
National Aeronautics and Space Administration

Crew
Orbital
Docking
Simulation
(CODing Sim)

For more about Next Gen STEM visit
www.nasa.gov

http://www.nasa.gov/stem/ccp.

www.nasa.gov
http://www.nasa.gov/stem/ccp

2

Crew Orbital Docking
Simulation
Grade Level: 5th-12th

Suggested Time: 1hr - 2hrs

Overview: In this activity, students use
Scratch, Snap!, or another programming
language to create an interactive simulation
of a spacecraft docking to the International
Space Station. The Crew Orbital Docking
Simulation (CODing Sim) engages students
in computational thinking, problem-solving,
and real-world applications of mathematics.

Materials:
� Earth Stage – download jpg (2.3 MB)

� Boeing CST-100 Starliner Sprite –

download png (1.1 MB)

� SpaceX Crew Dragon Sprite –

download png (2.3 MB)

� Space Station IDA Sprite – download

ZZZpng (1.2 MB)

� Computer(s) or tablet(s) with internet

access (or download all content to run

locally)

Programming language of your choice:

� Free Scratch account at

http://scratch.mit.edu

� Free Snap! account at

https://snap.berkeley.edu/

� Scratch Advanced CODing Sim

Example – download sb3 (2.2 MB)

� Snap! Advanced CODing Sim Example

– download xml (1.2 MB)

� Scratch Beginner CODing Sim Example

– download sb3 (0.9 MB)

� Snap! Beginner CODing Sim Example –

download xml (1 MB)

Common Core Standards for
Mathematics (CCSS):
Practice: MP1, MP2
Content: 5.G.A.2, 6.RP.A.3, 7.EE.B.4, 8.F.B.4
High School: Modeling

ISTE Standards for Students (ISTE):
3a – Knowledge Constructor
4d – Innovative Designer
5d – Computational Thinker

What is a stage or sprite?

www.nasa.gov NGS: Crew Orbital Docking Simulation

http://www.corestandards.org/Math/
https://www.iste.org/standards/for-students
http://www.corestandards.org/Math/
https://www.nasa.gov/sites/default/files/atoms/files/commercial-crew-coding-simulation.zip
https://www.nasa.gov/sites/default/files/atoms/files/commercial-crew-coding-simulation.zip
https://www.nasa.gov/sites/default/files/atoms/files/commercial-crew-coding-simulation.zip
https://www.nasa.gov/sites/default/files/atoms/files/commercial-crew-coding-simulation.zip
https://www.nasa.gov/sites/default/files/atoms/files/commercial-crew-coding-simulation.zip
https://scratch.mit.edu/
https://scratch.mit.edu/
https://snap.berkeley.edu/
https://snap.berkeley.edu/
https://www.nasa.gov/sites/default/files/atoms/files/commercial-crew-coding-simulation.zip
https://www.nasa.gov/sites/default/files/atoms/files/commercial-crew-coding-simulation.zip
https://www.nasa.gov/sites/default/files/atoms/files/commercial-crew-coding-simulation.zip
https://www.nasa.gov/sites/default/files/atoms/files/commercial-crew-coding-simulation.zip
www.nasa.gov
http://www.nasa.gov/stem/ccp

3

Crew Orbital Docking Simulation (continued)

Management

1. This activity guide includes recommendations
for beginner and advanced level programming.
The advanced option requires more complex and
sophisticated code, encourages higher-level thinking,
and is more appropriate for students with experience
using block-based programming languages. The teacher
may also choose to select a different combination of
program requirements based on the skill level of the
students and the focus of the lesson.

2. The CODing Sim may also serve as a culminating
activity after students have spent time learning about
the various command blocks. Check out the Additional
Resources for other activities to practice block-based
programming. Then introduce the CODing Sim to the
class as an opportunity to apply what they have already
learned and demonstrate their understanding of the
programming language.

3. It is important to emphasize that the simulation will
only do what is programmed in the scripts. Remind
students to use a hat block which is found in the
Control/Events folder at the top of every stack of blocks.
As students create code, allow them to explore what
happens when they try different command blocks.
Students might even simplify code by creating new
command blocks. Encourage creativity.

4. It is good practice for students to take turns beta
testing other students’ programs to check if they are
working as planned. Beta testing should take place
throughout the program development. Student beta
testers can provide feedback about any bugs or errors
found while running the program including details of
what actually happened versus what they expected to
happen. Beta testing can be done by clicking the green
fag while running the program in editor mode or in full
screen mode.

5. Allow time for students to refect on what they have
learned and any challenges they encountered. Use
class discussion or journaling throughout the activity to
document problems, brainstorm solutions, and assess
student progress.

www.nasa.gov

6. Assessment:

• Does the program meet all of the requirements?

• Does the program do what it is supposed to do
(simulates a spacecraft docking with the space
station)?

• Have all errors or bugs been eliminated through code?

• Did the programmer(s) go beyond the basics and
explore the addition of creative or more in-depth
scripts?

7. There are hardware applications that are compatible
with Scratch and Snap!. These extensions can add
another element to the CODing simulation. Students
might build a physical model controlled by the code or
use physical sensors that trigger an action within the
code.

8. This activity guide is divided into multiple sections
to provide background and tips for coding. It is not
meant as a step-by-step guide or tutorial as there
are many ways to reach the same outcome. Every
student or group may create different code to meet the
requirements. Use as little or as much of the guide as
necessary, depending on student and teacher familiarity
with block-based programming.

Jump to:
•› Section 1 – Background Information and
Engaging the Learner

•› Section 2 – Getting Acquainted with Block-
based Programming

•› Section 3 – Choosing the Coding Requirements

•› Section 4 – Getting Started and Setup

•› Section 5 – Coding Tips

•› Section 6 – Grading Rubric

•› Section 7 – Additional Resources

•› Section 8 – Extension: Create your own Sprite

NGS: Crew Orbital Docking Simulation

www.nasa.gov
http://www.nasa.gov/stem/ccp

4

The International Space Station is an orbiting laboratory located about 400 km above Earth where NASA
learns about exploration as astronauts live and work in space. The International Docking Adapter (IDA) is
a physical connecting point for visiting spacecraft and serves as both a parking spot for the vehicle and
a gateway into the space station. In August 2016, the frst IDA was installed on Node 2, the Harmony
module, in preparation for Boeing’s CST-100 Starliner and SpaceX’s Crew Dragon, the Commercial Crew
Program (CCP) spacecraft. To learn more about NASA’s Commercial Crew Program, check out the CCP
Primer at www.nasa.gov/stem/ccp.

Section 1

Background Information and
Engaging the Learner

Ç Table of Contents NGS: Crew Orbital Docking Simulation

http://www.nasa.gov/stem/ccp
http://www.nasa.gov/stem/ccp

5

Section 2
Getting Acquainted with

Block-based Programming

The following websites provide guides, examples, and tutorials to help you and your students become famil-
iar with the programming language.

https://scratch.mit.edu/ideas
https://snap.berkeley.edu/index.html#examples
https://snap.berkeley.edu/snapsource/help/SnapManual.pdf

About the Stage
The stage is the background layer of the project. Students may
use the provided Earth backdrop or choose an appropriate image
of their own.

Scratch Stage: 480 × 360 pixels
Snap! Stage: 480 × 360 pixels (default size)
Earth Backdrop.jpg: (dimensions: 1920 × 1440 pixels)

About the Sprites
A sprite is an object which performs functions controlled by scripts. The Commercial Crew spacecraft are
sprites because they will need to move across the stage to dock with the space station. The IDA is also a
sprite, so the size can be adjusted and the sprite can be moved to the front layer allowing the simulation to
look more realistic.

Boeing CST-100 Starliner Sprite Space Station IDA Sprite SpaceX Crew Dragon Sprite

Example of a hat block which begins a stack of blocks or script. The hat
blocks can be found in the Control or Events folder.

About the Scripts
A program is made up of one or more scripts, which are collections or stacks of blocks that begin with a
hat block. Scripts determine how sprites interact with each other and the stage. The CODing Sim activity
includes both beginner and advanced levels. The advanced option requires more complex and sophisticated
code, encourages higher-level thinking, and is more appropriate for students with experience using block-
based programming languages
Ç Table of Contents NGS: Crew Orbital Docking Simulation

https://scratch.mit.edu/ideas
https://snap.berkeley.edu/index.html#examples
https://snap.berkeley.edu/snapsource/help/SnapManual.pdf
http://www.nasa.gov/stem/ccp

6

Section 3

Choosing the Coding Requirements

Boeing
CST-100
Starliner

SpaceX
Crew

Dragon

International
Docking
Adapter

Beginner Coding Requirements

� Space station IDA sprite is positioned in the top right corner of the stage.
� Space station IDA sprite is the front layer.
� When the CCP spacecraft sprite is docked to the space station IDA

sprite, it fts within quadrant I of the stage.
� CCP spacecraft and space station IDA sprites are proportional.
� The CCP spacecraft sprite starts in quadrants II or III.
� The CCP spacecraft sprite docks autonomously with the space station

IDA.
� Speed of CCP spacecraft sprite (relative to space station IDA sprite) is no

greater than 50 pixels per second.
� On-screen instructions guide CODing Sim interaction.

Ç Table of Contents NGS: Crew Orbital Docking Simulation

http://www.nasa.gov/stem/ccp

7

CrCrew Orbital Docking Simulation ew Orbital Docking Simulation (continued)(continued)

Advanced Coding Requirements

� Space station IDA sprite is positioned in the top right corner of the stage.
� Space station IDA sprite is the front layer.
� When the CCP spacecraft sprite is docked to the space station IDA

sprite, it fts within quadrant I of the stage.
� CCP spacecraft and space station IDA sprites are proportional.
� The CCP spacecraft sprite starts in quadrants II or III.
� The CCP spacecraft sprite starts in a random location.
� User has option to choose CCP spacecraft (Boeing or SpaceX).
� The CCP spacecraft sprite docks autonomously with the space station

IDA.
� The CCP spacecraft sprite docks to space station IDA using manual

controls.
� User has option to choose between autonomous or manual docking.
� Speed of CCP spacecraft sprite (relative to space station IDA sprite) is no

greater than 50 pixels per second.
� Manual controls simulate thrusters which move the spacecraft in the

opposite direction than the engine fres.
� Mission success or failure indicated by sound and/or on-screen visual

cues.
� On-screen instructions guide CODing Sim interaction.
� Program stops when parameters for mission success or failure are met.

Boeing
CST-100
Starliner

SpaceX
Crew

Dragon

International
Docking
Adapter

Ç Table of Contents NGS: Crew Orbital Docking Simulation

http://www.nasa.gov/stem/ccp

8

CrCrew Orbital Docking Simulation ew Orbital Docking Simulation (continued)(continued)

Select Coding Requirements

� Space station IDA sprite is positioned in the top right corner of the stage.
� Space station IDA sprite is the front layer.
� When the CCP spacecraft sprite is docked to the space station IDA, it fts

within quadrant I of the stage.
� CCP spacecraft and space station IDA sprites are proportional.
� The CCP spacecraft sprite starts in quadrants II or III.
� The CCP spacecraft sprite starts in a random location.
� User has option to choose CCP spacecraft (Boeing or SpaceX).
� The CCP spacecraft sprite docks autonomously with the space station

IDA.
� The CCP spacecraft sprite docks to space station IDA using manual

controls.
� User has option to choose between autonomous or manual docking.
� Speed of CCP spacecraft sprite (relative to space station IDA sprite) is no

greater than 50 pixels per second.
� Manual controls simulate thrusters which move the spacecraft in the

opposite direction than the engine fres.
� Mission success or failure indicated by sound and/or on-screen visual

cues.
� On-screen instructions guide CODing Sim interaction.
� Program stops when parameters for mission success or failure are met.

Boeing
CST-100
Starliner

SpaceX
Crew

Dragon

International
Docking
Adapter

Ç Table of Contents NGS: Crew Orbital Docking Simulation

http://www.nasa.gov/stem/ccp

9

Section 4

Getting Started and Setup

1. Create a Scratch or Snap! account
If working in the cloud, students will need to create individual or team accounts at http://scratch.mit.edu or
https://snap.berkeley.edu/ where they can sign in and create a new project.

Alternatively, Scratch and Snap! can be downloaded to run locally on a computer. Projects can be imported
and exported without an active internet connection.

2. Download all necessary fles
Download and save the image fles of the Earth backdrop, CCP spacecraft sprites, and space station IDA
sprite.

3. Stage Setup
Select and upload the Earth backdrop image as the background for the stage

In Scratch, create a new backdrop by clicking Upload Backdrop and selecting
the downloaded Earth backdrop image that you saved to the computer.

In Snap!, select Stage and Backgrounds, then drag and drop the downloaded Earth
backdrop image just below the Empty background.

4. Sprite Setup

In Scratch, delete the existing cat sprite by selecting it in the Sprites window and
clicking the x. Add a new sprite by clicking Upload Sprite. Select the downloaded
space station IDA sprite that you saved to the computer. You will now see the IDA
over the Earth background. Repeat for additional sprites.

In Snap!, select Sprite and Costumes, then drag and drop the space station IDA
 sprite from your computer to the Costumes window just below the Turtle. Click
“add a new Turtle sprite” below the Stage and repeat the steps to upload
additional sprites. Right click a sprite to delete it.

Upload each spacecraft image as a separate costume for the CCP spacecraft sprite.

Ç Table of Contents NGS: Crew Orbital Docking Simulation

http://scratch.mit.edu
https://snap.berkeley.edu/
http://www.nasa.gov/stem/ccp

10

Section 5

Coding Tips

Note: Each tip below provides examples of scripts to get you started, but there are many differ-
ent solutions for each problem. Do not be restricted by a given example.

Jump to:
•› Tip 1 – Size of Sprites
•› Tip 2 – Learn about the Stage
•› Tip 3 – Positioning Sprites
•› Tip 4 – Sprite Motion
•› Tip 5 – Audio or Visual Cues
•› Tip 6 – User Interaction

Tip 1 – Size of Sprites
The sizes of the sprites change when imported into Scratch or Snap! to ft within the stage dimensions. The
sizes of both the CCP spacecraft and the space station IDA sprites must be reduced further so they don’t
overtake the entire stage while still remaining proportional to each other. Explore the set size to block in
the Looks folder to reduce the size of each sprite.

Boeing CST-100 Starliner Sprite Space Station IDA Sprite
Image dimensions: 980 × 886 pixels Image dimensions: 1144 × 1538 pixels
Imported dimensions: 398 x 360 pixels Imported dimensions: 268 x 360 pixels

SpaceX Crew Dragon Sprite
Image dimensions: 2719 × 1834 pixels
Imported dimensions: 480 x 324 pixels

Tip 2 – Learn about the Stage
Drag the sprite around the stage to learn how position is defned in the program.

In Scratch, the position of the sprite is located just below the stage.

In Snap!, check the x position and y position in the Motion blocks to make them view-
able on the stage.

Ç Table of Contents NGS: Crew Orbital Docking Simulation

http://www.nasa.gov/stem/ccp

11

CrCrew Orbital Docking Simulation ew Orbital Docking Simulation (continued)(continued)

• Think of the stage like a Cartesian Coordinate system for graphing points.
• Where is the origin?
• What are the x- and y-coordinates at the boundaries of the stage?
• Label the four quadrants counterclockwise starting in the top right (quadrants I, II, III, IV).

Tip 3 – Positioning Sprites
After learning about stage position, explore the go to x: y: block in the Motion
folder to position your sprites. The space station IDA sprite will be stationary and
positioned in the top right corner of the stage. The go to front block in the Looks
folder allows the IDA to be in the foreground making the docking simulation look
more realistic.

The CCP spacecraft sprite must begin somewhere in quad-
rants II or III. Beginner coders will select specifc (x, y)
coordinates as a starting position. Advanced coders can use
the random number generator with specifc parameters to
create a random starting position within those quadrants.

Tip 4 – Sprite Motion
Allow students time to explore the various Motion blocks to see what each does. Which motion blocks best
simulate how a vehicle moves in space? Which are most realistic for each scenario (automated docking
versus manual or controlled docking)? How can we couple the Motion block with a Control/Events block to
automate or move based on user input? Check out some of the possible solutions below.

Automated Motion
The glide block provides a smooth automated motion. How can the speed of
the spacecraft be controlled? It must be no greater than 50 pixels/second.
Remember that speed is the ratio of distance to time. Click on the distance to
block to measure the distance between the spacecraft and the IDA sprites. If the
distance is known, then the time for the given speed can be calculated. (Note:
students can use the mathematical formula for calculating the distance between
two points to check the value of the distance to block.)

What if the distance varies because the spacecraft is placed ran-
domly in quadrants II or III? Then combine the ratio, distance to,
and glide blocks to create a script that calculates the time for any
distance. (Note: the glide block is looking for an input of seconds,
so the ratio should be distance/speed.)

Ç Table of Contents NGS: Crew Orbital Docking Simulation

http://www.nasa.gov/stem/ccp

12

CrCrew Orbital Docking Simulation ew Orbital Docking Simulation (continued)(continued)

Manual or Controlled Motion
In the basic simulation, students should not need to turn or rotate the sprites, so all movement is transla-
tional in the x- and y-direction. Controlling yaw could be an extension to this activity.

How do you code a sprite to go up or down, left or right? To achieve translational motion, create scripts
for motion in each direction using change x by or change y by Motion blocks. To allow the spacecraft to
move more fuidly combine these Motion blocks with Control/Events blocks such as when key pressed
and repeat until. The parameters for repeating might be user input such as pressing a key, reaching a cer-
tain point on the stage (see example below), or the distance between the CCP spacecraft and space station
IDA sprites.

Although the specifc numerical values have been deleted, below is an example for a “thruster” that moves
the spacecraft sprite “down” when the engine fres “up.” How could you modify this script to move the
spacecraft sprite to the right?

Experimenting with and embedding combinations of Motion, Control/Events, Sensing, and Operators blocks
as parameters to defne mission success and failure will be the most challenging and time-consuming
part of this activity. The key is starting simple and adding complexity, testing individual scripts to see how
they function, and learning how the blocks interact. Download and import example code from the Materials
section into Scratch or Snap! to review the complete code with detailed comments.

Tip 5 – Audio or Visual Cues
Consider adding audio or visual cues to prompt users for input or indicate mission success or failure. In
Scratch, sounds can be added to each sprite from the sound library. In both Scratch and Snap!, you may
also upload or create your own sounds.

The say and think blocks in the Looks folder allow sprites to send messages. Visual cues might also in-
clude text or images uploaded as additional sprites that you show or hide at various points of the program.

Ç Table of Contents NGS: Crew Orbital Docking Simulation

http://www.nasa.gov/stem/ccp

13

CrCrew Orbital Docking Simulation ew Orbital Docking Simulation (continued)(continued)

Below is an example of part of the script for the CCP spacecraft sprite announcing when it has successfully
docked with the space station IDA sprite through a message and with sound, which play when the sprite is
within a specifed region designated as “successful docking” by the programmer(s).

Tip 6 – User Interaction
Using visual cues to prompt action paired with the appropriate Control/Events blocks, users are able to
interact with the simulation and make choices directed by the code. The following example allows the user
to click the sprite to choose between different CCP spacecraft and then decide to dock autonomously or
manually.

Ç Table of Contents NGS: Crew Orbital Docking Simulation

http://www.nasa.gov/stem/ccp

14

Section 6

Grading Rubric

Rubric Category Score
Program Execution and Output
• Program simulates a spacecraft docking with the space station.
• Program meets all of the coding requirements. (X all that apply)
� Space station IDA sprite is positioned in the top right corner

of the stage.
� Space station IDA sprite is the front layer.
� When the CCP spacecraft sprite is docked to the space

station IDA, it fts within quadrant I of the stage.
� CCP spacecraft and space station IDA sprites are propor-

tional.
� The CCP spacecraft sprite starts in quadrants II or III.
� The CCP spacecraft sprite starts in a random location.
� User has option to choose CCP spacecraft (Boeing or SpaceX).
� The CCP spacecraft sprite docks autonomously with the

space station IDA.
� The CCP spacecraft sprite docks to space station IDA using

manual controls.
� User has option to choose between autonomous or manual

docking.
� Speed of CCP spacecraft sprite (relative to space station IDA

sprite) is no greater than 50 pixels per second.
� Manual controls simulate thrusters which move the space-

craft in the opposite direction than the engine fres.
� Mission success or failure indicated by sound and/or on-

screen visual cues.
� On-screen instructions guide CODing Sim interaction.
� Program stops when parameters for mission success or

failure are met.

Design of Logic and Standards
• Programmer understands and follows the rules of the programming

language.
• All errors or bugs are eliminated through code.
• Program is well organized and design choices are logical and appro-

priate.
• Programmer goes beyond the basics, explores the addition of creative

or more in-depth scripts, and demonstrates originality.
• Programmer understands and applies STEM concepts.

Project Management
• Time is used constructively to complete project, add additional

elements or advanced coding techniques, and collaborate with others
effectively.

• Programmer implements design process to come up with ideas,
choose a solution, build code and test results.

TOTAL (out of ___ pts possible)

4 (Advanced) = All criteria (procedures, steps, and details) are met or followed with rare mistakes.
3 (Profcient) = Most criteria are met with only a few mistakes.
2 (Developing) = Many criteria are not met and/or there are many mistakes.
1 (Beginning) = Most criteria are not met.
0 (No effort) = No effort to meet criteria.

Ç Table of Contents NGS: Crew Orbital Docking Simulation

http://www.nasa.gov/stem/ccp

15

Section 7

Additional Resources

Explore Mars with Scratch
https://www.jpl.nasa.gov/edu/teach/activity/explore-mars-with-scratch/

NASA Computer Science Educational Resources
https://www.nasa.gov/audience/foreducators/computer-science-basics.html

Scratch
https://scratch.mit.edu/

Snap!
https://snap.berkeley.edu/

Google CS First
https://csfrst.withgoogle.com/en/home

Code.org
https://code.org/

NASA Audio
https://www.nasa.gov/connect/sounds/index.html

Web sites may provide teachers and students with background information and extensions. Inclusion of a resource does not constitute an
endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Section 8

Extension: Create Your Own Sprite

Students may also create their own spacecraft sprite using the paint tool in Scratch or Snap! or another pixel or
graphic art software of their choice. Some examples include: Autodesk Sketchbook, Piskel App, Pixie, Pixlr, Gimp,
etc. Remember to save the image as a PNG or SVG to maintain a transparent background. Creating a spacecraft
that looks three dimensional requires students to exercise linear perspective.

 Ç Table of Contents NGS: Crew Orbital Docking Simulation

https://www.jpl.nasa.gov/edu/teach/activity/explore-mars-with-scratch/
https://www.nasa.gov/audience/foreducators/computer-science-basics.html
https://scratch.mit.edu/
https://snap.berkeley.edu/
https://csfirst.withgoogle.com/en/home
https://code.org/
https://www.nasa.gov/connect/sounds/index.html
https://sketchbook.com/
https://www.piskelapp.com/
https://pixieengine.com/
https://pixlr.com/
https://www.gimp.org/
http://www.nasa.gov/stem/ccp

