Joint Discussion: National Research Council “Pathways to Exploration” Report and NASA Human Exploration Strategy

William H. Gerstenmaier
Associate Administrator
Human Exploration & Operations Mission Directorate

Dr. Mary Lynne Dittmar
Former Member, NRC Committee on Human Spaceflight
Current Member, NRC Space Studies Board
CEO, Dittmar Associates, Inc.
Setting the Stage: Inputs to This Presentation

- Follows a joint presentation to ASEB/SSB in April 2015

- Top-level findings of the NRC Human Spaceflight Committee as described in the “Pathways to Exploration: Rationales and Approaches for a U.S. Program of Human Space Exploration” (June, 2014)

- Current positioning of the report (a year after publication) v. NASA planning informed by consultations with other members of the committee, discussions with the NRC, and discussions with NASA officials.

- Characterization of the intentions for of the report come from discussions with Congressional staff who wrote the original authorization language directing the study, and with the NRC

- Personal observations (at the request of the NRC)
The “Pathways Report”: Background

- The study was requested by Congress in the 2010 NASA Authorization Act after the political upheaval stemming from cancellation of the Constellation program

- Multi-part, multi-disciplinary Statement of Task negotiated between NASA and NRC over a year (2011-2012)

- Committee began work in Fall 2012, review-revision cycle began in Spring 2014, final publication in June of 2014.

- Representatives of past and current NASA and foreign programs, as well as experts from academia and industry, all provided briefings to the Technical Panel and the committee

- Key stakeholders were surveyed, a call to the public to submit white papers addressing the role of human spaceflight and its future was made, and the study was opened to public input via Twitter - all coordinated by the committee and the Public and Stakeholder Opinions Panel
Framing the Report: Multiple Goals

- The NRC “Pathways to Exploration: Rationales and Approaches for a U.S. Program of Human Space Exploration” report was requested in order to provide policy guidance to Congress regarding future direction and investments in the U.S. civil space program.

- Though asked to take policy and previous reports into account, the committee’s deliberations and recommendations were not bound by existing policy - with the exception of using SLS and Orion in scenarios.

- Not intended to dictate program structure, architectures, or mission planning to NASA.

- Per Congressional staff (authorizers): The underlying goal was to assemble a diverse group of experts, some of whom supported HSF and some who did not, to investigate, evaluate and recommend to the nation a sustainable path forward for HSF.

- Hope was that the committee could answer fundamental questions- why pursue human spaceflight into the future? Should we continue?*

- If this group of people could not come to consensus that HSF was worth continued investment - “we have a much bigger problem than near-term authorization”. This was the whole genesis for the study.
NASA is Implementing the 2010 Auth Act and NSP

2010 NASA Authorization Act
- Use of ISS to enable expanded commercial presence in LEO and to enable long-duration human missions in space “with decreasing reliance on Earth”
- Enable commercial cargo and crew transportation to ISS
- Development of SLS and Orion
- Long-term goal of international exploration of Mars, starting with missions using SLS/Orion to cis-lunar space

2010 US National Space Policy
- Set far-reaching exploration milestones. By 2025, begin crewed missions beyond the moon, including sending humans to an asteroid. By the mid-2030s, send humans to orbit Mars and return them safely to Earth
Committee Membership

COMMITTEE ON HUMAN SPACEFLIGHT

JONATHAN LUNINE, Cornell University, Co-Chair
MITCHELL E. DANIELS, JR., Purdue University, Co-Chair
BERNARD F. BURKE, Massachusetts Institute of Technology (emeritus professor)
MARY LYNNE DITTMAR, Dittmar Associates Inc.
PASCALE EHRENFREUND, George Washington University
JAMES S. JACKSON, University of Michigan
FRANK G. KLOTZ, Council on Foreign Relations
FRANKLIN D. MARTIN, Martin Consulting, Inc.
DAVID C. MOWERY, University of California, Berkeley (emeritus professor)
BRYAN D. O’CONNOR, Independent Aerospace Consultant
STANLEY PRESSER, University of Maryland
HELEN R. QUINN, SLAC National Accelerator Laboratory (emeritus professor)
ASIF A. SIDDIQI, Fordham University
JOHN C. SOMMERER, Johns Hopkins University (retired)
ROGER TOURANGEAU, Westat
ARIEL WALDMAN, Spacehack.org
CLIFF ZUKIN, Rutgers University
Public & Stakeholder Opinions Panel

ROGER TOURANGEAU, Westat, Chair
MOLLY ANDOLINA, DePaul University
JENNIFER L. HOCHSCHILD, Harvard University
JAMES S. JACKSON, University of Michigan
ROGER D. LAUNIUS, Smithsonian Institution
JON D. MILLER, University of Michigan
STANLEY PRESSER, University of Maryland
CLIFF ZUKIN, Rutgers University
Technical Panel

JOHN C. SOMMERER, Johns Hopkins University (retired), Chair
DOUGLAS S. STETSON, Space Science and Exploration Consulting Group, Vice Chair
ARNOLD D. ALDRICH, Aerospace Consultant
DOUGLAS M. ALLEN, Independent Consultant
RAYMOND E. ARVIDSON, Washington University in St. Louis
RICHARD C. ATKINSON, University of California, San Diego (professor emeritus)
ROBERT D. BRAUN, Georgia Institute of Technology
ELIZABETH R. CANTWELL, Lawrence Livermore National Laboratory
DAVID E. CROW, University of Connecticut (professor emeritus)
RAVI B. DEO, EMBR
ROBERT S. DICKMAN, RD Space LLC
DAVA J. NEWMAN, Massachusetts Institute of Technology
JOHN ROGACKI, Florida Institute for Human and Machine Cognition (Ocala)
GUILLERMO TROTTI, Trott and Associates Inc.
LINDA A. WILLIAMS, Wyle Aerospace Group
The Statement of Task I:

Consider the goals for the human spaceflight program as set forth in (a) the National Aeronautics and Space Act of 1958, (b) the National Aeronautics and Space Administration Authorization Acts of 2005, 2008, and 2010, and (c) the National Space Policy of the United States (2010), and any existing statement of space policy issued by the president of the United States.

Solicit broadly-based, but directed, public and stakeholder input to understand better the motivations, goals, and possible evolution of human spaceflight — that is, the foundations of a rationale for a compelling and sustainable U.S. human spaceflight program — and to characterize its value to the public and other stakeholders.

Describe the expected value and value proposition of NASA’s human spaceflight activities in the context of national goals — including the needs of government, industry, the economy, and the public good — and in the context of the priorities and programs of current and potential international partners in the spaceflight program.

Identify a set of high-priority enduring questions that describe the rationale for and value of human exploration in a national and international context. The questions should motivate a sustainable direction for the long-term exploration of space by humans. The enduring questions may include scientific, engineering, economic, cultural, and social science questions to be addressed by human space exploration and questions on improving the overall human condition.
The Statement of Task II:

Consider prior studies examining human space exploration, and NASA’s work with international partners, to understand possible exploration pathways (including key technical pursuits and destinations) and the appropriate balance between the “technology push” and “requirements pull”. Consideration should include the analysis completed by NASA’s Human Exploration Framework Team, NASA’s Human Spaceflight Architecture Team, and the Review of U.S. Human Spaceflight Plans (Augustine Commission), previous NRC reports, and relevant reports identified by the committee.

Examine the relationship of national goals to foundational capabilities, robotic activities, technologies, and missions authorized by the NASA Authorization Act of 2010 by assessing them with respect to the set of enduring questions.

Provide findings, rationales, prioritized recommendations, and decision rules that could enable and guide future planning for U.S. human space exploration. The recommendations will describe a high-level strategic approach to ensuring the sustainable pursuit of national goals enabled by human space exploration, answering enduring questions, and delivering value to the nation over the fiscal year (FY) period of FY2014 through FY2023, while considering the program’s likely evolution in 2015-2030.
Findings - A Strategy for Sustainability

- The Committee endorsed continuation of human space exploration program, but noted:
 - The nation must decide *now* on the nature of that program
 - The only pathways that justify expense, continued investment and risk to crews involved are those that *ultimately place humans on other worlds*

- The pathway principles and decision rules put forth in the report should be adopted (highest priority recommendation)

- A sustainable program of human deep space exploration must have an ultimate, “horizon” goal (Mars)
 - Provides a long-term focus less likely to be disrupted by failures, accidents, and vagaries of the political process and economic scene
 - Mars not achievable with flat funding or with rise at rate of inflation (~2.5%)

- NASA should focus now on the high-priority research and technology:
 - Entry, descent, and landing for Mars;
 - In-space propulsion and power; and
 - Radiation health effects and amelioration
Strategic Principles for Sustainable Exploration

• Implementable in the near-term with the buying power of current budgets and in the longer term with budgets commensurate with economic growth;

• Exploration enables science and science enables exploration, leveraging robotic expertise for human exploration of the solar system

• Application of high Technology Readiness Level (TRL) technologies for near term missions, while focusing sustained investments on technologies and capabilities to address challenges of future missions;

• Near-term mission opportunities with a defined cadence of compelling and integrated human and robotic missions providing for an incremental buildup of capabilities for more complex missions over time;

• Opportunities for U.S. commercial business to further enhance the experience and business base;

• Multi-use, evolvable space infrastructure, minimizing unique major developments, with each mission leaving something behind to support subsequent missions; and

• Substantial new international and commercial partnerships, leveraging the current International Space Station relationships while building new cooperative ventures.
Capabilities for Pioneering Space: Steps on the Journey to Mars

<table>
<thead>
<tr>
<th>Mission Capability</th>
<th>ISS</th>
<th>Cis-lunar Short Stay (e.g. ARM)</th>
<th>Cis-lunar Long Stay</th>
<th>Mars Orbit</th>
<th>Mars Moons</th>
<th>Mars Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Situ Resource Utilization & Surface Power</td>
<td></td>
<td>Exploratory ISRU</td>
<td>Exploratory ISRU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Habitat & Mobility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human/Robotic & Autonomous Ops</td>
<td></td>
<td>System Testing</td>
<td>Crew-tended</td>
<td>Earth Supervised</td>
<td>Earth Monitored</td>
<td>Earth Monitored</td>
</tr>
<tr>
<td>Exploration EVA</td>
<td></td>
<td>System Testing</td>
<td>Limited Duration</td>
<td>Full Duration</td>
<td>Full Duration</td>
<td>Frequent EVA</td>
</tr>
<tr>
<td>Crew Health</td>
<td></td>
<td>Long Duration</td>
<td>Short Duration</td>
<td>Long Duration</td>
<td>Long Duration</td>
<td>Long Duration</td>
</tr>
<tr>
<td>Environmental Control & Life Support</td>
<td></td>
<td>Long Duration</td>
<td>Short Duration</td>
<td>Long Duration</td>
<td>Long Duration</td>
<td>Long Duration</td>
</tr>
<tr>
<td>Radiation Safety</td>
<td></td>
<td>Increased Understanding</td>
<td>Forecasting</td>
<td>Forecasting Shelter</td>
<td>Surface Enhanced</td>
<td>Surface Enhanced</td>
</tr>
<tr>
<td>Ascent from Planetary Surfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Protoflight Use</td>
</tr>
<tr>
<td>Entry, Descent & Landing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Operational Capability</td>
</tr>
<tr>
<td>In-space Power & Prop</td>
<td></td>
<td>Low power</td>
<td>Low Power</td>
<td>High Power</td>
<td>High Power</td>
<td>High Power</td>
</tr>
<tr>
<td>Beyond LEO: SLS & Orion</td>
<td></td>
<td>Initial Capability</td>
<td>Initial Capability</td>
<td>Full Capability</td>
<td>Full Capability</td>
<td>Full Capability</td>
</tr>
<tr>
<td>Commercial Cargo & Crew</td>
<td></td>
<td>Cargo/Crew</td>
<td>Opportunity</td>
<td>Opportunity</td>
<td>Opportunity</td>
<td>Opportunity</td>
</tr>
<tr>
<td>Communication & Navigation</td>
<td></td>
<td>RF</td>
<td>RF & Initial Optical</td>
<td>Optical</td>
<td>Deep Space Optical</td>
<td>Deep Space Optical</td>
</tr>
</tbody>
</table>

EARTH RELIANT | **PROVING GROUND** | **EARTH INDEPENDENT**
Largest Indivisible Payload Element and Options for Size of the Lander

Payload Elements

Inerts 10.5t
CH4 5.8t
LOX 19.2t
Total 35.5t

Minimum lander size driven by **Crew Ascent Stage**. Various techniques (and risks) for loading or producing propellant on Mars can reduce lander payload requirement from 40 t to 15 t (but increase number of landers required).

First short stay mission requires: 1 lander
First short stay mission requires: 2 landers
First short stay mission requires: 3 landers
First short stay mission requires: 4 landers

Payload Elements

Largest Indivisible Payload Element

Inerts 10.5t
CH4 5.8t
LOX 19.2t
Total 35.5t

Support First Crew?

Yes
No

First short stay mission requires:
1 lander
2 landers
3 landers
4 landers

Surface Prop Xfer?

Yes
No

Did Not Assess: 30t minimum payload

Xfer LOX only?

Yes
No

Xfer tanks 0.6t
Power TBD
Mobility 1.0t
Total TBD

Xfer LOX and CH4?

Yes
No

ISRU Plant 1.0t
Power 8.0t
Mobility 1.0t
Total 10.0t

ISRU? LOX and CH4

LOX only

None

Transportation

Power 8.0t
Mobility 1.0t
Total 10.0t

Min. # of Landers?

Yes
No

Support First Crew?

Yes
No

27 t Payload (57 t Lander)
18 t Payload (43 t Lander)
15 t Payload (33 t Lander)
40 t Payload (90 t Lander)

2015 Assessment in work

Lander Payload Options

No
Yes
No
Yes
No
Yes
No
Yes

Did Not Assess: 30t minimum payload

30t minimum payload

No
Yes

30t minimum payload
2015 Human Landing Site Study

1. Scientific Objectives (SMD/MEPAG)
2. Engineering and Operational Constraints (HEOMD/HAT)
3. ISRU/Civil Engineering (SMD/MEPAG and HEOMD/HAT)

June 4-5
Integration Workshop ~1.5 days

June
SR Open Call

Oct 27-30
SR-EZ Workshop

November
EZ List accepted

5. Planetary Protection Inputs (Starts March 24-26)
6. Identification of candidate EZs
8. New Recon Data Needs
3. Information and Cross-sharing Briefings

Deliverables
EZ List
MRO request
New recon data

8/21/2015
SEP Module Extensibility for Mars

Block 1
- 50-kW Solar Array
- 40-kW EP System
- 10-t Xenon Capacity

Block 1a (SEP/Chem)
- 190-kW Solar Array
- 150-kW EP System
- 16-t Xenon Capacity

Hybrid
- 250 to 400-kW Solar Array
- 150 to 200-kW EP System
- 16-t Xenon Capacity With Xe Refueling Capability
Foundation of Space Radiation Radiobiology Research

- External review by National Council on Radiation Protection (NCRP), National Academy of Sciences, and HRP Standing Review Panels
- Seven NASA Specialized Centers of Research (NSCOR’s)
- Funded research at over 40 US Universities including collaboration with US Department of Energy (DoE)
- Space radiation simulated at the NASA Space Radiation Laboratory (NSRL)
- Partnership with NASA’s Space Radiation Analysis Group on transition of risk assessment tools to Operations
- Partnership with National Space Biomedical Research Institute (NSBRI) on acute and cardiovascular risks
- Collaborations with other NASA Programs support an integrated protection strategy across physical and biological solutions
Human System Risk Board (HSRB) Identified 30 Human Spaceflight Health Risks

<table>
<thead>
<tr>
<th>Altered Gravity Field</th>
<th>Radiation</th>
<th>Hostile/Closed Environment-Spacecraft Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Spaceflight-Induced Intracranial Hypertension/Vision Alteration</td>
<td>1. Risk of Space Radiation Exposure on Human Health</td>
<td>1. Toxic Exposure</td>
</tr>
<tr>
<td>2. Urinary Retention</td>
<td></td>
<td>2. Acute & Chronic Carbon Dioxide Exposure</td>
</tr>
<tr>
<td>5. Risk of Bone Fracture due to spaceflight induced bone changes</td>
<td></td>
<td>5. Injury and Compromised Performance due to EVA Operations</td>
</tr>
<tr>
<td>6. Impaired Performance Due to Reduced Muscle Mass, Strength & Endurance</td>
<td></td>
<td>6. Decompression Sickness</td>
</tr>
<tr>
<td>7. Reduced Physical Performance Due to Reduced Aerobic Capacity</td>
<td></td>
<td>7. Injury from Sunlight Exposure</td>
</tr>
<tr>
<td>8. Impaired Control of Spacecraft, Associated Systems and Immediate Vehicle Egress due to Vestibular / Sensorimotor Alterations associated with space flight.</td>
<td></td>
<td>8. Incompatible Vehicle/Habitat Design</td>
</tr>
<tr>
<td>10. Orthostatic Intolerance During Re-Exposure to Gravity</td>
<td></td>
<td>10. Risk to crew health and compromised performance due to inadequate nutrition</td>
</tr>
<tr>
<td>11. Adverse Health Effects due to Alterations in Host Microorganism Interaction</td>
<td></td>
<td>11. Adverse Health Effects of Celestial Dust Exposure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Performance Errors Due to Fatigue Resulting from Sleep Loss, Circadian Desynchronization, Extended Wakefulness, and Work Overload</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13. Injury from Dynamic Loads</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14. Risk of Altered Immune Response</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15. Risk of Electrical Shock</td>
</tr>
</tbody>
</table>

Each risk will be controlled by a NASA standard to protect crew health and safety.
ISS One-Year Mission

• 2015 marks the launch of astronaut Scott Kelly and cosmonaut Mikhail Kornienko to the ISS for 12 months – the longest mission ever assigned to a US astronaut
 – Joint US/Russian ISS research includes studies on: ocular health, immune and cardiovascular systems, cognitive performance testing, and effectiveness of countermeasure against bone and muscle loss

• HRP study of identical twins astronaut Scott Kelly, and retired astronaut, Mark Kelly
 – Provides unprecedented opportunity to research effects of spaceflight on twin genetic makeup, and better understand the impacts of spaceflight on the human body

http://www.nasa.gov/exploration/humanresearch/index.html

Retired astronaut Mark Kelly (left) and his twin brother, astronaut Scott Kelly, who will spend a year on ISS
Findings: Essential Cornerstones I

The rationales for human spaceflight are a mix of the aspirational and the pragmatic

- The primary rationale for the Apollo program was to demonstrate the technological and ideological supremacy of the United States over the Soviet Union - a conflict which is now over.

- Quantification of the value of human spaceflight to the nation today, in terms of economic return or increased quality of life, is difficult.

- This does not mean that there are no benefits: W.B. Cameron wrote “not everything that can be counted counts, and not everything that counts can be counted”.
Rationales For Human Spaceflight: Findings

Economic—The NASA human spaceflight program has stimulated economic activity and has advanced development of new products and technologies. It is impossible, however, to develop a reliable comparison of the returns from spaceflight versus other government R&D investments.

Security/Geopolitical—An active U.S. human spaceflight program gives the United States a stronger voice in an international code of conduct for space, enhances U.S. soft power, and supports collaborations.

Education and inspiration—Space missions can serve as an inspiration for students and citizens to engage with science and engineering, although the path to becoming a scientist or engineer requires much more than the initial inspiration.

Scientific discovery—The relative benefits of robotic versus human efforts in space science are constantly shifting as a result of changes in technology, cost, and risk.

Human survival—Whether human off-Earth settlements could eventually be developed that would outlive human presence on Earth and lengthen the survival of our species is a question that can only be settled by pushing the human frontier in space.

Shared destiny and aspiration to explore—Some say it is human destiny to continue to explore space. While not all share this view, for those who do, it is an important reason to engage in human spaceflight.
Findings: Essential Cornerstones II

The level of public interest in space exploration is modest relative to other public policy issues

- Public opinion about space has been generally favorable over the past 50 years, but much of the public is inattentive to space exploration and spending on space exploration is not a high priority for most of the public.
- Stakeholder surveys and public outreach mirror rationales and reflect a permissive policy environment supporting human space exploration.
Findings: Essential Cornerstones III

The horizon goal for human space exploration is Mars

- There is a small set of plausible goals for human space exploration in the foreseeable future, the most distant and difficult of which is a landing by human beings on the surface of Mars.

- All long-range space programs, by all potential partners, for human space exploration converge on this goal.
Findings: Essential Cornerstones IV

A program of human space exploration beyond Low Earth Orbit is not sustainable with a human spaceflight budget that increases only enough to keep pace with inflation

- The current program to develop launch vehicles and spacecraft and then to operate them for flight beyond LEO cannot be sustained with constant buying power over time
 - Does not provide the flight frequency required to maintain competence and safety,
 - Does not possess the “stepping-stone” architecture that allows the public to see the connection between the horizon goal and near-term accomplishments, and
 - May discourage potential international partners

- The committee proposed a pathways approach that requires the U.S. to settle on a definite pathway to the horizon goal and adhere to certain principles and decision rules to get there
Pathways Approach: I

- Stepping stones: Between LEO and the martian surface are regions of space with stepping stone destinations reachable with foreseeable advances in the state of the art of key capabilities. These include:
 - Cislunar space, which encompasses missions to the Earth-Moon L2 point, lunar orbit, and the lunar surface (both lunar sorties with relatively short stays and lunar outposts with extended stays);
 - Near-Earth asteroids (NEAs) in their native orbits; and
 - Mars, which encompasses a Mars flyby mission as well as missions to the moons of Mars, Mars orbit, and the surface of Mars.
 - Earth-moon Lagrange points.

- Pathways approach in a nutshell:
 - A specific sequence of intermediate accomplishments and destinations normally of increasing difficulty and complexity
 - Leads to an ultimate (horizon) goal with technology feed-forward from one mission to subsequent missions
 - Destinations have cultural, geopolitical, scientific, inspirational, and/or economic value
Pathways Approach: II

- NASA can sustain a human space exploration program with meaningful milestones that simultaneously reasserts U.S. leadership in space while allowing ample opportunity for substantial international collaboration when that program:
 - Has elements that are built in a logical sequence, and
 - Can fund a frequency of flights sufficiently high to ensure retention of critical technical capability, proficiency of operators, and effective utilization of infrastructure.

- However, a NASA human spaceflight budget that increases with inflation does not permit a viable pathway to Mars. The program will require increasing the budget by more than the rate of inflation.
3 Possible Pathways (not exhaustive!)
Pioneering Space

ISS Through at Least 2024
- Human Research Project (HRP) risk mitigation
- Facilitate commercial LEO
- Conduct fundamental biological physical sciences research

Crewed Missions Beyond LEO Through 2020s
Resulting in Mars transit-like shakedown cruise by the end of the 2020s
- ARM/SEP
- Deep space hab
- In-space transportation

Human Missions to Mars Vicinity in 2030s+
- Pre-emplaced orbital and surface assets
- Human/robotic missions to Mars orbit/moons/surface

Mars Robotic Science Missions and Mars Access Technology Development
- Mars climate and surface mapping
- Mars EDL/ISRU/surface power
Highest Priority Recommendation: Pathway Principles

- Commit to design, maintain, and pursue the execution of an exploration pathway beyond low Earth Orbit toward a clear horizon goal that addresses the “enduring questions” for human spaceflight
 - “How far from Earth can humans go?” - and
 - “What can humans discover and achieve when we get there?”
- Engage international space agencies early in design and development of the pathway on the basis of their ability and willingness to contribute
- Define steps on the pathway that foster sustainability and maintain progress on achieving the pathway’s long-term goal of reaching the horizon destination
- Seek continuously to engage new partners that can solve technical or programmatic impediments to pathway progress
Pathway Principles II:

- Create a risk mitigation plan to sustain the selected pathway when unforeseen technical or budgetary problems arise. *Such a plan should also include points at which decisions are made to move to a less ambitious pathway or stand down the program.*

- Establish exploration pathway characteristics that maximize the overall scientific, cultural, economic, political, and inspirational benefits without sacrificing progress toward the long-term goal, these characteristics being:
 - The horizon and intermediate destinations have profound scientific, cultural, economic, inspirational, or geopolitical benefits that justify public investment;
 - The sequence of missions and destinations permits stakeholders, including taxpayers, to see progress and develop confidence in NASA being able to execute the pathway;
Pathway Principles III:

- Exploration pathway characteristics (continued):
 - The pathway is characterized by logical feed-forward of technical capabilities;
 - The pathway minimizes the use of dead-end mission elements that do not contribute to later destinations on the pathway;
 - The pathway is affordable without incurring unacceptable development risk; and
 - The pathway supports, in the context of available budget, an operational tempo that ensures retention of critical technical capability, proficiency of operators, and effective utilization of infrastructure.
Extensibility of Habitation Systems - Commonality

- Habitation systems are under study in the EMC and considered the next habitation system following Orion. The new system would serve as the foundation for deep space testing and proto-flight vehicle for smaller/short-duration Mars exploration systems.

- Commonality can be leveraged across two major classes of vehicles:
 - Short duration/destination – initial deep-space habitation, Phobos Taxi, logistics carriers, Mars Surface/Phobos Mobility, Mars/Lunar Ascent, and possibly airlocks.
 - Long duration – Transit Habitat, Phobos Habitat, Mars Surface Habitat.

Hab and logistics carriers constrained by early cargo capability (SLS cargo with crew and EELVs - ~4.6m x 10m)

<table>
<thead>
<tr>
<th>Short Duration</th>
<th>Long Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistics Carriers</td>
<td>Mars/Lunar Ascent Vehicle Cabin</td>
</tr>
<tr>
<td>Phobos Taxi</td>
<td>Mars Surface/Phobos Mobility</td>
</tr>
<tr>
<td>Mars Surface/Phobos Mobility</td>
<td>Phobos Hab</td>
</tr>
</tbody>
</table>

- 30 – 60 Days
- 500 Days

Transit/Phobos Hab (docked to hab)
Extensibility of Habitation Systems - Modularity

- Two paths for long duration habitation modularity
 - **Right to Left**: Derive common long duration habitat systems and pressure shell commonality options from Mars lander and Phobos habitat transportation system (SEP) constraints.
 - **Left to Right**: Build up long duration, in-space habitats from EAM, logistics carriers, and inflatables launched in sections that fit in SLS crew cargo area and aggregated in LDRO.

EAM is common to either approach. Approach decision not needed before 2020.
Decision Rules - When problems arise....

• If the appropriated funding level and projected 5-year budget projection do not permit execution of a pathway within the established schedule, then do not start down that pathway.

• If a budget profile does not permit the chosen pathway, take an “off-ramp” (defined as “a less ambitious pathway”).

• If the U.S. human spaceflight program receives an unexpected increase in budget for human spaceflight, the increase in funds should be applied to retire rapidly significant technology risks or increase operational tempo.

• Give priority to those approaches that solve significant existing technological shortcomings, reduce overall program cost, allow for an acceleration of the schedule, and/or reduce developmental or operational risk.

• If there are human spaceflight program elements, infrastructure, and organizations that no longer contribute to progress along the pathway, the human spaceflight program should divest itself of them as soon as possible.
Pioneering Space is all about Logistical Efficiency

• **Logistics**: procurement, maintenance, transportation of materiel, facilities, personnel
 – Procurement: multiple uses from fewest unique units, technology refresh
 – Maintenance: crew health, self-sufficiency, workforce skill readiness (ops tempo)
 – Transportation: launch, interplanetary transfer, orbit capture, landing/ascent (EDLA)

• **Modularity**: standardized units for flexibility and variety of use
 – Encapsulate complexity with fewest and simplest interfaces
 – Multiple descent/ascent elements, sub-habitats, ISRU and power plants

• **Commonality/Standards**: possession of similar features or attributes
 – Develop units that serve many purposes across a campaign and other markets
 – Common units for Moon and Mars EDLA, space and surface habitats, habitat and rover mobility

• **Extensibility**: augmenting functionality through minimal additional effort
 – Maturation of capability has growth path to full scale need (no dead ends, open architecture)
 – Precursor mission deploys the first module of an operational system

• **Affordability**: minimize NRE (fewer unique units) & RE (higher production volume)
 – Sacrificing some efficiency (e.g., SWaP) within a unit may increase its use in other applications and thereby gain system-wide efficiency
Designing a Resilient Architecture

Design flexibility into large-scale, complex systems to adapt more easily to change

1. Design a set of potential system configurations
2. Quantify switching costs between these configurations
3. Expand network in time to include chance (circles) and decision (squares) nodes
4. Evaluate minimum cost paths through the network under plausible operational scenarios
5. Modify the set of initial configurations to exploit high-leverage switches

Findings: International Collaborations

I. U.S. near-term goals for human exploration are not aligned with those of our traditional international partners (beyond ISS)

Most major spacefaring nations and agencies are looking toward the Moon. U.S. plans are focused on redirection of an asteroid into a retrograde lunar orbit where astronauts would conduct operations with it.

Although the United States is not expected to blindly follow the desires of other nations in shaping its own exploration program, there are a number of advantages to the United States being a more active player in lunar surface operations.

II. Noting the rapid development of China’s capabilities in space, it is in the best interests of the US to be open to future international partnerships

- Given the scale of the endeavor of a mission to Mars, contributions by international partners would have to be of unprecedented magnitude to defray a significant portion of the cost.
Findings: Commercial Partnerships

- The report noted:
 - Completion of the commercial cargo launch development program (COTS) and transition to operations
 - The potential reduction in cost associated with new acquisition model
 - The shift of development risk to private sector for new systems

- With regard to longer term considerations, the report is more circumspect
 - The near-term objectives of commercial cargo and crew are to mitigate U.S. dependence on Russia for transport
 - Unclear whether it will reduce costs
 - Has helped stabilize and expand the U.S. industrial base
 - Longer term - the establishment of a space-based economy with human spaceflight as a major component may be possible, but is speculative
Commercial Opportunities in Space with NASA

ROUTINE TRANSPORTATION:
- Commercial Resupply 1
- Commercial Resupply 2
- Commercial Crew
- Collaborations for Commercial Space Capabilities
- Asteroid Redirect Mission BAA
- Lunar CATALYST
- Evolve ISS RFI
- Mars Telecom RFI
- NextSTEP BAA

EXPLORATION

RESEARCH

CASIS
Additional Considerations...

- The report noted that terminating the ISS earlier rather than later may open up a funding wedge for Beyond Earth Orbit exploration that could be time-critical; however it also noted that doing so would adversely impact commercial space transportation providers and hopes for a developing in-space economy in LEO.

- The Committee recommended near-term discussions with International Partners regarding implications of continuation/termination of the ISS.

- Commercial approaches to and international collaboration in Beyond Earth Orbit exploration will have to greatly exceed previous levels of cost sharing (or reduction) in order to substantially impact budget profiles for various pathways.
Human Exploration and Operations
Human Research Program: Integrated Path to Risk Reduction

Planetary DRM (Mars) Risks

<table>
<thead>
<tr>
<th>LxC</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
<th>FY25</th>
<th>FY26</th>
<th>FY27</th>
<th>FY28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac Rhythm Problems (Arrhythmia)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Sleep Loss/Work Overload (Sleep)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Reduced Muscle Mass (Muscle)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Reduced Aerobic Capacity (Aerobic)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Orthostatic Intolerance (OI)</td>
<td>3x2</td>
<td></td>
</tr>
<tr>
<td>Exploration Atmospheres (ExAtm)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Team Performance (Team)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Host-Microorganism Interactions (Microhost)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Occupant Protection (OP)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Altered Immune Response (Immune)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Bone Fracture (Fracture)</td>
<td>2x4</td>
<td></td>
</tr>
<tr>
<td>Human-System Interaction Design (HSID)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Intracranial Hypertension/ Vision (VIP)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Unpredicted Effects of Medication (Stability)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Inadequate Food and Nutrition (Food)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>In-Flight Medical Capabilities (ExMC)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Vestibular/Sensorimotor Impacts (Sensorimotor)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Behavioral Conditions (BMed)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Intervertebral Disk Damage (IVD)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Pharmacokinetics (PK/PD)</td>
<td>LxC</td>
<td></td>
</tr>
<tr>
<td>Inadequate EVA Suit (EVA)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Decompression Sickness (DCS)</td>
<td>3x3</td>
<td></td>
</tr>
<tr>
<td>Exposure to Dust & Volatiles (Dust)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Renal Stone Formation (Renal)</td>
<td>3x4</td>
<td></td>
</tr>
<tr>
<td>Radiation Exposure on Human Health</td>
<td>3x4</td>
<td></td>
</tr>
</tbody>
</table>

Milestones

- ISS Required
- ISS Not Required
- Milestones Requires ISS
- Milestone Shift

Assumptions:
- 450 crew hrs/Increment pair
- 3 crew/Increment pair
- 6 month missions

Updated
4/20/15
Rev. C draft
ISS Technology Demonstration Plan

<table>
<thead>
<tr>
<th>Capability Gap</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
<th>FY25</th>
<th>FY26</th>
<th>FY27</th>
<th>FY28</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECLSS</td>
<td>Reliably CO2 Removal + lower ppCO2</td>
<td>CDRA-5</td>
<td>next gen COGA</td>
<td>CDRA upgrades</td>
<td>next gen system</td>
<td>MF bed mod</td>
<td>cat reactor mod</td>
<td>HMC</td>
<td>UWMS</td>
<td>ISS size</td>
<td>PLSS 3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smaller, simpler O2 Gen</td>
<td></td>
</tr>
<tr>
<td>High pressure O2 for EVA & medical use</td>
<td></td>
</tr>
<tr>
<td>Reliable urine processing ~85% recovery</td>
<td></td>
</tr>
<tr>
<td>Reliable water processing w/ reduced expendables</td>
<td></td>
</tr>
<tr>
<td>Common biocides with on orbit replenishment</td>
<td></td>
</tr>
<tr>
<td>Waste management</td>
<td></td>
</tr>
<tr>
<td>Additional O2 recovery from CO2 > 75%</td>
<td></td>
</tr>
<tr>
<td>Additional water from brine > 85% recovery</td>
<td></td>
</tr>
<tr>
<td>Logistics Reduction</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Environmental Monitoring</td>
<td>Trace Gas (on orbit, no grab sample return)</td>
<td>AQM</td>
<td>SAM</td>
<td>Saffire</td>
<td></td>
</tr>
<tr>
<td>Targeted Gases (fire products, NH3, hydrazine)</td>
<td></td>
</tr>
<tr>
<td>Water (individual compounds)</td>
<td></td>
</tr>
<tr>
<td>Microbial (ID & qty species)</td>
<td></td>
</tr>
<tr>
<td>Major Constituents (small, no maintenance)</td>
<td></td>
</tr>
<tr>
<td>Particulates</td>
<td></td>
</tr>
<tr>
<td>Acoustic (automated, alerting, no crew time)</td>
<td></td>
</tr>
<tr>
<td>EVA</td>
<td>PLSS & Pressure Garment ug test</td>
<td></td>
</tr>
<tr>
<td>EMU upgrades</td>
<td></td>
</tr>
<tr>
<td>Fire Safety and Response</td>
<td>Emergency Mask (single cartridge)</td>
<td>dual</td>
<td>single</td>
<td>Saffire</td>
<td></td>
</tr>
<tr>
<td>Contingency Air Monitor (overlap with targeted gas)</td>
<td></td>
</tr>
<tr>
<td>Smoke Eater</td>
<td></td>
</tr>
<tr>
<td>Water Mist PPE</td>
<td></td>
</tr>
<tr>
<td>Crew Health & Performance Technologies</td>
<td>Exercise Equipment</td>
<td>Orion device</td>
<td>Exploration device</td>
<td></td>
</tr>
<tr>
<td>Medical Equipment</td>
<td></td>
</tr>
<tr>
<td>Food System</td>
<td></td>
</tr>
<tr>
<td>Thermal (including Cryo)</td>
<td>ZBOT (Phases 1-3)</td>
<td></td>
</tr>
<tr>
<td>Phase Change Material</td>
<td></td>
</tr>
<tr>
<td>Variable Heat Rejection radiators, single loop fluids</td>
<td></td>
</tr>
<tr>
<td>Power & Energy Storage</td>
<td>Solar arrays</td>
<td></td>
</tr>
<tr>
<td>Energy Storage</td>
<td></td>
</tr>
<tr>
<td>Comm & Navigation</td>
<td>High speed comm/internetworking</td>
<td>DTN & ORALS, SCAN TB</td>
<td>ISS terminal?</td>
<td>TDRS upgrades</td>
<td></td>
</tr>
<tr>
<td>Position, navigation, and timing</td>
<td></td>
</tr>
<tr>
<td>Structures & Materials</td>
<td>Materials/In-space manufacturing</td>
<td>3D print (plastic)</td>
<td>mits reuse "tab lab"</td>
<td></td>
</tr>
<tr>
<td>Structures & Health Monitoring</td>
<td></td>
</tr>
<tr>
<td>Radiation Monitoring & Shielding</td>
<td></td>
</tr>
<tr>
<td>ISRU (trash processing, resource prospecting, in-situ manufacturing) Plans under construction.</td>
<td></td>
</tr>
<tr>
<td>Autonomous Operations</td>
<td>TOCA</td>
<td>SAMS EXPRESS</td>
<td>ISS crew autonomy 2.0</td>
<td></td>
</tr>
<tr>
<td>Automated Rendezvous & Docking</td>
<td></td>
</tr>
<tr>
<td>Robotics</td>
<td>Robotic refueling</td>
<td></td>
</tr>
<tr>
<td>Free flyer robots (IVA & EVA)</td>
<td></td>
</tr>
<tr>
<td>Human assist robots</td>
<td></td>
</tr>
<tr>
<td>Teierobots</td>
<td></td>
</tr>
</tbody>
</table>

- **Red**: no committed funding
- **Green**: some $, but insufficient funding for ISS demo
- **Yellow**: sufficient funding to ISS demo
- **Blue**: Funded ISS demo
- **Gray**: Proposed ISS demo (not yet funded)
Vision: Sustained economic activity in LEO enabled by human spaceflight, driven by private and public investments creating value and benefitting Earth through commercial supply and public and private demand

Goals

1.0 LEO commercialization enabled by leveraging ISS
- User-friendly ISS process improvements
- Maximize throughput
- Demonstrate & communicate value proposition of ISS
- Foster “success stories”
- Utilize more commercial acquisition strategies

2.0 The policy and regulatory environment promotes commercialization of LEO
- Establish interagency working group to address policy and regulatory issues
- Investigate economic cluster potential
- Address barriers such as IP retention, liability, ITAR

3.0 A robust, self-sustaining, and cost effective supply of US commercial services to/in/from LEO accommodates public and private demands
- Leverage NASA NEXTSteps BAA studies and follow-on to enable commercial LEO capabilities
- Enable Earth-similar laboratory capabilities for ISS that can transition to commercial platforms
- Transition from NASA-supplied to commercially-supplied services and capabilities once available

4.0 Broad sectors of the economy using LEO for commercial purposes
- Establish consortia for potential high-payoff, market-enabling microgravity applications with public and private funds to support development (e.g. protein crystallization, exotic fibers, lightweight alloys, 3D tissues)
- Establish commercial LEO utilization university curriculum and programs
A Year Later: How does the Pathways report align with NASA activities? Major Points:

- The HSF Committee endorsed the continuation of human spaceflight program(s) and deep space exploration, with a horizon goal of Mars.
- Further, such a program should advance U.S. leadership and be worthy of the investment and inevitable loss of life. This means ultimately placing humans on other worlds.
- Committee supported increase in funding (roughly on the order of rate of inflation + 2-3%)
 - Mitch Daniels - Committee Co-Chair, to House SST Committee - “a drop in the bucket”
 - NASA - budget will require “moderate increase” in out years
 - Dr. John Holdren (President’s Science Advisor) - “Eventually, yes, between now and the 2030’s we would need to ramp up the budget…”
- Committee pointed out the need for international and commercial teaming and cost-sharing on a large scale.
Alignment (cont’d)

- Committee supports “stepping stone” approach with “feed-forward technology development”
 - NASA uses stepping stone approach; calls feed-forward “extensibility”

- Committee warns about funding levels vs. operational requirements for SLS; points out that launch cadence is not commensurate with safety.
 - NASA has called for 1X/year “necessary requirement”

- Report calls for near-term technology investment; provides a prioritized list of development
 - NASA has list and is conducting trades; many (but not all) of the items overlap
Where NASA and NRC are not aligned...

- China (U.S. law)
- Committee didn’t “pick” a pathway but raised questions about...
 - Asteroid Retrieval Mission (last briefed in early 2014)
 - Lunar surface operations (base)
 - International Partner interests
- Budget implications
 - Committee found increase in national investment is needed as soon as possible
 - Committee found that Mars was not achievable unless investment followed rate of inflation plus ~2-3%
- Divestiture of unneeded assets
 - Pointed out in other NRC reports; politically difficult
Moving toward alignment...?

- Report calls for pathways approach - goal is sustainability
- DRM-type logic v NASA approach (evolvable, capabilities-based, resilient); however -
 - Decision rules call for (a) “dropping down to another, less difficult approach” (“off-ramps”) or (b) terminating program when these represent unacceptable development risk or “break the budget”
 - Strong similarities to “resilient architecture”
 - Need to better understand scenarios and switches

- NASA’s approach is ‘capability-based’ ...goal is sustainability
 - Budgetary constraints
 - Policy environment
 - Time (a program on the order of multiple decades, rather than a decade)
 - Uses international partners and commercial capabilities were appropriate. Allows for dependency on others for key capabilities.
Some Final Thoughts

• The aggregate value of the practical benefits and aspirational goals related to human space exploration justify our national investment in and continuation of the program, toward Mars.

• Given the complexity of the challenges before it, NASA must evolve - and is evolving.
 - Will require NASA to divest what it doesn’t need or can acquire through other means at lower cost, or can partner for.
 - NASA must *harvest wisely* - can’t do everything ‘in-house’.
 - Turn over every rock - industry, tech development, international collaboration, new acquisition models.
 - Must challenge assumptions and sacred cows - be willing to let go of the past but retain unique core capabilities - a tough balancing act!

• **Sustainability** is the goal, not any particular architecture - those should be evaluated on their merits, as they contribute to that goal.
Summary Observations

• NASA’s long-term human spaceflight objective is to “extend human presence into the solar system and to the surface of Mars” (2011 NASA Strategic Plan)

• Sustainability is the central idea in NASA’s approach, and why we implement the journey to Mars with a pioneering approach

• A sustained program requires:
 – Resilient architectures (the Evolvable Mars Campaign vs a DRM)
 – Robust and evolvable access to space (SLS & Orion)
 – Near term activities that help to understand risks and provide measurable evidence of progress in human spaceflight (ISS technology and human health risks, SLS/Orion with a series of exploration missions with measurable objectives)
 – In-space transportation, AR&D for cargo and crew missions (ARM/SEP and SEP/Chem hybrid concepts)
 – Knowledge of Mars and access to Mars surface (current and future robotic Mars missions)

• All of these are features of NASA’s current programs and investment strategy – our current programs make sense in this strategic context

• We progress at the rate funding, technologies, and partnerships allow