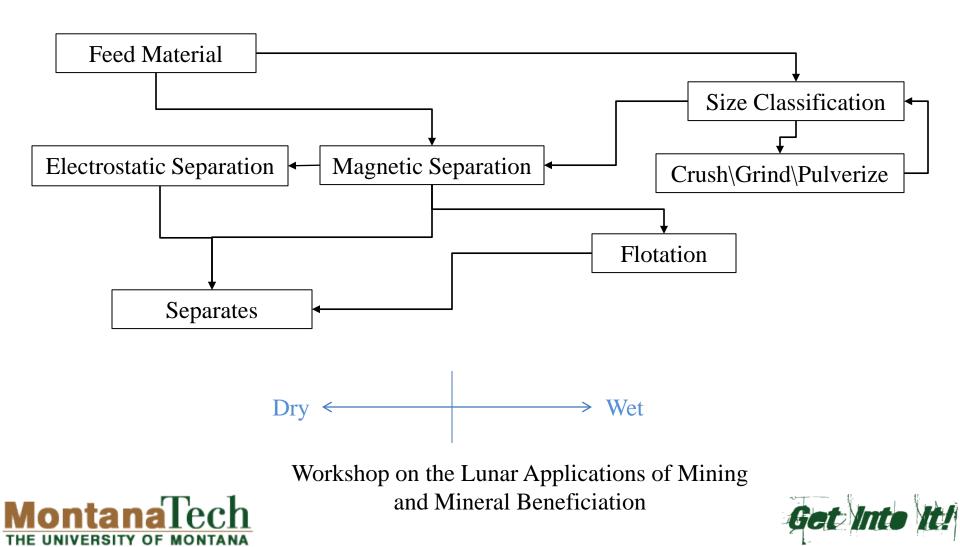
Develop and characterize a mineral beneficiation process for the production of simulated lunar regolith using terrestrial resources.

Examine, select, and develop a process for the production of high quality calcium plagioclase and clinopyroxene separates using Stillwater Mine ores and mill byproducts.

Feed Stock Materials

Slurried Stillwater Mill Tailings

"Road" Norite



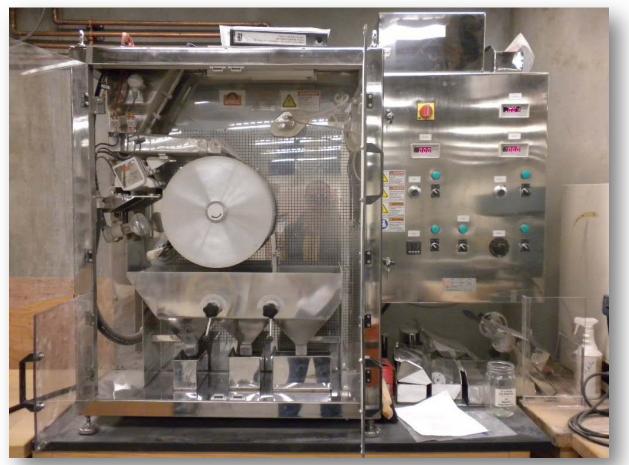
Dried Stillwater Mill Sands from USGS

Dry Magnetic Separation Equipment

Hand Magnet

Rare Earth Magnetic Belt Separator

Multiple Element Dry Drum Separator



Electrostatic Separation (ES) Equipment

Electrostatic Separator

Wet Magnetic Separation Equipment

Electromagnetic Wet Drum Separator

Wet High Intensity Magnetic Separator (WHIMS)

Froth Flotation Separation Equipment

Froth Flotation Cell

Analytical Equipment

X-ray Diffraction (XRD)

X-ray Fluorescence (XRF)

Analytical Equipment

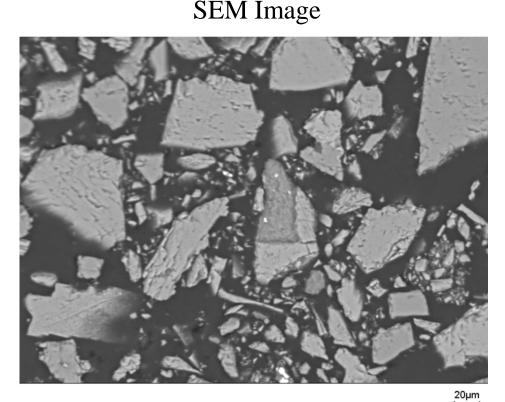
Scanning Electron Microscope\Energy Dispersive X-ray Spectroscope\Mineral Liberation Analyzer

"Road" Norite Rare Earth Belt Magnetic Separations (Dry)

Magnetic Separations at Various Size Fractions						
Particle Size	Weight Paramagnetic % Nonmagnetic					
(µm)	(grams)	(grams)	Fraction	(grams)	Fraction	
<1000 / +600	564.0	380.0	67.4%	184.0	32.6%	
<600 / +300	665.1	453.3	68.2%	210.8	31.7%	
<300 / +150	429.9	274.8	63.9%	155.1	36.1%	
<150 / +75	240.3	117.4	48.9%	122.9	51.1%	
-75	Too Fine					

- Similar results as NASA/USGS Study¹ ~ 68% nonmagnetic material
- $<150 \mu m$ particle sizes are not compatible with dry process techniques

¹D. Stoeser and W. Benzel, XRD results for Eriez magnetic separates of the Stillwater Road Norite, NASA/USGS Simulant Development and Characterization Project Internal Project Report, November 30, 2009.

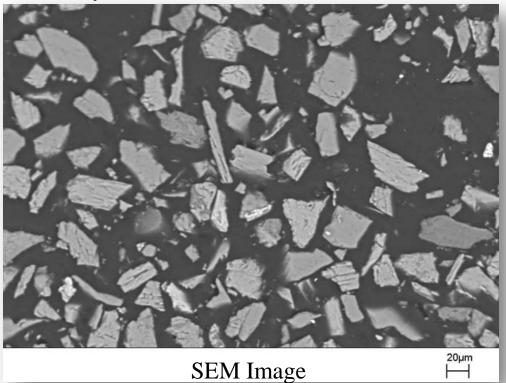


"Road" Norite Wet High-Intensity Magnetic Separation (WHIMS)

- "Road" Norite Ground to 70 % passing 45 μm
- Grinding introduces iron contamination
- Separations based on magnetic susceptibility possible

Sample Separations from WHIMS

Split	(grams)	%
NM-A	212.5	13.0
NM-B	615.9	37.7
PM-1	231.5	14.2
PM-2	116	7.1
PM-3	34.9	2.1
PM-4	11.4	0.7
PM-5	190.5	11.7
PM-6	221.1	13.5
Sum	1633.8	100.0



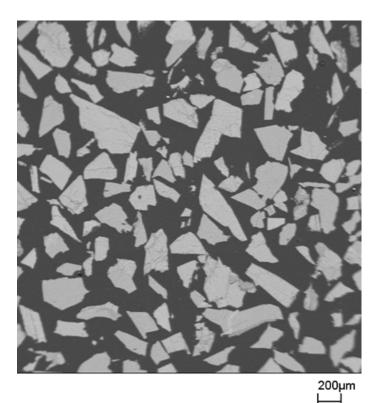
Multiple Element Dry Drum Separations

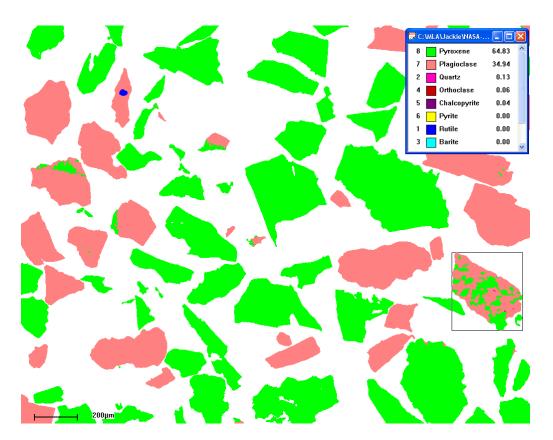
 Nonmagnetic (plagioclase)\Paramagnetic (pyroxene) split performed

Dry Stillwater Mill Sands from USGS

Sample Separations

(grams)	%	
107.2	6.9	
826.2	53.3	
435.1	28.1	
83.5	5.4	
13.3	0.9	
3.6	0.2	
4.9	0.3	
5.4	0.3	
4.9	0.3	
25.8	1.7	
37.1	2.4	
2.2	0.1	
1549.2	100.0	
	107.2 826.2 435.1 83.5 13.3 3.6 4.9 5.4 4.9 25.8 37.1 2.2	

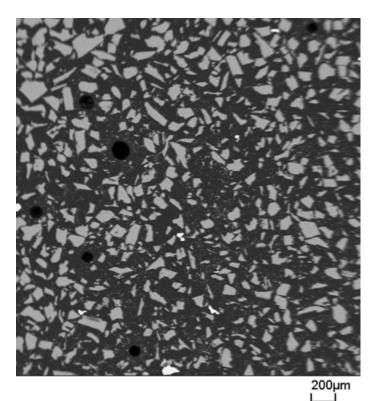


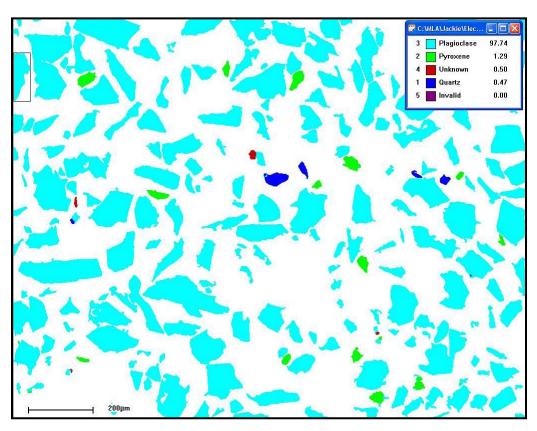


Paramagnetic Material From "Road" Norite Rare Earth Belt Magnetic Separations (Dry) + Electrostatic Separation

SEM Image

MLA Image

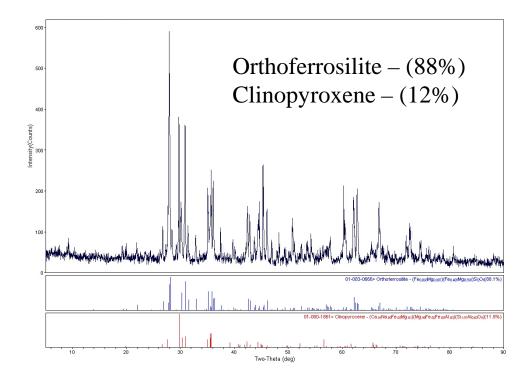




Nonmagnetic Material From "Road" Norite Rare Earth Belt Magnetic Separations (Dry) + Electrostatic Separation

SEM Image

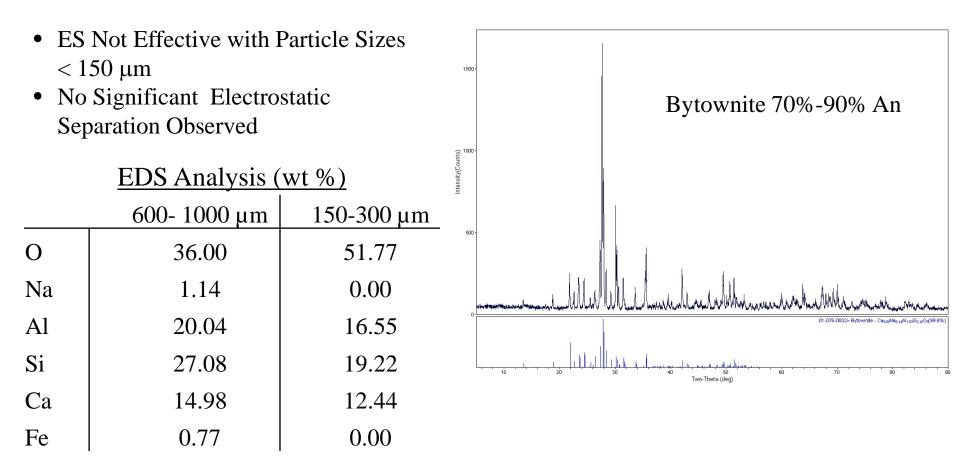
MLA Image



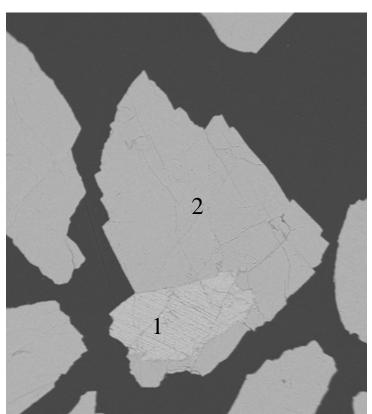
Paramagnetic Material From "Road" Norite Rare Earth Belt Magnetic Separations (Dry) + Electrostatic Separation

- ES Not Effective with Particle Sizes
 < 150 μm
- No Significant Electrostatic Separation Observed

EDS Analysis (wt %)


0	36.31
Mg	10.42
Al	9.09
Si	29.23
Ca	7.49
Fe	7.46

Diamagnetic Material From "Road" Norite Rare Earth Belt Magnetic Separations (Dry) + Electrostatic Separation

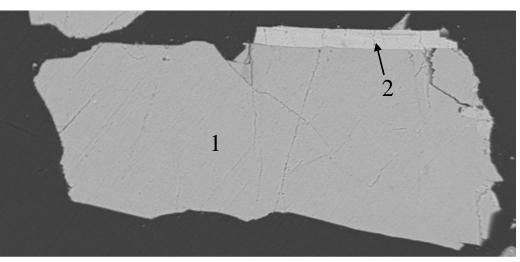


Locked Particles - Nonmagnetic

- "Road" Norite Separated with Rare Earth Belt Magnetic Separator
- Particle Classified as Nonmagnetic

	wt%		
Element	Region 1	Region 2	
0	36.00	32.34	
Na	1.08	1.24	
Mg	0.99	0.00	
Al	19.07	21.14	
Si	27.01	28.51	
Ca	14.93	16.77	
Fe	0.93	0.00	

EDS Analysis

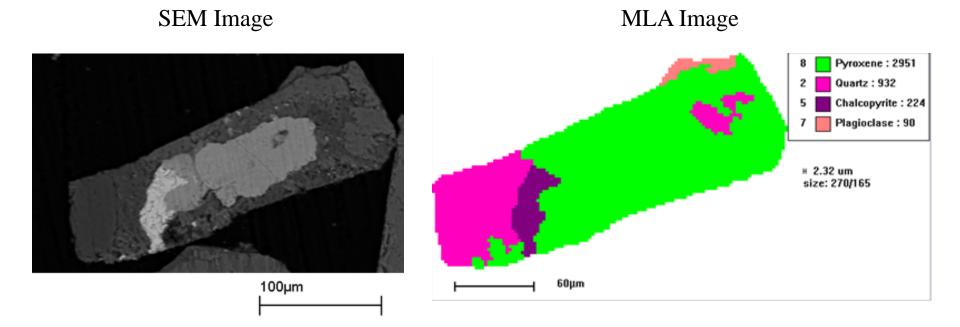


Locked Particles - Paramagnetic

- "Road" Norite Separated with Rare Earth Belt Magnetic Separator
- Particle Classified as Paramagnetic

	wt%		
Element	Region 1	Region 2	
0	29.75	33.11	
Na	0.00	1.21	
Al	16.14	21.15	
Si	23.15	28.6	
Ca	21.23	15.93	
Fe	9.73	0.00	

EDS Analysis



Locked Particles

- "Road" Norite Separated with Rare Earth Belt Magnetic Separator
- Particle Classified as Paramagnetic

Materials and Processes

"Road" Norite

- Rare Earth Magnetic Belt Separator*
- Electrostatic Separator
- Multiple Element Dry Drum Separator
- Wet High Intensity Magnetic Separator
- Froth Flotation

Slurried Stillwater Mill Tailings

- Wet Drum Electromagnet
- Wet High Intensity Magnetic Separator*
- Multiple Element Dry Drum Separator
- Froth Flotation

Dried Stillwater Mill Sands (from USGS)

- Rare Earth Magnetic Belt Separator
- Electrostatic Separator
- Multiple Element Dry Drum Separator

Flotation

Objectives:

- 1. Concentrate Calcium Minerals
- 2. Remove Hydrated Minerals

Process Steps:

- 1. Grind to liberate mineral particles,
- 2. Condition to achieve hydrophobic differences,
- 3. Float hydrophobic particles, and
- 4. Produce desired mineral concentrate.

Disscussion

Froth Flotation

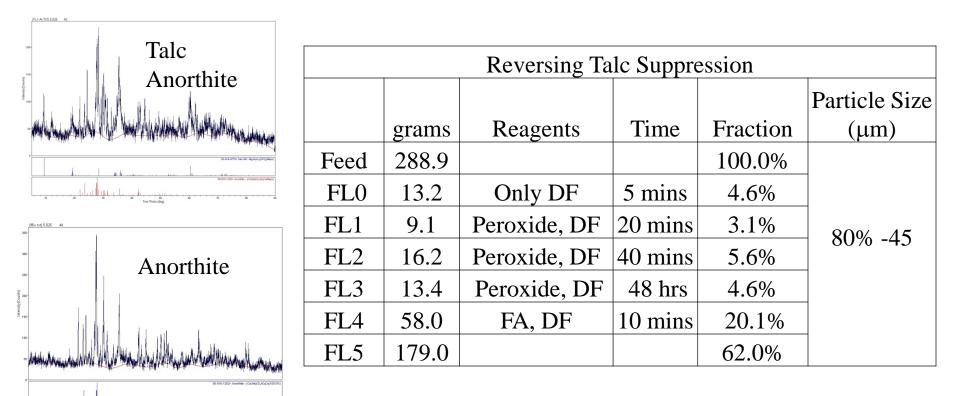
"Road" Norite Slurry Adjusted to pH 9.0 (80% Passing 325 mesh)

Discussion

Froth Flotation

Discussion

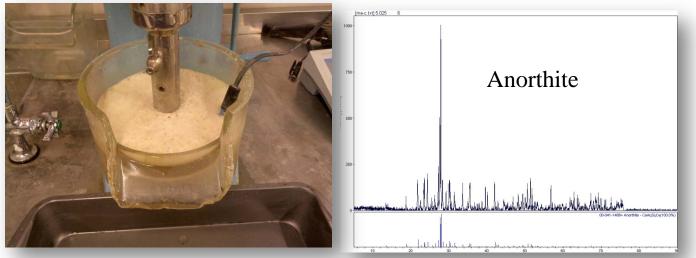
Froth Flotation



Workshop on the Lunar Applications of Mining and Mineral Beneficiation

Get Into It!

Froth Flotation of Mill Slurry from Stillwater Mill



Froth Flotation of "Road" Norite Nonmagnetic Material

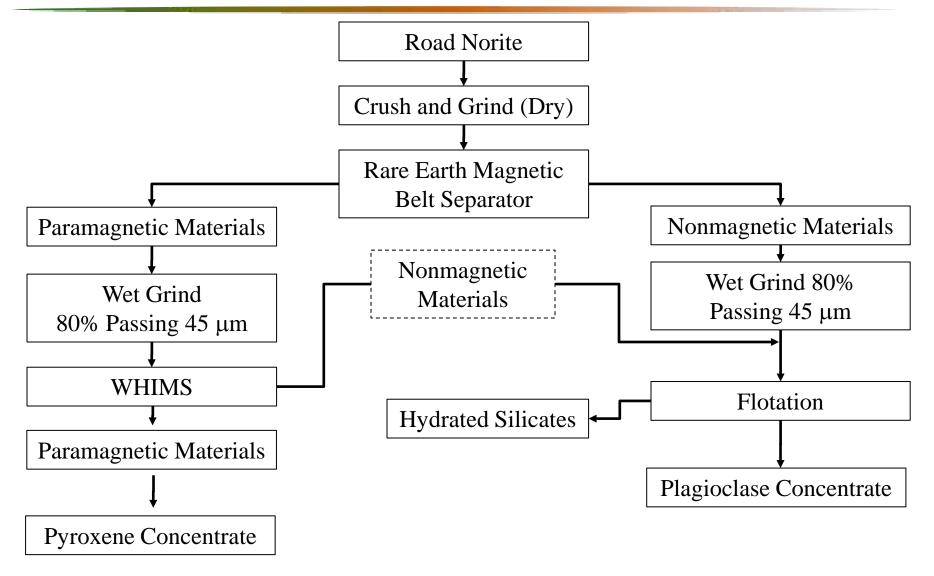
	Exploratory Test						
					Particle Size		
	grams	Reagents	pН	Fraction	(µm)		
Feed				100.0%	80% -45		
C1	23.2	Only DF	9.0	19.1%	0070 -43		
C2	3.1	AERO 704, DF	9.0	2.6%			
C3	6.4	AERO 704, DF	9.0	5.3%			
Т	88.5			73.0%			

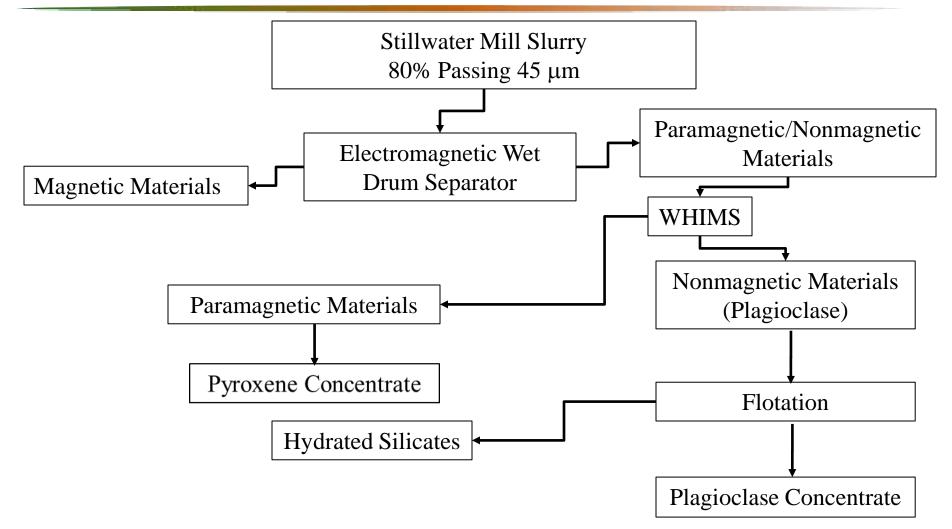
Workshop on the Lunar Applications of Mining and Mineral Beneficiation

Get Into It!

Froth Flotation of "Road" Norite Paramagnetic Material

	Exploratory Test					
	grams	Reagents	pН	Fraction	Particle Size (µm)	
Feed				100.0%	80% -45	
C1	16.1	Only DF	9.0	13.3%	8070 -43	
C2	9.0	AERO 704, DF	9.0	7.4%		
C3	15.0	AERO 704, DF	9.0	12.4%		
Т	80.9			66.9%		




Proposed Road Norite Process Flowsheet

MontanaTech

Stillwater Mining Sands Process Flowsheet

Conclusion

Findings

Feedstock Dependent Process Produced Plagioclase Concentrate > 70% An (Dry) Produced Plagioclase Concentrate > 80% An (Wet) Pyroxene Separation Observed (analytical refinement needed) Hydrated Silicate Minerals Removed with Flotation Locked Minerals Influence Magnetic Susceptibility of Particles

Further Work

Flotation Refinement for Hydrated Minerals Investigate Flotation Calcium Enrichment Wet Magnetic Optimization Characterization of Products

Acknowledgements

Funding

This Project was funded by NASA Steckler Grant Number NNX10A0AC23A through Montana State University (MSU) Grant Number G250-10-1W2986

People

Dr. Douglas Rickman, Marshall Space Flight Center
Dr. Jennifer Edmunson, Marshall Space Flight Center
Dr. Steven Wilson, United States Geological Survey
Dr. Doug Stoeser, United States Geological Survey
Ms. Angela Des Jardins, Montana Space Grant Consortium (MSGC)
Larry Braunbeck, Stillwater Mining Company
Dr. Paul Miranda, CAMP, Montana Tech

