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SEP DEMONSTRATION 

MISSION



Solar Electric Propulsion (SEP) is an essential capability 
for current Human Mars mission planning – to 
efficiently move large payloads to Mars  

SEP has numerous other crosscutting applications 

Communications Satellites and Government Missions 
- more efficient orbit transfer
- increased maneuvering flexibility
- affordable power increase for communications or other payloads

Science and Exploration
- observatory placement and station keeping
- reaching distant destinations at less cost
- higher power for communications or other payloads
- transportation for cis-lunar, Mars, asteroid exploration

Satellite Servicing and Refueling

Space Tug between LEO, GEO or other Orbits 
- single use or reusable
- multiple orbits and plane changes

Space Resource Access and Utilization

Orbital Debris Mitigation

Planetary Defense
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Crosscutting Solar Electric Propulsion Development 
and Demonstration Objectives

• Successful transition of matured and tested Game 
Changing technologies to flight demonstration project

• Develop and demonstrate 25kW to 50kW class Solar 
Electric Propulsion System

• Extendable to 300kW for deep space human 
exploration

• Directly applicable to Science Mission Directorate 
and missions for Other Government Agencies

• A first demonstration mission targeted for the 
Asteroid Redirect Robotic Mission

• Develop & demonstrate Solar Electric Propulsion 
component technologies with commercial benefit

• Reduced mass, efficient packaging, deployable solar 
arrays for improved commercial satellite affordability 
and potential ISS retrofitting

• High power Hall thrusters for all electric commercial 
satellites 



STMD Investments in SEP

Thrusters

Power Processing Units

• Developed and tested high power 
Hall thruster 12.5 kW-class (2X 
current SOA)

• Magnetically shielded design to 
provide long life 

Solar Arrays

Designed, built and tested 25-kw-class 
advanced deployable Solar Array wings
• MegaFlex “fold out” array (ATK)
• Mega-ROSA “roll out” array (DSS)



Hall Effect Rocket with Magnetic Shielding (HERMeS)

Hall Thruster & Power Processing Unit (PPU) 
Development and Risk Mitigation

• Two 12.5 kW Hall Thruster Technology 

Development Units

– Validated design methodology & tools

– Reduced mission and flight hardware 

development risks

• 2 Brassboard PPUs

– 300Vin/800Vout  (MFR reference)

– 120Vin/800Vout  (Post-MCR reference)

Demonstrated full, integrated performance 
compatibility of 120-V and 300-V PPUs 

with 12.5-kW Hall Effect Thruster

Post-test BN discharge chamber shows carbon deposition consistent 
with magnetically shielded operation

Pre-Test BN Post-Test
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Technology Demonstration Missions

Asteroid Redirect Mission (ARM)
combining Technology Demonstration, Exploration 
and Science objectives

Mission Concept 
• 40 kW-class SEP propels spacecraft to asteroid and 

returns material to Lunar Distant Retrograde Orbit
• Two 25 kW-class solar array wings and four 12.5-

kW electric Hall thrusters 
• Launch Date for Planning: December 2020
• Launch Vehicle: Delta IV or SLS

Alternate and Complimentary Demonstrations
• Functional space demonstration of large, advanced solar array on ISS

• RFI for this approach issued in December 2014

• Commercial or OGA partnership on a modified all-electric bus with significant orbital 
maneuvering capability

• Possible SMD partnership in multiple first-use high-powered SEP demonstrations 
including: cis-lunar, asteroid, and planetary missions

• Mars exploration precursors or demonstrations
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Budgetary Challenges in Conducting a 
Comprehensive Large-Scale Demonstration 

• Government-estimated SEP Module cost ($433M) significantly exceeds STMD 
in-guide budget profile ($229M)

• ARRM Budget Lifecycle and phasing presents significant challenges to timely 
perform mission.  Launch initially June 2019, slipped to Dec. 2020.

• STMD in-guide covers:  All SEP activities in FY15-16, all Ion Propulsion 
activities FY15-21, civil servant-only SEP mission design/studies FY15-21

• STMD in-guide gaps:  SEP DDT&E - Power, Structures/mechanisms, Thermal, 
SE&I, RCS

• Part of Power gap includes SEP Power Solar Array contract, not funded 
beyond FY16 (STMD funds are short $40M)

• In general, cost estimates from BAA studies indicate:
• A 40 to 50 kW-class SEP demonstration requires approximately $400M 

• A 30 kW-class SEP demonstration requires approximately $250M 

• If less funding is available in the STMD budget, a major cost-sharing partnership 
is required to accomplish a demonstration of this scale.

• Continued lack of full funding for STMD and indecision on fully funding 
ARRM has delayed progress towards a high powered SEP demonstration



STMD SOLAR ARRAY 

DEVELOPMENT



Need for Solar Electric 

Propulsion

• Future exploration missions require high power 

Solar Electric Propulsion (SEP) to move cargo 

and humans beyond Low Earth Orbit

• SEP is more efficient than chemical propulsion
– SEP uses less fuel to the same destination reducing launch 

mass/cost (20% - 50% reduction)

• STMD initiated a Solar Array Project in FY2011 

as the first step towards complete capability
– Initial vision was a flight demonstration of entire SEP concept, but 

budget realities necessitated an array development project

– Autonomously deployed large area arrays were identified as “long 

pole” in achieving goal

– Project targeted development metrics of total power (1.5x SOA) 

and specific power (1.7x SOA)

– Two contracts were awarded (ATK & DSS) for a total project 

budget of ~$11M

– Both ATK & DSS successfully deployed solar arrays under thermal 

vacuum conditions (TRL 5)

– Analytically demonstrated extensibility to 250 kW-class systems

DSS: Mega-ROSA

ATK:  Megaflex



Technology has significant end-user interest & 

commercialization potential

Impact of STMD’s Solar Array 

Investment

• Enables NASA’s future exploration missions

– Results in the fewest SLS launches & the least amount 

of payload that must be launched to orbit for multiple 

human exploration missions

• Enables development of satellite servicing system

• Empowers US commercial satellite industry with 

larger & more capable systems

• Technology is being considered by every 

domestic prime contractor as an affordable & 

high-performance replacement to SOA arrays 

– Space Systems Loral developing array with DSS for 

commercial satellites

– Two proposers baselined DSS ROSA array for 

Discovery mission proposals

– USAF funding ISS demonstration of small-scale ROSA

• Under consideration as an upgrade for ISS solar 

power system
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LASER COMMUNICATIONS 

RELAY DEMONSTRATION



Enclosure Rear View 
illustrates layout, 

structural, thermal 
maturity

Laser Communications Relay Demonstration

• Demo Description:

– A minimum two year flight demonstration to advance optical 
communications technology toward infusion into Deep Space 
and Near Earth operational systems, while growing the 
capabilities of industry sources.

• Objectives:  

– Demonstrate bidirectional optical communications between 
geosynchronous Earth orbit (GEO) and Earth

– Measure and characterize the system performance over a 
variety of conditions

– Develop operational procedures and assess applicability for 
future missions

– Transfer laser communication technology to industry for future 
missions

– Provide an on orbit capability for test and demonstration of 
standards for optical relay communications

• Anticipated Benefits: 

– A reliable, capable, & cost effective optical communication 
technology for infusion into future operational systems

• Anticipated NASA Mission Use: 

– Next Generation TDRS, Deep Space and Near Earth Science

– ISS and Human SpaceFlight

• Attractive partnering arrangement with Space 
Systems/Loral as a hosted payload on a commercial 
telecom satellite and DoD partner for encryption.

LCRD is a hosted 
payload on an SSL 

commercial telecom 
satellite

Payload Enclosure 
mounted on Earth 
Deck of typical SSL 
telecom satellite



LCRD KDP-A

• KDP-A held December 2012

• Project de-scoped before KDP-A

– On-Board Data Processing (Decoding, De-
Interleaving, etc.), Store and Forward, DTN, Data
Processing and DTN at Both Ground Stations

– Networking Management

– In-Band Commanding and No Telemetry on the
Optical Downlink

– Photon Counting Detector in Ground Station 2

– Commercialization of the Photon Counting Detector

– Delays GS2 delivery decision until end of FY13

• Notional Launch Readiness Date changed from
December 2016 (from proposal) to December
2017 at KDP-A

• KDP-A LCC approved at $238.9M

• No change in LCC at KDP-B (May 2013), however
additional funding was approved for PPM work,
upping LCC to $239.2M (October 2013)

KDP-A/B architecture - LCRD on SSL 
commercial telecom satellite, with 2 ground 

stations (GS-1 at OCTL and GS-2 at White 
Sands)



Current Effort After Post KDP-B Re-Plan

• In addition to the de-scopes taken prior to KDP-A, 
LCRD was directed to take additional de-scopes and 
other changes during the re-plan activity (directed 
February 2014 and completed March 2015)

– Content removed/de-scoped from LCRD Budget:

• JPL Ground Station 1 starting in FY15 – Moved to 
SCaN Optical Ground Station Extension (OGS-X), five 
years of operation (two years base plus three years 
extended operations)

• De-scoped White Sands GS-2

• Deviation approved for EVM

• De-scoped E&PO

• Payload I&T moved from GSFC to SSL after 
Electrical/Optic Integration Test Bed

• Post launch checkout Science/Technology, Mission 
Ops, and LMOC Sustaining moved to SCaN OGS-X 
post checkout (L+60 days)

– Encryption scope added October 2014 (no waiver for 
encryption requirements), to be funded through SCaN
and tracked separately

• Re-plan budgets were constrained by STMD funding 
levels for FY15 and FY16, with LCC at $294.5M, 
including encryption

• Notional Launch Readiness Date slipped to June 2019
155/22/15 TDM MM Monthly Assessment

2016 2017 2018 2019

Proposal
Dec 2016

KDP-A
Dec 2017

Re-Plan
June 2019

2012 2013 2014 2015

LCRD Notional Launch Readiness Date Change

KDP-A
$238.9M

KDP-B
$238.9M

Re-Plan
$294.5

LCRD LCC 



DEEP SPACE OPTICAL 

COMMUNICATIONS



DSOC STMD/GCDP Funding History

Introduction 

• STMD/GCDP has been funding DSOC since the end of FY11
 Original scope to mature key technologies (listed below) to TRL-5 by EO FY14

 Isolation Pointing Assembly (IPA)
 Allows “dim-beacon” assisted low-bandwidth control for sub-micro-radian laser pointing accuracy 

 Photon Counting Camera
 Combines “dim-beacon” acquisition tracking and data uplink functions

 Laser Transmitter assembly
 High peak-to-average power ratio and electrical-to-optical conversion for photon-efficient communication

 Deep-space Optical Transceiver
 Integrates IPA and PCC with electronics for functional Flight Laser Transceiver (FLT)

 Ground Receiver Detector Array
 Single photon counting arrays for detecting faint signal from deep-space using large area collectors

• Funding reduction in March 2013
 De-scoped DSOC Project

 Three out of five technology elements pursued
 Isolation Pointing Assembly

 Photon Counting Camera

 Ground Receiver Detector Array

 Technology maturation to TRL-3/4  by EO FY14 instead of originally planned TRL-5

• Re-Scoped DSOC at Feb-March 2014
 MOU between STMD/GCDP, HEOMD/SCaN, SMD/Discovery to fund DSOC through FY17 

 Mature integrated FLT to TRL-6

 Ready for infusion into Discovery Mission to launch by Dec 2021

July  21, 2015
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DSOC STMD/GCDP Funding History

Funding Profiles 

• Original Plan FY11-FY14 

 TRL-5 maturation
 Isolation Pointing Assembly (IPA)

 Photon Counting Camera (PCC)

 Laser transmitter Assembly (LTA)

 Optical transceiver

 Ground Detector Array

• De-scoped Plan FY11-FY14
 TRL-3/4 Maturation

 Isolation Pointing Assembly

 Photon Counting Camera

 Ground Detector Array
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• Actual Funding FY11-FY15 and FY16-FY17 plan
 Mature TRL-6 Flight Laser Transceiver and Ground 

Detector Array for 5m ground telescope

 Ready to support Discovery Mission

 IPA, PCC and LTA development benefitted from 

SBIR funding 
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DSOC STMD/GCDP Funding History

Summary

• How did shortage of funds early on keep DSOC from doing things in a full and timely 

manner

 Early development and risk areas could not be fully addressed 
 Understanding why the WSi detectors work (to help design better detector4s with higher yield)

 Developing larger than 32 x 32 flight detector arrays for DSOC

 More efficient 1550 nm laser transmitter (as in resonantly pumped)

 Other effects 
 Loss of focus resulted in loss of some key personnel

 Originally planned involvement of LL-MIIT and NASA/GSFC was de-scoped

 Stretching of DSOC Project schedule with identification of Discovery Mission as a potential host 

for Flight Transceiver has
 Benefitted  DSOC Project from developments elsewhere, such as 

 IPA technology from Control Dynamics under SBIR

 Provided opportunity for advancing engineering development not included in original scope

 Flight Electronics

 Thermal design

 Harnessing and umbilical development 

• STMD/GCDP, HEOMD/SCaN and SMD funding 

distribution since MOU is shown in bar chart
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INTEGRATED PHOTONICS 

SMALL SPACECRAFT 

DEMONSTRATION



Proposed STMD/SCaN 

Integrated Photonics Initiative Now Under Threat 

1 cm

US Industry has commercialized “Integrated photonics” to allow many electro-
optical components, even glass fibers, to be “squeezed down”…..

…into the optical
equivalent of a micro-
electronics “integrated 
circuit” 

For NASA, this means that optical systems for communications 
and sensors can be reduced in size, mass, and cost by >> 100x 
by leveraging this commercially-available technology (some 
customization may be required)

STMD and HEOMD/SCaN are working to fund a cubesat flight 
demo of integrated photonics in FY17 ($8M total), which is now 
under threat due to funding reductions to STMD…

COTS Laser Comm Modem

..Based on Integrated Photonics

TRL 6 for LEO use only



Contains Proprietary Information – Do Not Distribute

Low-Cost Laser Comm Links Enabled by Integrated 

Photonics now Threatened by STMD Funding 

Reductions

Currently Funded:  Laser Communications 
Relay Demonstration (LCRD) in GEO

With 2 “Traditional” Modems at 2.88 Gbps

Low Cost, Low SWaP Terminal for LEO 
Users to LCRD:  Now Threatened

1000 km links
b/w 44 smallsats

Proposed SCaN/STMD Demonstration of 
Low-Cost Direct-to-Earth 

100 Gbps Laser Terminal on Small-Sat
Now Threatened

Commercial Interest:
High-Rate, High-Availability

LEO/MEO 100 Gbps Data
Network Constellation
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National Aeronautics and
Space Administration

CPST → eCryo
EVOLVABLE CRYOGENICS – GRC

WAS:
FLIGHT DEMONSTRATION OF CRYOGENIC PROPELLANT STORAGE AND TRANSFER TECHNOLOGIES THEREBY ADVANCING

CAPABILITIES FOR DEEP SPACE TRAVEL TO SERVE BOTH NASA EXPLORATION SYSTEMS AND COMMERCIAL LAUNCH

PROVIDERS

IS:
PORTFOLIO OF GROUND DEMOS TO VALIDATE CRYOGENIC FLUID TECHNOLOGIES APPLICABLE TO SLS AND OTHER

EXPLORATION MISSIONS BEYOND LEO



Present Challenges for In-Space Cryogenic Systems

• We have no demonstrated capability to store cryogenic propellants in
space for more than a few hours

– SOA is Centaur’s 9 hours with boil-off rates on the order of 30% per day

• We have no demonstrated, flight-proven method to gauge cryogenic
propellant quantities accurately in microgravity

– Need to prove methods for use with both settled and unsettled propellants

• We have no proven way to guarantee we can get gas-free liquid
cryogens out of a tank in microgravity

– Gas-free liquid is required for safe operation of a cryo propulsion system

– Need robust surface-tension liquid acquisition device (LAD)
analogous to those in SOA storable propulsion systems

– Only known experience in the world is the single flight of the Russian Buran
single flight (liquid oxygen reaction control system)

• We have no demonstrated ability to move cryogenic liquids from one
tank (or vehicle) to another in space

24

Centaur

Buran

Note
A flight demonstration with cryogenic propellant storage, expulsion, 

and transfer can remedy these problems (and other more subtle ones)!



CPST Flight Demonstration 
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• CPST will:

– Demonstrate long-duration storage

– Demonstrate in-space transfer

– Demonstrate in-space, accurate gauging

CPST was baselined and approved for Phase B on Dec. 9, 2013
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CPST VS. ECRYO

CPST
• Flight Demonstration utilizing SpaceX Dragon Trunk

• Technologies evolve from TRL 5 to 7

• Payload size: 224 kg LH2 (vs. 20 kg), 1.5 m diameter 
tank (vs. .3m diameter)

• Mission Duration:  1-2 months (vs. hours)

• Technologies Demonstrated on 1.5m tank:
• Passive thermal control
• 2 transfers using screen channel liquid 

acquisition devices 
• RFMG 

• Technologies Developed:
• High Accuracy Delta P Transducer
• Valve Seat Leak Test

• Implementation
• In-house payload build
• Delivery Order on existing CRS Contract for the 

LV, S/C Bus, Mission Operations, and I&T

• Deliverables:  
• Micro-gravity  data to anchor CFM models, 
• Industry workshops to share data, 
• Conference presentations

eCryo
• Ground Demonstration of a CFM technology portfolio

• Technologies develop to a range from 3 to 6

• Ground Tank size: 4m diameter

• N/A.
• Technologies Demonstrated:

• SHIIVER passive thermal control on 4m tank  (MLI 
and Vapor Cooling)

• RFMG on GSFC RRM3 Mission yielding flight data

• Technologies Developed:
• High Accuracy Delta P Transducer
• Valve Seat Leak Test
• Super Insulation
• IVF for SLS

• Implementation
• In-house research and development

• Deliverables:  
• Industry workshops to share data, 
• Conference presentations, 
• Ground data to anchor CFM models
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ECRYO – EVOLVABLE CRYOGENICS

• eCryo will:

– Develop technology for extended in-space missions 
with near term gains geared toward industry.

– Increase capabilities of analysis tools for predictive 
simulations of in-space cryogenic systems.

Structural Heat Intercept 
Insulation Vibration 

Evaluation Rig (SHIIVER)

Radio Frequency Mass 
Gauge (RFMG) for 
Robotics Refueling 
Mission 3 (RRM3)

CFM Analysis

Space Launch 
Systems (SLS) 

Stages 
support

eCryo Portfolio Products

eCryo was baselined and approved for Phase C on Apr. 30, 2015



EDL ARCHITECTURE 

DEVELOPMENT



Need for Advanced EDL 

Architectures

• Mars’ atmosphere results in significant 

EDL challenges
– Atmosphere causes vehicle to slow down

– Atmosphere is dense enough to require a heat 

shield

– Atmosphere is not dense enough to provide 

substantial drag necessitating large surface area 

heat shields

• State of the Art EDL architectures are 

not sufficient for future human 

exploration missions to Mars
– Rigid aeroshells are constrained by launch 

shroud geometry

– Current EDL technologies/approaches (MSL, 

Mars 2020, etc…) are limited to 1 mt payload 

mass to Mars’ surface

– Human exploration requires landed mass in 

excess of 18 mt
Mars Science Laboratory (MSL) Entry, 

Descent, and Landing Architecture



STMD’s Advanced EDL 

Investments

• STMD has initiated investments, and 

developed extensive expertise, in two 

deployable EDL architectures for human 

missions to Mars

– Hypersonic Inflatable Aerodynamic Decelerator 

(HIAD):  Inflatable tori with overlaid, flexible TPS

– Adaptable Deployable Entry and Placement 

Technology (ADEPT): Mechanically deployed 

structure with carbon fabric TPS

• Both entry systems are folded for launch 

and deployed prior to Mars entry

– Provide rigid aerodynamic surface and thermal 

protection for hypersonic deceleration at scales in 

excess of 25 meters

– HIAD & ADEPT can also be used for robotic 

exploration at diameters between 6 and 10 meters

Hypersonic Inflatable Aerodynamic 

Decelerator (HIAD)

Adaptable Deployable Entry and 

Placement (ADEPT)



HIAD & ADEPT Opportunities

&  Accomplishments

• Significant progress has been made 

maturing HIAD & ADEPT over the past 

decade
– HIAD successfully completed a 3 meter diameter flight 

test (IRVE-3 in 2012) & 6 meter wind tunnel test

– ADEPT successfully completed a 0.7 meter diameter 

wind tunnel test campaign and fabrication of 2 meter 

diameter ground test article

ADEPT ground test article (2m dia.)

HIAD architecture “cut-

away” (top) and IRVE-3 

sounding rocket flight 

d

• Both EDL development activities have 

been impacted by budget reductions
– Potential HIAD development activity:

• Execution of 3.7 meter diameter, high energy reentry 

flight test in partnership with ULA (asset recovery 

demonstration)

• Ground-based maturation effort to improve aeroshell

capabilities including scale up to >10 meter diameter

– Potential ADEPT development activity:

• Execution of six meter diameter ground test program

• One meter diameter ADEPT test article sounding 

rocket flight test

emonstration (right)



POWER GENERATION & 

STORAGE DEVELOPMENT



Power Generation & Energy Storage

Major NASA Power Capability Needs:
Mars Stationary Surface Power

– In order to live on Mars (or Lunar Surface) power generation is required under all 
scenarios, present goal is 40kW continuous power; technology baseline for capability 
satisfaction is nuclear fission, however solar power is possible

Mars Mobile Surface Power

– In order to explore planetary surface; rovers are required technology baseline is 5-10kw 
fuel cell, however batteries are possible 

In-Space Propulsion for Mars Cargo

– Present Mars planning includes 400kw solar arrays for SEP propulsion system; Nuclear 
Thermal System is under consideration but not likely 

Robotic Interplanetary Missions

– Beyond Jupiter, solar power is not viable, present Radio-Isotope Power Systems suffer 
from limited efficiency and the required use of PU-238; improvements to technology 
required to sustain Planetary Science Mission Capability

Major Power and Energy Technology Enhancements:
– Batteries with higher energy density required across multiple missions, result in reduced 

mass

– Radiation tolerant solar cells impact End of Life efficiency of solar arrays (mass) across all 
missions 

– Radiation tolerant, along with high temperature/voltage, electronic components

– Wireless energy transfer allows dislocation of power generation and need across multiple 
missions 



STMD Power & Energy Portfolio

High Energy Density Batteries: 

– NASA has a need for batteries with higher energy density (>300wh/kg @ cell level) than State 
of the Art Li+ technology can provide

– In FY14 STMD initiated a collaboration with ARPA E on advanced battery system.  Project is 
beginning second year and hopes to deliver battery system for Adv. EVA Suit in 2017 (~$5M 
spent over 4 years)

Fuel Cell Systems: 

– NASA spacecraft and surface systems require fuel cells to generate power over intermediate 
time horizons and in conjunction with other energy sources, e.g. solar cells 

– STMD took over an existing PEM Fuel Cell project when the Mission Directorate was 
established in 2011, delivered 1kw and 3 kw test articles to HEOMD/AES for testing on rovers 
(~$8M spent over 4 years); without pressing need STMD was forced to curtail work in FY14 
and eliminate funding in FY15

Photovoltaics:

– Major photovoltaic effort in STMD has been Solar Array Systems project 

– NASA has unique needs for Low Intensity, High Temperature, and High Radiation Tolerant 
solar cells however budget has limited ability to pursue research in this area

Nuclear Systems:

– STMD Kilopower project is pursuing a 1kW fission system using U235 vs Pu238 (~$14M over 4 
years), demonstration planned for 2018

– System will be extensible to 10kW x4 system capable of being used for Mars surface power 
requirement

– If successful system may also be used for Interplanetary Robotic Missions in the future

Power Beaming:

– STMD recently released an RFP for which Wireless Power Transfer was a topic for 
consideration

1 Kw Kilopower Fission System



DEEP SPACE ATOMIC CLOCK

DEMONSTRATION MISSION



DSAC Quad Chart

Objective: Develop an advanced prototype mercury-
ion atomic clock (TRL 7) and demonstrate for a year in 
space, providing the unprecedented performance 
needed for the next generation of deep space 
navigation and radio science.  Identify steps to build a 
more power efficient  and smaller infusible version.

Benefits to Space Navigation and Science
Enable shift to a more flexible/extensible 1-Way radio
navigation architecture from the current 2-Way model
• Enables usable multiple spacecraft per aperture tracking 
• Enables use of 1-Way uplink X-band tracking/open loop recording for 

robust gravity science solutions
Fundamental to autonomous radio navigation
• Contributes to smaller landing errors and to mass efficient pinpoint 

landing via propellant savings
• Needed for fully autonomous aerobraking operations
Increase navigation & radio science tracking data accuracy by 10 times 
and quantity by 2 times
• Improves Mars orbit determination to < 1 m with Ka band tracking
Potential to improve clock performance of the next GPS system by 50 x

Key Features for reliable in-space use
• No lasers, cryogenics, or other consumables → long life
• Existing vacuum technology and no microwave cavities → easier 

manufacturability
• Radiation tolerant at levels similar to GPS Rb Clocks

Multi-pole 
Trap
Multi-pole 
Trap

Quadrupole 
Trap
Quadrupole 
Trap

Titanium 
Vacuum 
Tube

Titanium 
Vacuum 
Tube

Technology highlights
• State selection via UV optical pumping using Hg ions
• Extreme stability via no wall collisions & high-Q microwave line 
• Multi-pole trap yields insensitivity to disturbances

State‐Of‐Art USO 

DSAC 
(Demo) 

GPS IIF Rb (w/ 
dri )  

GPS Cs 

Galileo H‐maser 

ACES H‐Maser 

GLONASS Cs 

NASA/SAO  
H‐Maser 

ACES Cold Cs  
(in lab) 

ACES Cold Cs  
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DSAC 
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DSAC LCC and Schedule History

Date Event
Planned 
Launch 

LCC Total 
$M

HEOMD 
Share $M 

SMD 
Share $M

Notes

9/15/2011
Original     
JPL TA

Mar 2015 59 15 0

3/7/2012 KDP B Mar 2015 59 15 0
Access to 
Irridium

Space TBD after termination with 

11/6/2013 KDP C Sept 2015 67 19 0
Guideline error ($1M), 
(4mo. Slip, $2.3M)

Host Change to Surrey 

7/15/2015 KDP D Sept 2016 73 21 4
GS costs ($0.4M), missed ONC ($0.8M), and 
launch slips ($0.8M) and overruns ($4M)

• 9  % cost growth from KDP C baseline, due to technical issues with the clock and 
external events.  DSAC project has managed to cost very well to date.

• Projec  t on track to deliver demonstration unit/flight payload to Surrey host in 
December, following final environmental test sequence and final characterization.

• Custome  r support increasing as project has had successful implementation
– Increase  d (HEOMD/SCAN) and new (SMD/PSD) cost sharing
– Interest expressed in obtaining project ground assets when available (SMD)
– Increase  d interest in mission and any non‐recurring engineering necessary for 

infusion into Class B mission
• DSA  C accommodation study with Europa Clipper Pre‐project began in June
• DSA  C briefed SMD PSD management on the current DSAC mission and 

development of a future DSAC for Clipper in July 
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DSAC is phased in advance of Europa, offering low implementation risk
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Green Propellant Infusion Mission (GPIM) 
Project Performance

July 2015 BPR

Technical / Test Performance:  

• GPIM will demonstrate the on-orbit use of the HAN-based 
green monopropellant AF-M315E as an alternative to 
hydrazine for attitude control and orbit change

• Green Propellant Propulsion Subsystem (GPPS) I&T is 
nearing completion 

– Decision was made by STMD on 4/17 to use an all 1N 
thruster flight configuration, removing schedule and 
programmatic risk of 22N thruster from mission

– All five 1N thrusters were manufactured and 
successfully completed their acceptance test sequence 
(functional testing, hot-fire, vibration testing and post 
vibration functional tests). This activity began in April 
and was completed in June.

– All thrusters have been installed, electrically integrated, 
and successfully welded in the system

– Fracture mechanics testing for the propellant tank 
completed

– System testing planned for week of July 20

– GPPS delivery from Aerojet to Ball planned for August 
2015

For internal NASA use only

All 5 1N 
thrusters
Welded

GPPS 
Propulsion 
Deck (top)

GPPS 
Propulsion 

Deck 
(bottom)

GPPS 
integration 
complete
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Green Propellant Infusion Mission (GPIM) 
Challenges

Primary Challenges

• Much higher flame temperature and lower known allowable soak-back temperature 
made design of AF-M315E thrusters more challenging vs. conventional N2H4 thrusters

How it manifested itself:

• Flight-weight thruster design required refractory metals – leading to process 
development schedule delays, dissimilar material welding/brazing issues, significant 
catalyst bed heater development

• Detailed refractory materials properties at thruster operating temperatures not 
available – 22N thruster low cycle fatigue issues discovered in life test

Allowable
Soak-back
Temperature

N2H4: 150 ºC
AF-M315E: 90 ºC Flame Temperature N2H4: 900 ºC

AF-M315E: 1800 ºC

Preheat Temperature N2H4: 120 ºC
AF-M315E: 350 ºC



Green Propellant Infusion Mission (GPIM) 
Challenges

July 2015 BPR

Technology Challenges Have Driven Cost

For internal NASA use only

• Aerojet was able to maintain schedule until life testing began

• Schedule delays driven by manufacturing readiness (immaturity of design going into 
CDR) delayed test readiness 5 months

• Test issues on 22N thruster caused another 3-4 months of delay

• Nine months of additional thruster development/testing has accounted for 70% of 
cost growth

• Launch vehicle-driven schedule delay has driven 20% of cost growth

Strategic Technology Readiness Assessment is Important

• Detailed assessment of readiness prior to committing to a flight schedule is vital

• Assessment needs to take into account not only the maturity level of the critical 
technologies, but also the readiness to integrate into flight hardware
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