FORWARD TO THE MOON:

NASA's Strategic Plan for Human Exploration

Updated 07/22/2019
Space Policy Directive 1: To the Moon, then Mars

“Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations…”
Why Go to the Moon?

- Proves technologies and capabilities for sending humans to Mars
- Establishes American leadership and strategic presence
- Inspires a new generation and encourages careers in STEM
- Leads civilization changing science and technology
- Expands the U.S. global economic impact
- Broadens U.S. industry & international partnerships in deep space
Moon for Mars

On the Moon, we can take reasonable risks while astronauts are just three days away from home.

There we will prove technologies and mature systems necessary to live and work on another world before embarking on a 2-3 year mission to Mars.
The Artemis Program

Artemis is the twin sister of Apollo and goddess of the Moon in Greek mythology. Now, she personifies our path to the Moon as the name of NASA’s program to return astronauts to the lunar surface by 2024.

When they land, Artemis astronauts will step foot where no human has ever been before: the Moon’s South Pole.

With the horizon goal of sending humans to Mars, Artemis begins the next era of exploration.
American Leadership in Space Exploration

TODAY, WE ARE:

• Maintaining a constant human presence in LEO
• Strengthening international partnerships on ISS

• Mapping the Moon in detail with Lunar Reconnaissance Orbiter
• Laser ranging between the Earth and lunar orbit

• Characterizing the environment and finding suitable landing sites
• Studying lunar samples with improved technology

• Operating multiple orbital and surface missions
• Learning the structure of Mars (InSight)

TOMORROW, WE WILL:

• Grow a robust commercial space economy
• Continue critical Earth science research

• Strengthen international partnerships through Gateway
• Establish sustainable human and robotic programs

• Explore the distribution and abundance of resources
• Create economic opportunities for U.S. industry

• Understand the role and fate of water on Mars
• Answer the question of ‘are we alone?’
THE ARTEMIS PROGRAM

PHASE ONE:
South Pole by 2024
A Budget Increase Toward 2024

• The FY2020 budget amendment provides an increase of $1.6 billion above the president’s initial $21 billion budget request with no money taken from existing NASA programs. This is the boost NASA needs.

• $1 billion to accelerate commercial partnerships in the development of human lunar transportation systems to take astronauts to the surface and back to Gateway*
• $651 million towards the completion of SLS and Orion to support a 2024 landing.
• $132 million for new technologies to help astronauts live and work on the lunar surface and in deep space.
• $90 million for Science to increase robotic exploration at the lunar South Pole in advance of astronauts.

*Focusing Gateway on just the capabilities needed for Phase 1 allowed for a $321M scope reduction and shifts potential development and expanded capabilities for Gateway into Phase 2
Artemis Phase 1: To the Lunar Surface by 2024

Artemis 1: First human spacecraft to the Moon in the 21st century

Artemis 2: First humans to orbit the Moon in the 21st century

Artemis Support Mission: First high power Solar Electric Propulsion (SEP) system

Artemis Support Mission: First pressurized module delivered to Gateway

Artemis Support Mission(s): Human Lander System delivered to Gateway

Artemis 3: Crewed mission to Gateway and lunar surface

Commercial Lunar Payload Services
- CLPS delivered science and technology payloads

Early South Pole Mission(s)
- First robotic landing on eventual human lunar return and ISRU site
- First ground truth of polar crater volatiles

Large-Scale Cargo Lander
- Increased capabilities for science and technology payloads

Humans on the Moon - 21st Century
First crew leverages infrastructure left behind by previous missions
Achieving 2024 – A Parallel Path to Success

Artemis will see government and commercial systems moving in parallel to complete the architecture and deliver crew.

Artemis 1
First flight test of SLS and Orion as an integrated system

Artemis 2
First flight of crew to the Moon aboard SLS and Orion

Artemis 3
First crew to the lunar surface; Logistics delivered for 2024 surface mission

Between now and 2024, U.S. industry delivers the launches and human landing system necessary for a faster return to the Moon and sustainability through Gateway.

Human Landing System
Transfer
Transfers lander from Gateway to low lunar orbit

Descent
Descends from Transfer Vehicle to lunar surface

Ascent
Ascends from lunar surface to Gateway

Up to three commercial rocket launches, depending on distribution of the Transfer, Descent, and Ascent functions.

CREW
NASA Programs SLS and Orion

PPE
Power and Propulsion Element arrives at NRHO via commercial rocket

Pressurized Module
Small area for crew to check out systems prior to lunar transfer and decent

CARGO
Commercially Provided Elements
The Power of SLS and Orion

ORION
The only spacecraft capable of carrying and sustaining crew on missions to deep space, providing emergency abort capability, and safe re-entry from lunar return velocities

SLS
The only rocket with the power and capability required to carry astronauts to deep space onboard the Orion spacecraft

NATIONAL CAPABILITY
The SLS and Orion programs (including Exploration Ground Systems support at Kennedy Space Center) leverages over 3,800 suppliers and over 60,000 workers across all 50 states
Gateway is Essential for 2024 Landing

- Initial Gateway focuses on the minimum systems required to support a 2024 human lunar landing while also supporting Phase 2

- Provides command center and aggregation point for 2024 human landing

- Establishes strategic presence around the Moon – US in the leadership role

- Creates resilience and robustness in the lunar architecture

- Open architecture and interoperability standards provides building blocks for partnerships and future expansion
Lunar Science by 2024

Polar Landers and Rovers
• First direct measurement of polar volatiles, improving understanding of lateral and vertical distribution, physical state, and chemical composition
• Provide geology of the South-Pole Aitken basin, largest impact in the solar system

Non-Polar Landers and Rovers
• Explore scientifically valuable terrains not investigated by Apollo, including landing at a lunar swirl and making first surface magnetic measurement
• Using PI-led instruments to generate Discovery-class science, like establishing a geophysical network and visiting a lunar volcanic region to understand volcanic evolution

Orbital Data
• Deploy multiple CubeSats with Artemis 1
• Potential to acquire new scientifically valuable datasets through CubeSats delivered by CLPS providers or comm/relay spacecraft
• Global mineral mapping, including resource identification, global elemental maps, and improved volatile mapping

In-Situ Resource Initial Research
• Answering questions on composition and ability to use lunar ice for sustainment and fuel
THE ARTEMIS PROGRAM

PHASE 2:
Mars Forward Capabilities,
Sustainable Lunar Presence
The U.S. leading in exploration and setting the standards for the Moon

Unbound potential for partnerships and collaboration

Meaningful, long-duration human missions

Testing impacts on human performance and exploration operations to be used for Mars

Repeatable operations traveling from Earth to the Gateway to the surface with reusable systems

Unprecedented science outside of Earth’s influence

Maintains strategic presence as a deep space port and refueling depot around the Moon

Increases international and commercial partnership opportunities, fostering healthy competition
Artemis Phase 2: Building Capabilities for Mars Missions

Artemis Support Mission
Lunar surface asset deployment for longer surface expeditions

SUSTAINABLE LUNAR ORBIT STAGING CAPABILITY AND SURFACE EXPLORATION
MULTIPLE SCIENCE AND CARGO PAYLOADS
INTERNATIONAL PARTNERSHIP OPPORTUNITIES
TECHNOLOGY AND OPERATIONS DEMONSTRATIONS FOR MARS

2025
2029
Science After 2024
Human and Robotic Missions Provide Unique Science Opportunities

On Gateway
- Deep space testing of Mars-forward systems
- Hosts groundbreaking science for space weather forecasting, full-disc Earth observation, astrophysics, heliophysics, lunar and planetary science
- Mars transit testbed for reducing risk to humans

Surface Exploration
- Understanding how to use in-situ resources for fuel and life
- Revolutionizing the understanding of the origin and evolution of the Moon and inner solar system by conducting geophysical measurements and returning carefully selected samples to Earth
- Studying lunar impact craters to understand physics of the most prevalent geologic process in the solar system, impact cratering
- Setting up complex surface instrumentation for astrophysics, heliophysics and Earth observation
- Informing and supporting sustained human presence through partial gravity research in physical and life sciences, from combustion to plant growth

Surface Telerobotics to Provide Constant Science
- Sending rovers into areas too difficult for humans to explore; rovers can be teleoperated from Earth to maximize the scientific return
Let's go. *The time is now.*

- We have the capability
- We have the purpose
- We have the charge
- We have the responsibility