The Hellas Rim: Ancient Craters,
Flowing Water, & Abundant Ice
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Hellas: The Champs-Ely
Mars
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Monumental attractions

A long history, not just a time slice
A thoroughfare for major events
Excellent café culture
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Open Basin Lakes /
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Key Factor: Past habitability (S1, S7, S6)

for Human Missions to Mars

Post-Hesperian volcanism fluvial incision
Linked fluvial systems

Exposure of basin cross section in breach
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Significance

Evidence for carbon cycling or biologic activity can be derived from carbon isotopes, because a high
12G13¢ ratio is characteristic of biogenic carbon due to the large isotopic fractionation associated with
enzymatic carbon fixation. The earliest materials measured for carbon isotopes at 3.8 Ga are
isotopically light, and thus potentially biogenic. Because Earth’s known rock record extends only to ~4
Ga, earlier periods of history are accessible only through mineral grains deposited in later sediments.
We report '2C/13C of graphite preserved in 4.1-Ga zircon. Its complete encasement in crack-free,
undisturbed zircon demonstrates that it is not contamination from more recent geologic processes. Its
12G.rich isotopic signature may be evidence for the origin of life on Earth by 4.1 Ga.



Valley Networks of All Sizes
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Hynek et al. 2010



Valley Networks of All Sizes /.
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Resource 1A: Fluvially-S
Sediments
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Let nature do the sorting for you.
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Key Factors: N/H
= rocks w/gas (fluid?)

"~ inclusions:; time
range, datable
surfaces; primary
volcanics; impact
structures; clear,

g compact stratigraphy.

Potentlally analogous
, to highland/basin-rim
| sites on the Moon.
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Pathfinder Glaciated terrains on Mars have
-5 . .
10 Mars Earth erosion rates 4-7 orders of magnitude

faster than flat-lying plains areas. The
freshest exposures of old rocks on
Mars are likely in glacially-modified
areas.

Levy et al., 2015



Amazonian ice.

surface ice.
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Key Factor: Habitability/Refugia,

MLE craters with glacial deposits in
them suggest persistent ground and

Fossil genes and microbes in the oldest ice on Earth
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Although the vast majority of ice that formed on the Antarctic
continent over the past 34 million years has been lost to the oceans,
pockets of ancient ice persist in the Dry Valleys of the Transantarctic
Mountains. Here we report on the potential metabolic activity of
microbes and the state of community DNA in ice derived from Mullins
and upper Beacon Valleys. The minimum age of the former is 100 ka,
whereas that of the latter is ~8 Ma, making it the oldest known ice
on Earth. In both pl liolabeled sut were incor i
into macromolecules, and microbes grew in nutrient-enriched melt-
waters, but metabolic activity and cell viability were critically com-
promised with age. Although a 16S rDNA-based community recon-
struction suggested relatively low bacterial sequence diversity in both
ice I i ly of ¢ DNA r led
many diverse orthologs to extant metabolic genes. Analyses of five
ice samples, spanning the last 8 million years in this region, demon-
strated an exponential decline in the average community DNA size
with a half-life of ~1.1 million years, thereby constraining the geo-
logical preservation of microbes in icy envi and the possibl
exchange of genetic material to the oceans.

ancient ice | community DNA | metabolism | metagenomic analysis |
cosmic radiation

Results and Discussion
DLE-98-12 and EME-98-03 contained a broad size spectrum of
particles and rock debris, ranging from fine silt to coarse sand, which
likely originated from rockfall (sandstone and dolorite) onto the ice
accumulation zone. These inorganic particles contributed to vari-
ations in chemical properties and microzones within and between
the meltwater samples (2) (SI Table 1). For example, meltwater of
EME-98-03 was pH 6.9, whereas that from DLE-98-12 was pH 4,
due to the chemical reactions of, e.g., pyrite in the latter. SEM of
DLE-98-12 revealed the presence of distinct coccoid particles,
suggestive of intact microbes, interspersed with mineral granules
(Fig. 1C, arrows). SEM analysis of EME-98-03 revealed a much
higher fine-particle load along with abundant sheath-like filaments,
which were evenly distributed throughout the sample (Fig. 1D).
Staining with SYBR gold (Fig. 1 E and F) indicated that microbial
concentrations were 5.07 (+0.98) X 10° and 3.28 (+1.56) X 10* cells
per ml~ for DLE-98-12 and EME-98-03, respectively. These values
are comparable to those from polar freshwater (8, 9) and sea ices
(10) but are 2-3 orders of magnitude higher than in Antarctic snow
(11) and subglacial lake ice accretions (1).

To more fully understand the microbial composition of the two
ice samples, we amplified community DNA (Fig. 2) and con-
structed clone libraries with Bacteria-specific 16S rDNA primers (SI

for Human Missions to Mars
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Persistent Ice...Melting
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Resource 1: Ubiquitous'
Concentrated Ground lce

+ Seasonal ice (Vlncen

 Dissected LDM (PPG)

« Likely ice-cemented within upper few
annual skin depths




Resource 1: Ubiquitous™

Concentrated Ground lce
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Many SHARAD tracks are not favorable
orientation, (too much clutter) or features are too
small. 3D migration with dense coverage could
help.

Next- generatlon radar sourgoder would help
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Resource 2: Debris-Covered Glaciers i
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If you've got to melt it to
drink it an explore it, you
might as well live in it:

Ilce as shielding.



Resource 2: Debris-Covered Glaciers 4
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Advanced imaging helps characterize
the debris layer over the ice. 18



Resource 2: Debris-Covered Glaciers /
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On foot/sledge. |

MCM:
800 keep the lights on
100 scientists

Crew of 4: V% scientist
(Hopefully the top half)

Access matters



Highest Priority EZ Data Needs /
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* Next generation orbital radar sounder and high
resolution imagers for accurately determining ice-
protective layer characteristics and thicknesses (all
mid-lat sites), as well as mapping thin near-surface
ice (e.g., LDM deposits).

We know glacial ice and ice-rich permafrost are present in
many sites on Mars. Developing engineering tools to use
that ice is currently data-limited.

Replace With: EZ Location Name 22



If lives depend on
it, go to the ice.

23
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hole in CRISM coverage: focus on morphology and geology
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Site Factors

Criter

il Engineering

1vi

ISRU and C

Meets First Order Criteria (Latitude, Elevation, Thermal Inertia)

Potential for ice or ice/regolith mix

Potential for hydrated minerals

Quantity for substantial production

Potential to be minable by highly automated systems

Located less than 3 km from processing equipment site
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Route to resource location must be (plausibly) traversable
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1-10 km length scale: <10°

Located within 5 km of landing site location

Located in the northern hemisphere

Evidence of abundant cobble sized or smaller rocks and bulk, loose regolith

Engineering
(0]
o
= Threshold
(0]
Q
a4
—
]
)
©
=
Qualifying
o
=
;13 Threshold
=
o
c
- lifyi
5 Qualifying
O
C
o
3%
8 3| Qualifying
w O
o
j .
(o
c
S g | Threshold
=
Q3
= 0
So
[ON~4
=
Qualifying

Utilitarian terrain features

Potential for metal/silicon

Potential to be minable by highly automated systems

Located less than 3 km from processing equipment site

Located no more than 3 meters below the surface

Accessible by automated systems

Potential for multiple sources of metals/silicon

Distance to resource location can be >5 km

Route to resource location must be (plausibly) traversable

O Op O O
~~ -~
- | N[ m c | = | N[ m® c| =
sle|s|5|8|8|s|5]|3
%% |82\ 2|2 (2|8
win|n| X Elw
Key
[} Yes
o Partial Support
or Debated
No
? Indeterminate




BACKUP SLIDES



lan
Datable Units

lan/Hesper

Noach

15t EZ Workshop for Human Missions to Mars

()
(@)]
[
o
T
i -
(@
©
>
=
[
O
[
(4v)
®
(7))
O
C
®
O
(@)
>
T
QO
©
(@))
©
O)
C
®
| -
(@)

(

Access to N (pink) and H




Ice stability depths
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E05003 SCHORGHOFER AND AHARONSON: SUBSURFACE FROST ON MARS E05003
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Figure 7. Permanent and seasonal stability for zonally averaged regolith parameters and humidities.
The solid lines labeled “0%” indicate depths to permanent stability when no ice is present. When pore
spaces are filled with ice at depths where it is stable, the burial depths become shallower than for dry
regolith. Burial depths for 0%, 10%, 30%, and 70% volume fraction of ice are shown. No burial depths
are plotted at the high latitudes where thermal inertias or humidities from TES are least reliable. In the
presence of adsorption, free H,O frost is not expected within the lightly shaded area at any day of the
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More stable on slopes, areas with low D, etc.



Prioritization List of EZ Data Needs
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* Provide a prioritized list of orbiter data to be collected to
assess the (A) science potential and (B) resource potential
of the EZ. For each request, this list should include:

— Instrument name
— Latitude and Longitude of center of image
— A short justification/rationale for this request

» See following slide for detailed information about available
datasets

* The HLS? Steering Committee will examine the requests
and priorities
* All requests will be made through a central/specified POC

Replace With: EZ Location Name 31



Available orbital dat

Dataset ___________Jinstrument _|Coverage | spatial Res./Footprint Where to look at

Surface images

NIR spectral data (e.g., composition)

TIR spectral data (e.g, thermal inertia for
rock counting, surface texture/ type,

subsurface cavities)

Digital Terrain Models/slope maps

Radar

HiRISE

CTX

MOC (-2006)
HRSC

CRISM

TES (-2006)

THEMIS

HiRISE

HRSC

MOLA (-2001 as
altimeter)

SHARAD

MARSIS

2.4%

95%

6%
>90%

97% msp VNIR,
to 36% hsp IR

Near global

Near global

274 (there are more
stereo images)

75%

global

40%

80%

Res- 0.25-1 m/px

Width- Red: 6km wide, Color:
1.2 km wide, Nominal length-
35km;

Res- 5 m/px
Width- 30 km

Res- <12 m/px

Res- 10-60 m/px
Swath width- 60 km

Res- 20-200 (msp) m/px
msp Footprint: 10 km x 45-540
km

Res- 3 km
Width- 5.3,
Length- 8.3 km

Res- 100 m
Width- 20 km

Meter-scale

~50 m/px

100s m spacing of points

Swath width- 3km, Depth res.-
10m, Depth pen.- 300m

Swath width- 10km, Depth res.-
100m, Depth pen.- 1km

http://hirise.lpl.arizona.edu/

http://global-data.mars.asu.edu/ bin
ctx.pl

http://www.msss.com/moc_gallery/

http://www.rssd.esa.int/PSA,
http://ode.rsl.wustl.edu/mars,

http://crism.jhuapl.edu/gallery/

featuredimage/index.php

http://tes.asu.edu/data archive.html

https://themis.asu.edu/galler

http://www.uahirise.org/dtm/

http://hrscview.fu-berlin.de/

http://mola.gsfc.nasa.gov/

http://pds-geosciences.wustl.edu/
missions/mro/sharad.htm

http://pds-geosciences.wustl.edu/
missions/mars_express/marsis.htm

Notes: Rows in orange are those that can be requested. Atmospheric datasets (not listed) are also available. Global maps can be found at:
http://www.mars.asu.edu/data/. A useful tool for looking at and analyzing multiple datasets: http://jmars.asu.edu/
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City of Austin, TX for scale at Euripus Mons




