Members of NASA's Perseverance rover team react in mission control after receiving confirmation the spacecraft successfully touched down on Mars, February 18, 2021. Credit: NASA/Bill Ingalls
CONTENTS

2 Office of Small Business Programs Vision and Mission Statements

3 Message from the NASA Office of Small Business Programs Associate Administrator

5 Message from the Mars 2020 Mission Perseverance Rover Project Manager

6 The Metrics: Small Business Achievements at NASA

8 Small Business Contributions to the Mars 2020 Mission

9 About the Mars 2020 Mission Perseverance Rover

10 Highlights of Small Business Participation

12 Perseverance Subcontractors at a Glance

14 NASA OSBP Contacts

VISION STATEMENT

The vision of the Office of Small Business Programs (OSBP) at NASA Headquarters is to promote and integrate all small businesses into the competitive base of contractors that pioneer the future of space exploration, scientific discovery, and aeronautics research.

MISSION STATEMENT

- To advise the Administrator on all matters related to small business,
- To promote the development and management of NASA programs that assist all categories of small business,
- To develop small businesses in high tech areas that include technology transfer and commercialization of technology, and
- To provide small businesses maximum practicable opportunities to participate in NASA prime contracts and subcontracts.
In this publication, I am pleased to highlight the significant contributions that small businesses made to the Perseverance Rover Mission. The main objective of the rover is to seek signs of ancient life and collect samples of rock and regolith (broken rock and soil) for a possible return to Earth.

I remember the exhilaration I felt on Thursday, February 18, 2021, when the Perseverance rover landed on Mars. The landing experience made me reflect on NASA's amazing achievements, and the amount of involvement from our small business partners.

More than 50 small businesses from across the nation demonstrated their innovative technology to support NASA's astounding accomplishments. Proudly, these companies provided an array of products and services such as lander engines, flight software development, testing support for the powered descent vehicle, and much more. The innovation generated by small businesses in this publication is a sampling of the dedication and ingenuity that industry provides that enable NASA to complete its missions. All of the contributing small businesses have been able to perform during these unprecedented times, and due to their achievements, witnessed growth in revenue, personnel, and organizational capabilities. As evidenced in their development, these small businesses prove that when they get the opportunities to demonstrate their abilities, they can get the job done!

The NASA Small Business Program is supported by the Agency’s Senior Management, the NASA Mission Directorates, Office of Procurement, other various acquisition personnel throughout the Agency, and the mission support offices. I would like to particularly recognize Administrator Bill Nelson’s commitment to the program. In addition, I would also like to thank Mr. John McNamee, the Mars Perseverance Rover’s Project Manager, and his team for their tireless efforts in ensuring that this mission continues to be a success. We appreciate Mr. McNamee for ensuring that companies like the ones in this publication have the opportunity to prove that small businesses have the technical skills necessary to complete one of NASA’s most highly anticipated and visible missions.

Our program would not be as successful without the dedication and hard work of the Agency’s Small Business Specialists. The Small Business Specialists are devoted to locating small businesses around the nation and ensuring that they are provided with opportunities to participate in NASA’s prime and subcontracts.

In closing, I want to take the opportunity to thank all of the small and large businesses that support NASA’s various missions. NASA’s industrial base provides continuous support in numerous capacities that enable the Agency to be successful. As the Associate Administrator of the NASA Office of Small Business Programs, I am proud to acclaim, that at NASA, “Small Businesses Makes a Big Difference.”

Glenn A. Delgado
Associate Administrator
NASA Office of Small Business Programs

With its heat shield facing the planet, NASA’s Perseverance rover begins its descent through the Martian atmosphere in this illustration. Hundreds of critical events had to be executed perfectly and exactly on time for the rover to land on Mars safely on Feb. 18, 2021. Credit: NASA/JPL-Caltech
Did You Know?

NASA IS MAKING OXYGEN ON MARS
As with all NASA/JPL Mars missions, small businesses play an integral role in the development of the flight hardware, processes, and overall success of the project. The Mars Perseverance rover has several key components designed or built with the assistance of our small business partners, including the Perseverance robotic arm and the Mars Ingenuity helicopter. Small businesses were also involved in tracking the spacecraft during flight through NASA’s Deep Space Network (DSN). Additionally, small businesses served as valuable partners in customization of spacecraft testing facilities, including cleanroom operations. Small businesses also provided thermal analysis and telemetry monitoring support during entry to the Martian atmosphere. In addition, small business supported the Mars Perseverance project with design, analysis, and testing of the Perseverance Sample Caching System (SCS). In total, more than 500 small businesses supported the program resulting in over $133M in expenditures toward NASA’s small business objectives. As NASA continues to explore deep space and other planetary missions, we look forward to continued success with and support from our small business partners.

John B. McNamee
Mars 2020 Mission Perseverance Rover Project Manager
DOLLARS	CATEGORY
$18,942,859,884 | TOTAL DOLLARS
$3,390,589,063 | Small Business
$1,502,469,537 | Small Disadvantaged Businesses (SDB)
$768,351,489 | Woman-Owned Small Businesses (WOSB)
$155,831,196 | Historically Underutilized Business Zones (HUBZone)
$302,463,166 | Service-Disabled Veteran-Owned Small Businesses (SDVOSB)
In a clean room at NASA’s Jet Propulsion Laboratory in Pasadena, California, engineers observed the first driving test for NASA’s Mars 2020 rover on Dec. 17, 2019. Credit: NASA/JPL-Caltech
SMALL BUSINESS CONTRIBUTIONS TO THE MARS 2020 MISSION

When discussing scientifically advanced and historically significant NASA missions, it is a misconception to think that large businesses, with nearly unlimited resources, were the only ones to work on them. This is simply not the case. Small businesses contribute a significant amount of research, development, manufacturing, and testing of mission-critical systems.

From Perseverance’s robotic arm, to the small but powerful propellors on Ingenuity, some of the most important scientific instruments designed to measure and navigate various parts of the Martian planet were created by small businesses.

It is important for NASA to extend its reach to small businesses for current and future missions, as it strengthens the economic opportunity for businesses that may not have the resources to directly compete with larger businesses for NASA contracts. We believe the more often small and large businesses work together for NASA missions, the more often innovation is fostered between them. This is exactly the mission of the NASA Office of Small Business Programs: to give small businesses a chance to contribute to the future of space exploration and aeronautics research.

Next, you will discover just a sample of the highlights of small business participation that made the Perseverance rover and Ingenuity helicopter possible!
Over the past two decades, missions flown by NASA’s Mars Exploration Program have shown us that Mars was once very different from the cold, dry planet it is today. Evidence discovered by landed and orbital missions point to wet conditions billions of years ago. These environments lasted long enough to potentially support the development of microbial life.

The Mars 2020/Perseverance Rover mission is designed to better understand the geology of Mars and seek signs of ancient life. The mission will collect and store a set of rock and soil samples that could be returned to Earth in the future. It will also test new technology to benefit future robotic and human exploration of Mars.

KEY OBJECTIVES

- Explore a geologically diverse landing site
- Assess ancient habitability
- Seek signs of ancient life, particularly in special rocks known to preserve signs of life over time
- Gather rock and soil samples that could be returned to Earth by a future NASA mission
- Demonstrate technology for future robotic and human exploration

The Mars 2020 Mission Perseverance Rover provided NASA small business contractors an opportunity to do what they do best—provide creative and innovative solutions! Listed on these pages is a brief sampling of the capabilities of the small businesses that supported the mission.

- Provided Deep Space Network personnel support.
- Developed prototypes of the helicopter propulsion and structural systems, including landing legs, motors, blades, and control mechanisms. We refined these prototypes through testing and analysis, which led to the fabrication of two Engineering Development Model (EDM) helicopters, EDM1 and EDM2.
- Analyzed all aspects of the vehicle environments during the high-speed entry at Mars, including the expected convective heating and infrared radiation transferred to the vehicle heat shield and backshell which carries the parachute and several components used during later stages of entry, descent and landing.
- Performed thermal modeling and analyses for several subsystems.
- Analyzed and tested support for the powered descent vehicle, rover, and robotic arm.
- Supported numerous Perseverance design teams with analysis and pre- and post-testing efforts to ensure that the rover’s structures and mechanisms would perform as expected while exposed to challenging environments and operations such as entry, descent, and landing (EDL).
• Provided expert analysis for specific aspects of the materials testing process, such as testing requests for elemental analysis, including organic components and metals.

• Provided several key components for the Mars Perseverance rover, including the Rover’s Robotic Arm, the Mastcam-Z Zoom and Focus Mechanism, the robotic arm’s 6-Degree of Freedom (DOF) Force Torque Sensor, and the Mastcam-Z Filter Wheel.

• Developed and manufactured the deep UV laser that powers the rover-arm-mounted Perseverance SHERLOC instrument, which performs deep UV Raman and fluorescence detection and chemical/mineralogical imaging of targets on Mars surfaces or in bore holes.

• Led design development of the EECAM (Enhanced Engineering Cameras) and related electronics, mechanical ground support equipment, computer-aided design, drawing generation, and FEA (finite element analysis).

• Produced electronic ground support equipment units to interface with the flight EECAMs.

 - **EDLCAM (Entry Descent Landing Camera):** Designed the imager brackets; delivered flight hardware.

 - **MOXIE (Mars In-Situ Resource Utilization Experiment):** Provided mechanical design, analysis of the sensor panel, and flight hardware.

 - **SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals):** Design, drawing generation for the structure, optical/optomechanical system, electronics packaging, ground support equipment, integration/test support.

 - **Mechanical Ground Support Equipment:** Design, analysis, fabrication, and testing of mechanical ground support equipment.
PERSEVERANCE SUBCONTRACTORS AT A GLANCE

TEN BIGGEST LARGE BUSINESS SUBCONTRACTS

<table>
<thead>
<tr>
<th>Company</th>
<th>Product/Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeroflex Plainview, Inc.</td>
<td>High Gain Antenna (HGA), Wheel and Steering Actuator (WSA), Remote Sensing Mast (RSM) Actuators</td>
</tr>
<tr>
<td>Aerojet Rocketdyne, Inc.</td>
<td>Lander engines</td>
</tr>
<tr>
<td>Airborne Systems North America of CA, Inc.</td>
<td>Parachute assemblies</td>
</tr>
<tr>
<td>Arizona State University Tempe</td>
<td>Mastcam-Z</td>
</tr>
<tr>
<td>General Dynamics Ordnance</td>
<td>Mortar deployment subsystem</td>
</tr>
<tr>
<td>Honeybee Robotics, LTD</td>
<td>Witness plate assemblies</td>
</tr>
<tr>
<td>Lockheed Martin Corp</td>
<td>Aeroshell</td>
</tr>
<tr>
<td>Raytheon</td>
<td>Flight software development</td>
</tr>
<tr>
<td>Sierra Nevada Corporation</td>
<td>Gearboxes and actuators</td>
</tr>
<tr>
<td>SSL Robotics, LLC</td>
<td>Sample handling assembly</td>
</tr>
</tbody>
</table>

This image of the rocket-powered descent stage sitting on top of NASA’s Perseverance rover was taken in a clean room at Kennedy Space Center on April 29, 2020. Credit: NASA/JPL-Caltech
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Product/Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+J Product Solutions</td>
<td>Wire support brackets, sealing flange (program and machine)</td>
</tr>
<tr>
<td>Aerodyne Industries, LLC</td>
<td>ATOM small business teammate</td>
</tr>
<tr>
<td>Analytical Mechanics Associates</td>
<td>Analyzed vehicle environments during the high speed entry at Mars</td>
</tr>
<tr>
<td>Applied Sciences Laboratory, Inc.</td>
<td>Thermal modeling and analyses</td>
</tr>
<tr>
<td>AeroVironment Inc.</td>
<td>Prototypes of the helicopter propulsion and structural systems, including landing legs, motors, blades, and control mechanisms</td>
</tr>
<tr>
<td>Applied Sciences Laboratory, Inc.</td>
<td>Thermal modeling and analyses</td>
</tr>
<tr>
<td>Applied Sciences Laboratory, Inc.</td>
<td>Ceramabond for model construction, materials</td>
</tr>
<tr>
<td>ATA Engineering, Inc.</td>
<td>Analysis and testing support for the powered descent vehicle, rover, robotic arm, remote sensing mast, mobility system, skycrane, and sample caching system</td>
</tr>
<tr>
<td>Aremco Products, Inc.</td>
<td>Membrane box, materials</td>
</tr>
<tr>
<td>California Fine Wire Company</td>
<td>Wiring materials</td>
</tr>
<tr>
<td>Edmund Optics Worldwide</td>
<td>Infrared (IR) bandpass filters</td>
</tr>
<tr>
<td>Lascar Electronics Inc.</td>
<td>Calibration services</td>
</tr>
<tr>
<td>Malin Space Science Systems</td>
<td>Information not provided</td>
</tr>
<tr>
<td>Masten Space Systems</td>
<td>Testing of JPL lander vision system used on the perseverance lander</td>
</tr>
<tr>
<td>Medtherm Corporation</td>
<td>Heat flux transducer Gardon gage sensor and recalibration support of Gardon gage</td>
</tr>
<tr>
<td>Motiv Space Systems</td>
<td>Rover’s Robotic Arm, the Mastcam-Z Zoom and Focus Mechanism, the robot arm’s 6-DOF Force Torque Sensor and the Mastcam-Z Filter Wheel</td>
</tr>
<tr>
<td>Pacific Design Technologies Inc.</td>
<td>Information not provided</td>
</tr>
<tr>
<td>Pelican Wire Co., Inc.</td>
<td>Calibration services and certificate of conformance</td>
</tr>
<tr>
<td>Photon Systems, Inc.</td>
<td>Deep UV laser</td>
</tr>
<tr>
<td>Precision Control Systems, Inc.</td>
<td>Lamp support tube and retainer, materials</td>
</tr>
<tr>
<td>Sierra Lobo, Inc.</td>
<td>EECAM (Enhanced Engineering Cameras), EDLCAM (Entry Descent Landing Camera), MOXIE (Mars In-Situ Resource Utilization Experiment), SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals), and MGSE (Mechanical Ground Support Equipment)</td>
</tr>
</tbody>
</table>
NASA Headquarters (HQ)
Glenn A. Delgado
Associate Administrator
Tel: 202-358-2088
Fax: 202-358-3261
smallbusiness@nasa.gov

NASA Headquarters (HQ)
Richard L. Mann
Program Manager
Tel: 202-358-2088
Fax: 202-358-3261
smallbusiness@nasa.gov

NASA Headquarters (HQ)
Charles T. Williams
Program Manager
Tel: 202-358-2088
Fax: 202-358-3261
smallbusiness@nasa.gov

NASA Headquarters (HQ)
Robert Medina
Program Manager
Tel: 202-358-2088
Fax: 202-358-3261
smallbusiness@nasa.gov

NASA Headquarters (HQ)
Truphelia M. Parker
Program Specialist
Tel: 202-358-2088
Fax: 202-358-3261
smallbusiness@nasa.gov

NASA Headquarters (HQ)
Naeemah A. Lee
Program Specialist
Tel: 202-358-1367
Fax: 202-358-3261
smallbusiness@nasa.gov

Ames Research Center (ARC)/
Armstrong Flight Research Center (AFRC)
Christine L. Munroe
Small Business Specialist
Tel: 650-604-4695
Fax: 650-604-0912
arc-smallbusiness@mail.nasa.gov
afrc-small-business-office@mail.nasa.gov

Glenn Research Center (GRC)
Eunice J. Adams-Sipp
Small Business Specialist
Tel: 216-433-6644
Fax: 216-433-2480
grc-smallbusiness@mail.nasa.gov

Goddard Space Flight Center (GSFC)
Jennifer D. Perez
Small Business Specialist
Tel: 301-286-4379
Fax: 301-286-2666
gsfc-smallbusiness@mail.nasa.gov

Goddard Space Flight Center (GSFC)
Sholainka O. Martyn
Small Business Specialist
Tel: 301-286-4679
Fax: 301-286-2666
gsfc-smallbusiness@mail.nasa.gov

Goddard Space Flight Center (GSFC)
Kandace P. Chappell
Small Business Specialist
Tel: 301-286-8136
Fax: 301-286-2666
gsfc-smallbusiness@mail.nasa.gov

Goddard Space Flight Center (GSFC)
Djaataa Onanuga
Small Business Specialist
Tel: 301-286-9083
Fax: 301-286-2666
gsfc-smallbusiness@mail.nasa.gov

Jet Propulsion Laboratory (JPL)
Dr. Charles E. Bray, Jr.
Manager
Tel: 818-354-5620
Fax: 818-354-4152
smallbusiness.programsoffice@jpl.nasa.gov
Jet Propulsion Laboratory (JPL)
Mary Helen Ruiz
Small Business Administrator
Tel: 818-354-7532
Fax: 818-393-1746
smallbusiness.programsoffice@jpl.nasa.gov

Jet Propulsion Laboratory (JPL)
Matthew B. Christian
Small Business Administrator
Tel: 818-354-2760
Fax: 818-393-1746
smallbusiness.programsoffice@jpl.nasa.gov

Jet Propulsion Laboratory (JPL)
Tara A. Every
Small Business Administrator
Tel: 818-354-1741
Fax: 818-393-1746
smallbusiness.programsoffice@jpl.nasa.gov

Jet Propulsion Laboratory (JPL)
Anna N. Hovano
Small Business Administrator
Tel: 818-393-6766
Fax: 818-393-1746
smallbusiness.programsoffice@jpl.nasa.gov

Jet Propulsion Laboratory (JPL)

Johnson Space Center (JSC)
Robert E. Watts
Senior Small Business Specialist
Tel: 281-244-5811
Fax: 281-483-4326
jsc-smallbusiness@mail.nasa.gov

Johnson Space Center (JSC)
Monica F. Craft
Small Business Specialist
Tel: 281-483-4134
Fax: 281-483-4326
jsc-smallbusiness@mail.nasa.gov

Johnson Space Center (JSC)
Tumarrow Romain
Small Business Specialist
Tel: 281-483-2824
Fax: 281-483-4326
jsc-smallbusiness@mail.nasa.gov

Kennedy Space Center (KSC)
Joyce C. McDowell
Small Business Specialist
Tel: 321-867-3437
Fax: 321-867-7999
ksc-smallbusiness@mail.nasa.gov

Kennedy Space Center (KSC)
Natalie B. Colvin
Small Business Specialist
Tel: 321-867-4773
Fax: 321-867-7999
ksc-smallbusiness@mail.nasa.gov

Langley Research Center (LaRC)
Robert O. Betts
Small Business Specialist
Tel: 757-864-6074
Fax: 757-864-8541
larc-smallbusiness@mail.nasa.gov

Marshall Space Flight Center (MSFC)
David E. Brock
Small Business Specialist
Tel: 256-544-0267
Fax: 256-544-4400
msfc-smallbusiness@mail.nasa.gov

Marshall Space Flight Center (MSFC)
Jannifer L. Matthews
Small Business Specialist
Tel: 256-961-2387
Fax: 256-544-4400
msfc-smallbusiness@mail.nasa.gov

NASA Shared Services Center (NSSC)
Troy E. Miller
Small Business Specialist
Tel: 228-813-6558
Fax: 228-813-6434
nssc-smallbusiness@mail.nasa.gov

Stennis Space Center (SSC)
Kay S. Doane
Small Business Specialist
Tel: 228-688-1720
Fax: 228-688-6024
ssc-smallbusiness@mail.nasa.gov
This is the first 360-degree panorama taken by Mastcam-Z, a zoomable pair of cameras aboard NASA's Perseverance Mars rover. The panorama was stitched together on Earth from 142 individual images taken on Sol 3, the third Martian day of the mission (Feb. 21, 2021). Credits: NASA/JPL-Caltech/MSSS/ASU
TO LEARN MORE ABOUT THE SMALL BUSINESS PROGRAM AT NASA:

- http://www.nasa.gov/osbp
- [202-358-2088](tel:202-358-2088)
- smallbusiness@nasa.gov
- [@NASA_OSBP](https://twitter.com/NASA_OSBP)
- [NASASmallBusiness](https://www.nasa.gov/socialmedia)
- [NASA Vendor Database](http://www.nasa.gov/providerregress/)

Follow NASA OSBP on the Web

OSBP Mobile, available on iOS and Android devices

Artist’s rendering of the Perseverance Mars rover.