Commercial Crew Program
Status

Phil McAlister
NASA Headquarters
March 2, 2016
Agenda

- Commercial Crew Program (CCP) Highlights
- Milestone Status
- Space Act Agreement Summary
- CCP Top Program Risks
- Boeing Summary
- SpaceX Summary
- Special Topic: CCP Certification
- Summary
Advancing Human Spaceflight

The vision of commercial human spaceflight to low-Earth orbit is a robust, vibrant enterprise with many providers and a wide range of private and public users. A successful human space transportation system will strengthen the International Space Station Program, allow NASA to focus on deep-space exploration, potentially reduce the cost of human access to space and significantly contribute to the national economy.

CCP Public Purpose
Support the development of non-NASA markets for commercial human transportation services to and from low-Earth orbit.

CCP NASA Purpose
Safe transport of NASA and NASA-sponsored astronauts to and from the station.
CCP has made significant progress over the last quarter, notably:

● Continue to burn down key products with the providers
 – Over 60% of the Alternate Standards have been dispositioned
 – Over 40% of the Variances have been dispositioned

● Updated NASA Certification Plan and baselined the Certification of Flight Readiness (CoFR) Plan

● Awarded Post Certification Missions (PCMs)
 – For SpaceX:
 ▪ PCM-1 awarded November 2015; Completed one milestone to date
 ▪ PCM-2 award expected in August 2016
 – For Boeing:
 ▪ PCM-1 awarded May 2015; Completed three milestones to date
 ▪ PCM-2 awarded in December 2015; Completed one milestone to date
CCtCap Combined Milestone Summary

<table>
<thead>
<tr>
<th>Year</th>
<th>Flight Testing</th>
<th>Qualification & Verification</th>
<th>Major Reviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>CBR (RM)</td>
<td>CBR (RM)</td>
<td>Boeing Milestone</td>
</tr>
<tr>
<td></td>
<td>Delta ICDR</td>
<td>Delta CDR</td>
<td>SpaceX Milestone</td>
</tr>
<tr>
<td></td>
<td>LS CDR</td>
<td>ISS DCR</td>
<td>PAT CFT ORR CR</td>
</tr>
<tr>
<td>2015</td>
<td>Ground Segment CDR</td>
<td>Phase II Safety Review – STRB Readiness</td>
<td>FSW CFT ORR CR</td>
</tr>
<tr>
<td></td>
<td>Phase II Safety Review – Part B</td>
<td>Int. Parachute System Drop Tests 1 & 2 Comp.</td>
<td>CFT DCR</td>
</tr>
<tr>
<td></td>
<td>MCC Int. Sims. SAR</td>
<td>Int. Parachute System Drop Tests 1 & 2 Comp.</td>
<td>ISS DCR</td>
</tr>
<tr>
<td></td>
<td>STA Initial Test Series TRR</td>
<td>STA Initial Test Series TRR</td>
<td>OFT FTRR</td>
</tr>
<tr>
<td>2016</td>
<td>MCC Int. Sims. SAR</td>
<td>STA Final Test Series TRR</td>
<td>Flight Testing</td>
</tr>
<tr>
<td></td>
<td>OFT CPWSR</td>
<td>OFT CPWSR</td>
<td>Qualification & Verification</td>
</tr>
<tr>
<td></td>
<td>STA Initial Test Series TRR</td>
<td>STA Initial Test Series TRR</td>
<td>Major Reviews</td>
</tr>
<tr>
<td></td>
<td>STA Final Test Series TRR</td>
<td>STA Final Test Series TRR</td>
<td>Boeing Milestone</td>
</tr>
<tr>
<td></td>
<td>MCC Int. Sims. SAR</td>
<td>MCC Int. Sims. SAR</td>
<td>SpaceX Milestone</td>
</tr>
<tr>
<td></td>
<td>CBR (RM)</td>
<td>CBR (RM)</td>
<td>Boeing Milestone</td>
</tr>
<tr>
<td>2017</td>
<td>CBR (RM)</td>
<td>CBR (RM)</td>
<td>SpaceX Milestone</td>
</tr>
<tr>
<td></td>
<td>Delta ICDR</td>
<td>Delta CDR</td>
<td>PAT CFT ORR CR</td>
</tr>
<tr>
<td></td>
<td>LS CDR</td>
<td>ISS DCR</td>
<td>CFT DCR</td>
</tr>
<tr>
<td></td>
<td>Ground Segment CDR</td>
<td>Phase II Safety Review – STRB Readiness</td>
<td>FSW CFT ORR CR</td>
</tr>
<tr>
<td></td>
<td>Phase II Safety Review – Part B</td>
<td>Int. Parachute System Drop Tests 1 & 2 Comp.</td>
<td>CFT DCR</td>
</tr>
<tr>
<td></td>
<td>MCC Int. Sims. SAR</td>
<td>Int. Parachute System Drop Tests 1 & 2 Comp.</td>
<td>ISS DCR</td>
</tr>
<tr>
<td></td>
<td>STA Initial Test Series TRR</td>
<td>STA Initial Test Series TRR</td>
<td>OFT FTRR</td>
</tr>
<tr>
<td></td>
<td>STA Final Test Series TRR</td>
<td>STA Final Test Series TRR</td>
<td>Flight Testing</td>
</tr>
<tr>
<td></td>
<td>MCC Int. Sims. SAR</td>
<td>MCC Int. Sims. SAR</td>
<td>Qualification & Verification</td>
</tr>
<tr>
<td></td>
<td>CBR (RM)</td>
<td>CBR (RM)</td>
<td>Major Reviews</td>
</tr>
<tr>
<td></td>
<td>Delta ICDR</td>
<td>Delta CDR</td>
<td>Boeing Milestone</td>
</tr>
<tr>
<td></td>
<td>LS CDR</td>
<td>ISS DCR</td>
<td>SpaceX Milestone</td>
</tr>
<tr>
<td></td>
<td>Ground Segment CDR</td>
<td>Phase II Safety Review – STRB Readiness</td>
<td>FSW CFT ORR CR</td>
</tr>
<tr>
<td></td>
<td>Phase II Safety Review – Part B</td>
<td>Int. Parachute System Drop Tests 1 & 2 Comp.</td>
<td>CFT DCR</td>
</tr>
<tr>
<td></td>
<td>MCC Int. Sims. SAR</td>
<td>Int. Parachute System Drop Tests 1 & 2 Comp.</td>
<td>ISS DCR</td>
</tr>
<tr>
<td></td>
<td>STA Initial Test Series TRR</td>
<td>STA Initial Test Series TRR</td>
<td>OFT FTRR</td>
</tr>
<tr>
<td></td>
<td>STA Final Test Series TRR</td>
<td>STA Final Test Series TRR</td>
<td>Flight Testing</td>
</tr>
<tr>
<td></td>
<td>MCC Int. Sims. SAR</td>
<td>MCC Int. Sims. SAR</td>
<td>Qualification & Verification</td>
</tr>
<tr>
<td></td>
<td>CBR (RM)</td>
<td>CBR (RM)</td>
<td>Major Reviews</td>
</tr>
<tr>
<td></td>
<td>Delta ICDR</td>
<td>Delta CDR</td>
<td>Boeing Milestone</td>
</tr>
<tr>
<td></td>
<td>LS CDR</td>
<td>ISS DCR</td>
<td>SpaceX Milestone</td>
</tr>
<tr>
<td></td>
<td>Ground Segment CDR</td>
<td>Phase II Safety Review – STRB Readiness</td>
<td>FSW CFT ORR CR</td>
</tr>
<tr>
<td></td>
<td>Phase II Safety Review – Part B</td>
<td>Int. Parachute System Drop Tests 1 & 2 Comp.</td>
<td>CFT DCR</td>
</tr>
<tr>
<td></td>
<td>MCC Int. Sims. SAR</td>
<td>Int. Parachute System Drop Tests 1 & 2 Comp.</td>
<td>ISS DCR</td>
</tr>
<tr>
<td></td>
<td>STA Initial Test Series TRR</td>
<td>STA Initial Test Series TRR</td>
<td>OFT FTRR</td>
</tr>
<tr>
<td></td>
<td>STA Final Test Series TRR</td>
<td>STA Final Test Series TRR</td>
<td>Flight Testing</td>
</tr>
</tbody>
</table>

CCtCap CMS-Official November 30, 2015
SAA Combined Milestone Summary

SAA CMS - Official February 12, 2016 FY16Q1
POC: Emily Weiland 321-867-4052
Data Source: CCP SAA Milestone 12/08/15

<table>
<thead>
<tr>
<th>Data Source: CCP SAA Milestone 12/08/15</th>
</tr>
</thead>
</table>

Blue Origin - CCDev2

- **4/2)** Dev2 Semi Annual Review
- **MS# 3.9 - Flight Demo of Subscale Propellant Tank Assy**
 - 3/1
- **MS# 3.8 - Flight Demonstration of BE-3 Engine**
 - 3/1
- **3/1)** MS#2.7-Pusher Escape In-Flight Escape Demo Data Review
- **3/1)** Dev2 Semi Annual Review

SNC - CCiCap

- **11/24)** MS# 15a-Reaction Control System Testing-Incremental Test #1
- **1/29)** Quarterly Review
- **4/29)** Quarterly Review
- **7/29)** Quarterly Review
- **11/16)** Quarterly Review
- **3/1)** MS# 41-Design Analysis Cycle-6 (DAC-6) Closeout Review
- **3/1)** MS# 4b - Eng Test Article Flight Testing #2/ Review

SpaceX - CCiCap

- **11/24)** MS# 12a - Dragon Primary Structural Qual
- **12/22)** MS# 13d - Interim Progress Crew Vehicle Delta CDR
- **1/22)** Quarterly Review
- **5/29)** MS# 11 - Pad Abort Test
- **5/14)** Quarterly Review
- **8/14)** Quarterly Review
- **11/16)** Quarterly Review
- **12/15)** MS# 13e - Delta Crew Vehicle Critical Design Review
- **5/1)** MS# 12b-Dragon Primary Structure Qual - Hatch Open Test
- **MS# 14 - In-Flight Abort Test**
- **3/1**
Program Control & Integration (PC&I)
- Requirement Changes (PCI-2015-3)
- Additional Cost for IV&V (PCI-2015-4)
- Budget Uncertainty (PCI-2015-2)
- Maintaining knowledge and continuity with a skilled and stable Civil Service workforce (PCI-2014-2)

Systems Engineering & Integration (SE&I)
- Ability to Close the Loss of Crew Gap (SEI-2015-1)

Ground & Mission Operations (G&MO)
- DoD Search & Rescue Training Schedule (GMO-2015-4)
- Search and Rescue Posture (GMO-2015-3)
Boeing Architecture Description

Spacecraft Segment
Simplicity of design with high maturity through use of existing technologies within Boeing and from our key suppliers such as Aerojet Rocketdyne and General Dynamics
- Crew Module
- Service Module
- Flight Software

Launch Segment
Mature design through use of heritage design, production, and operations from our key supplier ULA
- Launch Vehicle
- Launch Control Complex
- Spacecraft / LV Integration
- Launch Pad
- Pad Test and Checkout
- Emergency Detection System

Ground and Operations Segment
Mature design and processes through use of proven Boeing production techniques
- Cargo Integration
- Landing and Recovery
- Network Services
- Assembly, Integration and Test Facility
- Landing Site Facilities

Mature mission operations through use of heritage mission support from our key supplier JSC/Flight Operations Directorate (FOD)
- Crew Training
- Mission Planning
- Mission Operations
- Mission Control Center
- Training Systems
Boeing Accomplishments

Significant progress made over last quarter:

- Crew Access Tower main column complete
- Crew Access Arm and White Room testing in work
- Passive Thermal and ECLSS CDRs completed
- Solar Array Delta CDR completed
- Structural Test Article production progressing to support testing
- Several component-level development and qualification tests completed
- New flight software released
- Emergency detection system risk reduction test completed
- Service Module hot fire test site in work
- Hardware delivery ramping up
- Alternate standards and variances approved by NASA
- Astronaut and flight crew teams performing mission simulations
2 May 2012 Helicopter Drop Testing

A helicopter drops Boeing's CST 100 crew capsule from about 10,000 feet during the company's second parachute drop test for commercial crew development activities.

Image credits: Boeing

The main parachutes deploy

Boeing's CST 100 crew capsule floats to a landing above the Delmar Dry Lake Bed near Alamo, Nev.
SpaceX System Description

- **Spacecraft Segment (Dragon)**
 - Crew Dragon
 - Trunk
 - Launch Abort System (internally integrated in Dragon)

- **Launch Segment (Falcon 9)**
 - Full thrust Merlin engines
 - Densified propellants (chilled LOX & RP-1)
 - Common First stage w/Falcon Heavy design
 - Autonomous Flight Termination System
 - Landing legs (stowed in ascent)
 - Stage separation system

- **Ground and Operation Segment**
 - Launch Operations System
 - Launch Pad (LC39A), Launch Pad facility, Ground SW, & Launch Control Center
 - Mission Operation System
 - MCC (Hawthorne) Crew Ops, Training & Sim, & Recovery

Launch Pad (LC39A), Launch Pad facility, Kennedy Space Center, FL
Mission Control Hawthorne, CA
Launch Control Cape Canaveral, FL
SpaceX Accomplishments

Significant progress made over the last quarter:

- **Completed two Critical Design Reviews**
 - Dragon, F9, ground systems, and operations
 - SpaceX in the process of addressing all NASA comments to satisfaction

- **Propulsion System Testing**
 - Began Initial propulsive landing tests (Pad abort vehicle)
 - Propulsion system testing (SuperDraco Module)

- **Activated 39A launch site**

- **Good progress on space suit and helmet design**

- **Crew Module seats being modified to maximize crew safety**

- **Flew upgraded F9 that will carry crew**

- **Completed first 4-parachute test**

- **Qualification and production on key components**
 - Dragon vehicle structures are in production
 - Conducted Qualification testing of several F9 Systems and development testing of stage separation system to human standards
 - Completed Docking System Qualification

- **Approved alternate standards**
 - Software alternate standard approved
 - Avionics environmental testing alternate standard approved
January 27, 2016. Parachute drop test for SpaceX crew Dragon involving four red and white parachutes unfurled from a mass simulator high above the desert near Coolidge, Arizona.
NASA CCP Certification

- CCP Certification/CoFR strives to achieve a balance of insight/oversight appropriate for shared government & industry accountability in establishing a safe, reliable, and cost-effective CTS

 - The Industry Partner is responsible for the design, development, test and evaluation; culminating in their certification assertion of its CTS to transport crew to and from the ISS.

 - NASA CCP is accountable for ensuring compliance to CCP’s human spaceflight requirements thru evaluation and approval of the Contractor’s compliance evidence and execution of NASA’s insight into the Contractor’s solution in accordance with a risk based insight approach implemented under a shared assurance model.
Allocation of Responsibilities

<table>
<thead>
<tr>
<th>Activity</th>
<th>NASA</th>
<th>Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish Requirements</td>
<td>• Flow down and Tailor Agency Rqmts (Mission Rqmts, HRR, Standards)</td>
<td>• Flow down of CCP Requirements and Tailoring;</td>
</tr>
<tr>
<td></td>
<td>• Disposition Rqmts Variances</td>
<td>• Evaluate Rqmts Achievability</td>
</tr>
<tr>
<td>Manage Development Risk</td>
<td>• Development Oversight</td>
<td>• Produce Mgmt Plans</td>
</tr>
<tr>
<td></td>
<td>• Elevate Design and Development Risks from Insight</td>
<td>• Perform Risk Reduction Planning</td>
</tr>
<tr>
<td>Establish Cert Baseline</td>
<td>• IV&V</td>
<td>• Submit Cert Data Packages</td>
</tr>
<tr>
<td></td>
<td>• Accept Cert Compliance</td>
<td>• Perform System Validation</td>
</tr>
<tr>
<td></td>
<td>• Support Joint Test Planning</td>
<td>• Quantify Residual Risk (PSA, Reliability)</td>
</tr>
<tr>
<td></td>
<td>• Accept Residual Risk</td>
<td></td>
</tr>
<tr>
<td>Validate Baseline Cert</td>
<td>• Quality Assurance Audits</td>
<td>• Accept Hardware</td>
</tr>
<tr>
<td></td>
<td>• Accept Problem Resolutions</td>
<td>• Problem Identification, Resolution, Corrective Actions</td>
</tr>
<tr>
<td>Assess Mission Readiness</td>
<td>• Accept Flight Certification and Residual Risk</td>
<td>• Compliance Evidence of Hardware/Team Readiness</td>
</tr>
</tbody>
</table>

By design, the CCP model allocates greater accountability to industry.
Summary

- Boeing and SpaceX are advancing their design concepts
 - Actively building and testing hardware to inform design
 - Engaging in meaningful insight with NASA
 - Addressing important design challenges
- CCP has robust and efficient processes for certification including addressing waivers and deviations
- In preparation for flight, there is significant work ahead