Stennis Space Center was built in partnership with its surrounding community, and we remain committed to the companies, leaders and people of this area. Their support is essential, and we value our relationship with them every single day.

Stennis Space Center Director Rick Gilbrech
For more than five decades, Stennis Space Center has served as NASA’s primary rocket propulsion testing ground. The south Mississippi center provides propulsion test services for NASA and the Department of Defense, as well as the commercial sector. It is home to NASA’s Rocket Propulsion Test Program, which manages all of the space agency’s propulsion test facilities. It also has grown into a unique “federal city” that hosts more than 40 resident agencies and has become a leader in promoting the use of NASA science research to address community issues.

The center was established in the 1960s to flight-certify all first and second stages of the Saturn V rocket for the Apollo Program that carried humans to the moon. From 1975 to 2009, the center tested the main engines that powered 135 space shuttle missions on their eight-and-one-half-minute ascent into orbit. Stennis now is testing RS-25 engines that will power the core stage of NASA’s new Space Launch System, being developed to carry humans deeper into space than ever before. The center also is working with commercial companies, such as SpaceX and Aerojet Rocketdyne, to test the engines and components needed to achieve their own space missions.

An aerial view shows the large historic test stands at Stennis Space Center – (l to r) A-1, A-2 and B-1/B-2 – as well as the 66-million-gallon reservoir that supplies the hundreds of thousands of gallons of water needed during a single engine test.
When President John F. Kennedy issued his 1961 challenge for the United States to send humans to the moon and back by the end of that decade, a site was needed to test the powerful rocket engines and stages that would propel them on the historic journey.

For NASA officials, the rough terrain of Hancock County, Mississippi, provided five essentials for testing the large Apollo Program engines and stages: isolation from large population centers, water and road access for transportation, available public utilities, supportive local communities and a climate conducive to year-round testing. The site was selected – and in May 1963, workers felled the first tree to launch a daunting building project. The effort marked the largest construction effort in the state of Mississippi and the second largest in the United States at the time.

Despite a pressing schedule, inevitable setbacks and even the disruption of Hurricane Betsy in 1965, construction workers prevailed. On April 23, 1966, a Saturn V second-stage prototype was test-fired on the newly completed A-2 Test Stand at the site. With the shake, rattle and roar of the test, south Mississippi was blasted into the space age.

Until 1972, Stennis test-fired first and second stages of the Saturn V rockets used in the Apollo Program. Stennis Space Center then was given responsibility to test main engines for NASA’s new reusable spacecraft, the space shuttle. From 1975 to 2009, the south Mississippi site tested every main engine used to power space shuttle missions. Not a single mission failed because of engine malfunction.

Beginning in 1963, Stennis was the site of the largest construction project in the state of Mississippi – and the second largest in the United States at the time. All of the effort built to a climactic moment – April 23, 1966 – the first test of a Saturn V rocket stage.

Stennis now is testing RS-25 rocket engines for use on NASA’s new Space Launch System, being developed to carry humans to new space destinations. Stennis also will test the SLS core stage, which will involve installing the stage on the B-2 Test Stand and firing the configuration of four RS-25 engines simultaneously. At the same time, the center is partnering with various commercial companies to test engines and components needed for their space ventures.

Into its sixth decade of NASA support, Stennis continues to build on its rich history as the nation’s largest rocket engine test facility – a place where space dreams are powered into reality.

Awards

27
Saturn V rocket stages tested at Stennis Space Center, including stages that carried humans to the surface of the moon during the Apollo 11 mission

43
Saturn V rocket stage test firings were conducted at Stennis Space Center during the Apollo Program

2,307
Space shuttle main engine tests were conducted at Stennis Space Center from May 19, 1975 to July 29, 2009, totaling 820,475.68 seconds of hot fire

1 million
Seconds of space shuttle main engine hot fire – including tests and launches – was achieved during a test on the A-2 Test Stand at Stennis Space Center on Jan. 24, 2004
since the 1960s, Stennis Space Center has grown into the nation’s largest rocket engine test site, featuring facilities collectively valued at more than $2 billion and considered national assets. State-of-the-art facilities include a trio of complexes, where propulsion tests can be conducted on rocket stages, full-scale engines and engine components.

The A Test Complex consists of two single-position, vertical-firing test stands designated A-1 and A-2, both built in the 1960s. The stands have been used to conduct rocket stage and engine component tests, as well as single-engine tests. The A-1 stand is now testing RS-25 rocket engines, which will power the core stage of NASA’s new Space Launch System (SLS), being developed to carry humans deeper into space than ever before.

The B Test Complex features a dual-position, vertical-firing test stand designated B-1/B-2, also built in the 1960s. First stages of the Apollo Saturn V rocket were fired at the test stand from 1967 to 1970. Stennis now leases the B-1 test position to Aerojet Rocketdyne for testing RS-68 engines. Meanwhile, the B-2 position is being prepared to test the SLS core stage, which will involve installing the stage on the stand and firing four RS-25 rocket engines simultaneously.

The E Test Complex was constructed in the late 1980s and early 1990s. The three-stand complex includes seven separate test cells capable of supplying ultra-high-pressure gases and cryogenic fluids, using a variety of rocket propellants. The complex offers particularly versatile options for testing engines and components, including those for commercial companies, such as Space Exploration Technologies Corp. (SpaceX) and Blue Origin.

Various infrastructures support the Stennis test complexes. Test stands are linked by a seven-and-one-half-mile canal system for transporting rocket stages and liquid propellants. Additional features include test control centers, data acquisition facilities, a large high-pressure gas facility, an electrical generation plant and a high-pressure industrial water facility served by a 66-million gallon reservoir.

Tests conducted in 2016 on five different test Stennis Space Center stands, including both NASA and commercial test projects

Total seconds of test firing on all NASA and commercial projects in 2016

Total seconds of testing conducted on RS-25 rocket engines on the A-1 Test Stand during four hot fires in 2016

RS-25 flight engine tested on March 10, 2016 – the engine will be one of four used to help launch NASA’s new Space Launch System on its Exploration Mission-2, the first SLS flight scheduled to carry a crew
Technology Development and Transfer

stennis space center

When someone mentions NASA, it is natural to think of space and space exploration. One does not always think of common household items or medical devices or sports — but you should. Transferring technologies developed from the space program to daily life is a major focus of NASA and Stennis Space Center. Each year, the agency highlights a host of technologies first developed for use by NASA but now being used in all areas of life. The list includes Stennis-related technologies and products.

The Stennis Advanced Technology and Technology Transfer Branch develops and licenses state-of-the-art components, sensors, processes and software. Some of the technologies are highly specialized. However, many have potential for broad use, such as intelligent autonomous systems, innovative valves and smart sensors that power themselves. A redesigned website (http://technology.ssc.nasa.gov) offers information about such technologies and so much more, including patented Stennis technology.

In all of the efforts, the goal is the same — to ensure the discoveries of space benefit all of society.

537
Partnerships with schools, libraries and state institutions

528
Technology development partners over the last 10 years

36
Software licenses spanning the globe

8
Patents available for licensing
The Office of Communications team at Stennis Space Center focuses on a clear mission to inform the public and its leaders – current and future – about the nation’s space program and the range of work performed at the facility. The office supports special onsite and offsite emphases throughout the region to provide information and hands-on activities for adults and children alike. One example is the annual G.E.M.S. (Girls Excited about Math and Science) event that attracts high school girls from Louisiana and Mississippi to the site for a day of presentations and activities. Office and Stennis representatives also visit the Mississippi Capitol each spring to share the Stennis story with elected officials. The center hosts community leaders from Louisiana and Mississippi for an annual briefing with the Stennis director as well.

The Office of Communications supports a robust social media presence for Stennis – on media platforms like Facebook, Twitter and YouTube. NASA’s Speakers Bureau Program at Stennis regularly provides scientists, engineers and other employees for lectures and presentations to civic organizations and schools throughout Mississippi and southeast Louisiana. Topics of interest include RS-25 rocket engine testing work, aerospace engineering, propulsion systems technology, remote sensing applications, technology transfer, the benefits of space program “spinoff” technologies in society, NASA education programs and the economic impact of Stennis Space Center.

The Office of Communications regularly prepares and distributes releases telling the Stennis story to local and regional media outlets. Traditional and social media members also are frequent visitors to Stennis. The site periodically hosts a variety of dignitaries and organized groups for visits and tours. It also sponsors special events, such as open house, providing the general public an opportunity to visit the center that consistently ranks as the best place to work in NASA and one of the best among all federal agencies.

500,000
Estimated “touch point” contacts made during coordinated outreach efforts at the annual New Orleans ESSENCE Music Festival

66,208
Participants in 34 outreach events coordinated by the Stennis Office of Communications in 2016

64,508
Followers of Stennis Space Center on its Twitter account at the close of 2016, in addition to 54,837 fans of the center’s Facebook page

39,887
Participants in 130 Speakers Bureau presentations supported by the Office of Communications during 2016
There is no mistaking the goal of the Stennis Office of Education—to inspire and enable a new generation of science, engineering and space leaders. To that end, the Stennis education team focuses squarely on promoting science, technology, engineering and mathematics (STEM) training, learning and careers. The aim is emphasized and advanced through a variety of efforts and initiatives.

The Stennis office supports a range of special events, all focused on inspiring students to pursue studies and careers that will make them supporters and leaders of the American space program of tomorrow. It also continues to provide professional development to pre-service, in-service and informal educators of local, regional and virtual audiences around the world.

The Stennis office provides annual support to FIRST® LEGO® and FIRST® Robotics activities, an invaluable training ground for students. For higher education students and teachers, the office offers a wide range of fellowship, internship and study programs. All involve STEM activities and place a heavy emphasis on introducing participants to real-life research and work environments.

- 2,593 Educators involved in professional development activities, including face-to-face, online and group presentations
- 5,517 Students involved in Stennis-supported STEM (science, technology, engineering and mathematics) activities
- 27 Students involved in NASA internships, fellowships and scholarships at Stennis Space Center, including semester, summer and year-long opportunities
- 551 Students involved in annual Astro Camp sessions at Stennis and the Boys & Girls Club of Mississippi
Stennis Space Center is a major contributor to the Gulf Coast economies of Louisiana and Mississippi. It spends more than three-fourths ($0.76) of every dollar within a four-county/parish, 50-mile-radius area. It is also responsible for contributing more than $860 million to the economies of that region, which include Hancock, Harrison and Pearl River counties in Mississippi and St. Tammany Parish in Louisiana. Eighty-seven percent of all Stennis employees reside in the four counties and parish.

*Study by Dr. Alan Barefield of Mississippi State University, January 2017.
Visitors to the 72,000-square-foot INFINITY Science Center enter a world of discovery, from the depths of the oceans to the farthest reaches of outer space. View up-close the work conducted at Stennis Space Center, the nation’s largest rocket engine test facility and a unique federal city of more than 40 agencies and organizations.

Exhibits and daily live demonstrations at INFINITY complement or directly align with state and national formal education curriculum standards. A few of the informative and interactive experiences include: “Carnivorous Plants,” a look at more than 200 species of carnivorous plants; the “Biome Boardwalks” that leads visitors through upland forest and lowland swamps and wetlands; the “Hurricane Prediction Lab” that offers information on storms and allows visitors to create their own simulated hurricane; and a seven-mile guided tram tour down the Possum Walk Trail.

Look to the stars in the Space Gallery, and discover how space travel has evolved over the past 50 years. See the space suit Biloxi, Miss., native Fred Haise wore during the historic Apollo 13 mission. Explore life aboard the International Space Station (ISS) in a full-scale ISS module. Discover NASA's plans for astronauts to travel deeper in space than ever before using its new launch vehicle currently in development, the Space Launch System, which will carry the Orion spacecraft.

Experience the shake, rattle and roar of a real rocket engine test or take your photo in a space suit on the surface of Mars or with the Curiosity rover.

Join a bus tour of Stennis Space Center and see the massive test stands used to test the engines that propelled humans to the moon and powered each of the space shuttle missions. Today, the stands are testing the engines for the Space Launch System, as well as commercial companies.

Experience all this and more when visiting INFINITY Science Center, where discoveries are endless! For more information, visit: www.visitinfinity.com.

67,291
An average of more than 5,500 people a month visited INFINITY Science Center during 2016

18,264*
Visitor representatives at INFINITY Science Center conducted 1,054 bus tours of Stennis Space Center in 2016, giving 18,264 people a firsthand look at the nation’s largest rocket engine test site

255**
INFINITY Science Center hosted more than 255 school groups during 2016

* Total is for June-December
** Total is for February-December
13,800 acres
All Stennis facilities are located within a 13,800-acre “fee” area owned by the federal government. The fee area is surrounded by a 125,000-acre noise buffer zone, designated as a national asset.

6,100
At the height of construction of Stennis facilities in the 1960s, some 6,100 employees were on site with 30 prime and 250 sub-contractor companies. It was one of the largest construction projects in the nation at the time.

2,475 years of experience
During the Apollo Program years, Stennis engineers and operators conducted 43 test firings. The accumulated experience of the test team members amounted to 2,475 years of rocket engine test expertise.

5,100
Entering its 56th year of operation, the total workforce at Stennis Space Center, including all NASA, contractor and resident agency employees, remains stable at about 5,100 people each year.

Special Boat Team TWENTY-TWO
The U.S. Navy conducts training for its Special Boat Team TWENTY-TWO special ops riverine force on Stennis Space Center waterways.

April 23, 1966
Stennis engineers conducted the first rocket engine test at the facility on April 23, 1966, a 15-second firing of a Saturn V second stage prototype (S-II-C) on the A-2 Test Stand.

“3 ... 2 ... 1”
Stennis engineers conducted the first full-duration test of a space shuttle main engine June 24, 1975. The final space shuttle main engine test was conducted July 29, 2009.

Path to the moon
Rocket scientist Dr. Wernher von Braun affirmed the importance of Stennis Space Center in its early years by stating, “I don’t know yet what method we will use to get to the moon, but I do know that we have to go through Mississippi to get there!”

520 seconds
Space shuttle main engines at Stennis were typically test fired for 520 seconds, the same time the engines fired on an actual flight.

Ready to fly
In April 1978, Stennis conducted the first test of the Space Shuttle Main Propulsion Test Article with three main engines configured as on an actual flight. The three engines were fired simultaneously on the B-2 Test Stand to prove the propulsion system flightworthy.

RS-68 testing
In 1998, Stennis partnered with Pratt & Whitney Rocketdyne (now Aerojet Rocketdyne) to test RS-68 engines used for Delta IV rocket launches. It marked the first long-term commitment to allow engine test facilities to be used for commercial purposes. RS-68 engines continue to be tested on the B-1 Test Stand.

Space Launch System
Two test stands are currently involved in testing for NASA’s new Space Launch System (SLS). RS-25 engines that will power the SLS core stage are being tested on the A-1 Test Stand. The B-2 Test Stand is being prepared to test the SLS core stage with the simultaneous firing of four RS-25 engines.

First flight engine test
The first test of an RS-25 flight engine was conducted on the A-1 Test Stand at Stennis on March 10, 2016. The engine is scheduled to fly on Exploration Mission-2, the first crewed mission of NASA’s new Space Launch System, which will carry humans deeper into space than ever before.

Ready to fly
Federal, state, academic and private organizations and several technology-based companies, including the U.S. Navy, conduct business at Stennis. The entities share the cost of owning and operating the Mississippi facility, making it more cost-effective for each one to accomplish its independent mission.
Oct. 25, 1961 ... NASA publicly announces plans to build a rocket engine test facility in Hancock County. On Dec. 18, the facility is officially named Mississippi Test Operations.

May 17, 1963 ... Construction workers cut the first tree to start clearing an area for NASA’s new rocket engine test facility.

May 25, 1961 ... President John F. Kennedy challenges the United States to send humans to the moon and return them safely by the end of the decade.

April 23, 1966 ... The space age arrives in Hancock County as operators at NASA’s Mississippi Test Facility conduct the first-ever Saturn V rocket booster (S-I-T) test on the A-2 Test Stand.

March 1, 1971 ... As the Apollo Program ends, NASA assigns responsibility for testing space shuttle main engines to the Mississippi Test Facility.

May 20, 1988 ... National Space Technology Laboratories is renamed the John C. Stennis Space Center to honor the longtime U.S. senator from Mississippi who was instrumental in establishment and growth of the rocket engine test facility.

July 28, 1969 ... Astronaut Neil Armstrong becomes the first human to set foot on the moon. His Apollo 11 mission is powered by first- and second-stage Saturn V rocket boosters tested at the Mississippi Test Facility.

May 20, 2009 ... The final space shuttle main engine is tested at Stennis Space Center, ending 34 years of testing flight engines for 135 shuttle missions.

Aug. 20, 2012 ... Stennis marks a historic moment with the first instance of two female engineers conducting rocket engine tests on the same day at the facility.

Dec. 5, 2014 ... NASA marks a major milestone on its journey to Mars with the launch of the Orion spacecraft on its first voyage to space. During its 4.5-hour mission, Orion traveled farther than any spacecraft designed for astronauts has been in more than 40 years. The launch was powered by a trio of RS-68 rocket engines tested by Aerojet Rocketdyne on the B-2 Test Stand at Stennis Space Center.

April 23, 2016 ... Stennis marks the 50th anniversary of its first hotfire test in 1966. Employees celebrate the day by viewing an RS-68 engine test on the B-1 Test Stand.

Aug. 20, 2012 ... Stennis marks a historic moment with the first instance of two female engineers conducting rocket engine tests on the same day at the facility.

March 10, 2016 ... NASA successfully conducts test firing of RS-25 rocket engine No. 2069 on the A-1 Test Stand at Stennis. The hot fire marks the first test of an RS-25 flight engine for NASA’s new Space Launch System vehicle and represents a major step forward in the journey to Mars.

Jan. 9, 2015 ... A new year gets off to a blazing start as NASA conducts a test of the RS-25 engine on the A-1 Test Stand at Stennis Space Center. The RS-25, formerly the space shuttle main engine, fired up for 500 seconds, representing the first hot fire of an RS-25 engine since the end of space shuttle main engine testing in 2009. Four RS-25 engines will power NASA’s new Space Launch System vehicle on future missions.

March 10, 1961 ... NASA successfully conducts test firing of RS-25 rocket engine No. 2069 on the A-1 Test Stand at Stennis. The hot fire marks the first test of an RS-25 flight engine for NASA’s new Space Launch System vehicle and represents a major step forward in the journey to Mars.

July 26, 2011 ... Stennis operators conduct a successful ignition test of the next-generation J-2X rocket engine. The test launches the third major test series on the historic A-2 Test Stand.

July 29, 1969 ... Astronaut Neil Armstrong becomes the first human to set foot on the moon. His Apollo 11 mission is powered by first- and second-stage Saturn V rocket boosters tested at the Mississippi Test Facility.

Dec. 30, 1991 ... NASA designates Stennis as the Center of Excellence for large propulsion system testing.

April 23, 2016 ... Stennis marks the 50th anniversary of its first hotfire test in 1966. Employees celebrate the day by viewing an RS-68 engine test on the B-1 Test Stand.

Stennis Space Center

Explore more historical moments by visiting the Stennis Space Center chronology online at: http://go.usa.gov/cGtPk

Timeline
2016 in Review

stennis space center

(Left) Stennis mascot Gator commemorates the 55th anniversary of the south Mississippi test site last fall. NASA announced plans to build the test center on Oct. 25, 1961.

(Top right) NASA conducts a successful 500-second test of the first RS-25 flight engine on the A-1 Test Stand at Stennis Space Center.

(Bottom right) Aerojet Rocketdyne conducts an RS-68 engine test on the B-1 Test Stand on April 19, 2016, almost 50 years to the day that NASA conducted its first-ever test at Stennis on April 23, 1966.
2016 in Review

stennis space center

(Above) The upper image shows the exhaust of a Space Launch System Qualification Motor 2 test (QM-2) on June 28, 2016, without using NASA's new High Dynamic Range Stereo X (HiDyRS-X) camera. The lower image shows the same exhaust, using the revolutionary camera developed by a Stennis Space Center engineer. The camera is being hailed as game-changing technology for viewing and analyzing propulsion test exhaust plumes. It stands as one of the growing number of technological innovations being developed by NASA and Stennis engineers to benefit not only space exploration but other industries.

(Right) Major restoration and buildout activities were completed in 2016 to prepare the B-2 Test Stand at Stennis for testing the first Space Launch System (SLS) core stage prior to its maiden flight. More than 1 million pounds of steel were added to the stand to extend the framework that will hold the stage for testing.
2016 in Review

stennis space center

(Above) NASA officials and contractor representatives, as well as social and traditional media members, view the Aug. 18 test of RS-25 engine No. 0528 on the A-1 Test Stand at Stennis during a guest event.

(Top right) Stennis Space Center and Aerojet Rocketdyne conduct one of a series of AR1 preburner tests on Cell 2 of the E-1 Test Stand in June 2016. The tests successfully verified key preburner injector design parameters for the company’s AR1 engine, being developed to end use of Russian engines for national security space launches.

(Bottom right) B-2 Test Stand work crews at Stennis install new piping needed to accommodate core stage testing of NASA’s new Space Launch System. (SLS).
The Saturn V S-IC-15 rocket stage originally scheduled to power the Apollo 19 mission arrives at Stennis on June 16, 2016, for transport to INFINITY Science Center. The stage originally traveled to Stennis for testing in 1970. After its Apollo mission was canceled, it remained at Michoud Assembly Facility in New Orleans until its transfer to the INFINITY viewing site.
(Above) NASA Administrator Charles Bolden and astronaut Victor Glover join in a discussion of space exploration efforts during a New Orleans ESSENCE Festival presentation on July 2, 2016. The presentation was one of numerous space-related outreach exhibits and activities sponsored by NASA during the annual festival.

(Right) Kids enjoy a NASA exhibit during NASA Week in NOLA, held in early July in conjunction with the 2016 New Orleans Essence Music Festival.
Websites/Apps

WEBSITES

www.nasa.gov
Gain access to the NASA Image of the Day, mission information, video feeds, NASA blogs and much more regarding the American space program.

www.nasa.gov/sls
Read the latest about NASA's deep-space exploration plans.

www.nasa.gov/stennis
Gain access to the latest news and information about Stennis Space Center.

www.nasa.gov/centers/stennis/education/index.html
Access information about NASA and Stennis education programs and opportunities.

http://usajobs.gov
Search a database of job vacancies at all federal agencies.

http://intern.nasa.gov
Learn about NASA student research opportunities, internships, fellowships and scholarships.

http://nasajobs.nasa.gov
Learn about NASA job vacancies and career development opportunities.

http://nasajobs.nasa.gov/studentopps/default.htm
Gather information on NASA student programs and opportunities.

http://www.nasa.gov/centers/stennis/about/jobs/index.html
Access information about job vacancies at major resident agencies located at Stennis Space Center.

APPS

http://www.nasa.gov/connect/apps.html

NASA APP
Access a huge collection of the latest NASA content, including images, videos on-demand, mission information, news and feature stories, International Space Station sighting opportunities, satellite tracking and much more.

NASA Spinoff
Learn about NASA technology that can be found in commercial products.

NASA 3DV
Learn about NASA's Deep Space Exploration project.

NASA Television
Bring live and on-demand TV programming to your phone.

Rocket Science 101
Select a NASA mission and build a rocket to send the spacecraft into orbit.

Space 365
See what NASA events and quirky trivia facts happened each day of the year.

Space Images
Access stunning space videos and images.

Space Station Research Explorer
Explore the diverse ecosystem of experiments being researched on the International Space Station – both completed and ongoing.

Earth – Now
See visualizations of recent global climate data from Earth Science satellites.
http://www.nasa.gov/socialmedia/

FACEBOOK
https://www.facebook.com/NASA
https://www.facebook.com/NASASTennis

FLICKR
https://www.flickr.com/photos/nasahqphoto/

FOURSQUARE
https://foursquare.com/p/nasa/3965355

GOOGLE PLUS
https://plus.google.com/+NASA/posts

INSTAGRAM
https://instagram.com/nasa/
https://instagram.com/nasastennis/

LINKEDIN
https://www.linkedin.com/company/nasa

SLIDESHARE
http://www.slideshare.net/NASA
http://www.slideshare.net/nasastennis

SOUNDCLOUD
https://soundcloud.com/nasa

TWITTER
https://twitter.com/nasa
https://twitter.com/NASASTennis

USTREAM
http://www.ustream.tv/nasahdtv
www.ustream.tv/channel/nasastennis

VINE
https://vine.co/nasa

YOUTUBE
https://www.youtube.com/NASA
https://www.youtube.com/NASASTennis
Resident Agencies

Department of Commerce
National Data Buoy Center
National Oceanic & Atmospheric Administration (NOAA)
National Weather Service (NWS)
NOAA National Center for Environmental Information (NCEI)
NOAA National Marine Fisheries Service

Department of Defense
Army Corps of Engineers
Commander, Naval Meteorology & Oceanography Command (CMOC)
Naval Oceanographic Office (NAVO)
Naval Research Laboratory (NRL)
Navy Office of Civilian Human Resources - SSC Center
Navy Small Craft Instruction and Technical Training School (NAVSCIATTS)
Navy Special Boat Team 22
Defense Contract Audit Agency
National Oceanography Operations Command
Navy Department of Defense (DoD) Superccomputing Resource Center

Department of Energy
Strategic Petroleum Reserve

Department of Interior
U.S. Geological Survey (USGS), Hydrologic Instrumentation Facility

Department of Homeland Security (DHS)
DHS Data Center 1
Immigration & Customs Enforcement (ICE)
United States Citizenship & Immigration Services (USCIS)

Government Publishing Office
Secure Production Facility

NASA Stennis Space Center
NASA Rocket Propulsion Test Program
NASA Shared Services Center (NSSC)
National Center for Critical Information Processing & Storage (NCCIPS)

Center for Higher Learning
Mississippi State University
Pearl River Community College
University of New Orleans
University of Southern Mississippi

Mississippi State University
Northern Gulf Institute
Geosystems Research Institute
Alliance for System Safety of Unmanned Aircraft Systems (UAS) through Research Excellence (ASSURE)

State of Mississippi
Enterprise for Innovative Geospatial Solutions
Marine Industries Science & Technology (MIST) Cluster
Mississippi Enterprise for Technology (MSET)
National Oceans & Applications Research Center (NOARC)

University of Southern Mississippi
Division of Marine Science

State of Louisiana
Louisiana Technology Transfer Office

Contractors

A²Research
Aerojet Rocketdyne
ACES Hewlett-Packard
Booz Allen Hamilton
Computer Sciences Corporation
General Dynamics Information Technology
Lockheed Martin
NASA Integrated Communications Services
NAVAR
Northrup Grumman
Pacific Architects and Engineers
River Tech LLC
SaTeel Inc.
Science Applications International Corporation
Science Systems and Applications Inc.
Vencore Services & Solutions

Commercial Companies

Aerojet Rocketdyne
Lockheed Martin IS & GS Defense Systems
Power Dynamics
Rolls Royce North America
Earth is the cradle of humanity, but one cannot live in a cradle forever.

– Konstantin Tsiolkovsky