Chapter Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary</td>
<td>ii</td>
</tr>
<tr>
<td>13.0 Deorbit Systems</td>
<td>347</td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>347</td>
</tr>
<tr>
<td>13.2 State-of-the-Art – Passive Systems</td>
<td>349</td>
</tr>
<tr>
<td>13.2.1 Main High TRL Drag Devices</td>
<td>349</td>
</tr>
<tr>
<td>13.2.2 Deployable Booms</td>
<td>353</td>
</tr>
<tr>
<td>13.2.3 Electromagnetic Tethers</td>
<td>354</td>
</tr>
<tr>
<td>13.3 State-of-the-Art – Active Systems</td>
<td>355</td>
</tr>
<tr>
<td>13.3.1 TechEdSat Series Exo-Brake</td>
<td>355</td>
</tr>
<tr>
<td>13.3.2 RemoveDebris Consortium Partners</td>
<td>356</td>
</tr>
<tr>
<td>13.3.3 Astroscale</td>
<td>356</td>
</tr>
<tr>
<td>13.3.4 ClearSpace</td>
<td>357</td>
</tr>
<tr>
<td>13.3.5 Momentus</td>
<td>357</td>
</tr>
<tr>
<td>13.3.6 D-orbit</td>
<td>357</td>
</tr>
<tr>
<td>13.3.7 Altius Space Machines</td>
<td>358</td>
</tr>
<tr>
<td>13.5 Summary</td>
<td>358</td>
</tr>
<tr>
<td>References</td>
<td>359</td>
</tr>
</tbody>
</table>
Chapter Glossary

(ADCS) Attitude Determination and Control System
(AEOLDOS) Aerodynamic End-of-Life Deorbit system for CubeSats
(AFRL) Air Force Research Laboratory
(ARC) Ames Research Center
(CRD2) Commercial Removal of Debris Demonstration
(D3) Drag Deorbit Device
(DOM) De-orbit Mechanism
(EOL) End-Of-Life
(FURL) Flexible Unfurlable and Refurlable Lightweight
(GCD) Game Changing Development
(GTO) Geosynchronous Transfer Orbit
(HSC) High Strain Composite
(IADC) Inter-Agency Space Debris Coordination Committee
(ISS) International Space Station
(JAXA) Japan Exploration Space Agency
(MSFC) Marshall Space Flight Center
(RODEO) Roll-Out DeOrbiting Device
(SBIR) Small Business Innovation Research
(SSO) Sun-synchronous orbit
(STMD) Space Technology Mission Directorate
(TRL) Technology Readiness Levels
(UTIAS-SFL) University of Toronto Institute for Aerospace Studies Space Flight Laboratory
(VESPA) Vega Secondary Payload Adapter
13.0 Deorbit Systems

13.1 Introduction

The threats of space debris are increasing due to the launch of several multi-satellite constellations, particularly in low-Earth orbit. The lifetime requirement for any spacecraft in low-Earth orbit is 25 years post-mission, or 30 years after launch if unable to be stored in a graveyard orbit (1).

The rate of decay of these spacecraft depends on several factors. In particular, the orbit allocation and the ballistic coefficient play a fundamental role on the ability to comply with regulations. Estimates of the accumulation of orbital debris suggest more than 900,000 particles with a diameter 1 – 10 cm, and over 34,000 pieces with diameters >10 cm, are in orbit between geostationary equatorial and low-Earth orbit altitudes (2). Of the 11,370 satellites that have been placed in orbit 60% are still in orbit and only 35% are still operational. As of April 2021, it is estimated that all of the space debris in orbit have a collective mass of 9,300 metric tons (2). Figure 13.1 is a representation of the debris around Earth. The objective of the NASA Orbital Debris Program along with the Inter-Agency Space Debris Coordination Committee (IADC) is to limit the creation of space debris. They have mandated that all spacecraft must either deorbit within a given amount of time or move into a graveyard orbit for safe storage (3). Small spacecraft missions typically stay in low-Earth orbit, as it is a more accessible and less expensive orbit to reach. There are lots of rideshare opportunities to low-Earth orbit through several commercial launch providers. The close proximity to Earth can relax spacecraft mass, power and propulsive constraints. Additionally, the radiation environment in low-Earth orbit is relatively benign for altitudes below 1000 km. Small spacecraft launched at or around the International Space Station (ISS) altitude (400 km) naturally decay in well under 25 years. However, at orbital altitudes beyond 800 km, there is no guarantee that a small spacecraft will naturally decay in 25 years due to uncertainties in atmospheric density and the differences in ballistic coefficient, as seen in figure 13.2.

In this image, a representative 6U CubeSat with 0.06 m² drag area and 14 kg of dry mass decays at different rates depending on several initial circular orbits. The results differ from those achieved with another representative spacecraft of 100 kg and 0.5 m² of drag area, showing the important effect the ballistic coefficient plays in the orbit propagation. The majority of launched small spacecraft do not carry on-board propulsion, making them unable to achieve graveyard orbits for decommissioning. Therefore, they need to rely on deorbit techniques such as increasing the drag area by rotating the spacecraft with their Attitude Determination and Control System (ADCS) module if they are in low altitudes. For some spacecraft, their exposed drag area is not enough to meet the 25-year requirement. They can use deorbit devices such as drag sails (passive systems) or even hire external deorbit services (active systems) to deorbit.

Passive deorbit systems have gained maturity since the last iteration of this report, and there are more devices with high Technology Readiness Levels (TRL ≥ 8) that are guaranteed to satisfy...
Traditionally passive systems were the main option for deorbiting due to their increased simplicity. However, recently active methods are gaining traction. On one hand, active deorbiting requires attitude control and, in some case, also surplus propellant post-mission, such as a steered drag sail that relies on a functioning attitude control system, or on actuators for pointing the sail. On the other hand, some of the new active deorbiting solutions include a separate spacecraft that can attach to the defunct satellite to bring it down to lower orbits where the satellites can complete the deorbit using their own drag decay. Some recent small spacecraft like the European RemoveDebris mission have even implemented a variety of active and passive deorbit systems within the same mission. This technology demonstration mission included both active and passive systems such as a net experiment, a harpoon, and a more traditional drag sail. The mission tested these systems to prove feasibility of such technologies in space by deploying two separate 2U CubeSats from the main spacecraft to simulate space debris. After the mission was completed, the passive system was deployed and is currently deorbiting the main satellite to burn in the atmosphere.

Propulsive devices have also been used for deorbiting techniques, however this approach is still considered risky due to potential failure or malfunction of either the spacecraft (up until its final stage of decommission) or the propulsive capability itself. Even if the spacecraft carries enough
excess propellant for its own active decay approach, it also needs adequate attitude control capability after the mission. This method requires continuous operation until the reentry takes place, making it inconvenient and costly for a small spacecraft mission (4). Overall, active deorbiting methods are still challenging for small spacecraft, as this demand increases design complexity and uses valuable mass and volume. This report studies the state-of-the-art for both systems, excluding spacecraft that carry their own propulsive means. For those systems, please refer to the Propulsion chapter of this report.

The information described below is not intended to be exhaustive but provides an overview of current state-of-the-art technologies and their development status for a particular small spacecraft subsystem. It should be noted that TRL designations may vary with changes specific to payload, mission requirements, reliability considerations, and/or the environment in which performance was demonstrated. Readers are highly encouraged to reach out to companies for further information regarding the performance and TRL of described technology. There is no intention of mentioning certain companies and omitting others based on their technologies or relationship with NASA.

13.2 State-of-the-Art – Passive Systems

Passive deorbit methods require no further active control after deployment. Recent developments have increased the number of available options with flight heritage. This chapter will emphasize recent developments rather than past missions. In addition, the chapter aims to discuss devices used exclusively for deorbit purposes, excluding technologies such as solar sails that are used for other propulsive applications.

13.2.1 Main High TRL Drag Devices

Drag devices represent the most common deorbit device for satellites orbiting in low-Earth orbit. They present an advantage due to simplicity and by not occupying large volumes while stowed. For certain area-to-mass ratios in altitudes equal or lower than 800 km, drag devices can be deployed to increase the drag area for faster deorbiting in compliance with the 25-year requirement. Recently, this technology has been implemented in several small spacecraft missions, and several companies and institutions are developing prototypes that are increasingly more mature, providing solutions to the space debris problem for missions that do not have resources for an active system. Table 13-1 displays current state-of-the-art technology for passive deorbit systems. These are the most developed technologies for deorbiting systems as of 2021.
<table>
<thead>
<tr>
<th>Product</th>
<th>Manufacturer</th>
<th>Mission host and launch mass (kg)</th>
<th>Device mass (kg)</th>
<th>Initial orbit</th>
<th>Launch Year</th>
<th>Deployment Year</th>
<th>Drag area (m²)</th>
<th>TRL</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NanoSail-D2</td>
<td>NASA MSFC/ARC</td>
<td>FASTSAT (4.2)</td>
<td>N/A</td>
<td>650 km 72 deg inc</td>
<td>2010</td>
<td>2011</td>
<td>10</td>
<td>7-9</td>
<td>(1)</td>
</tr>
<tr>
<td>Drag-Net</td>
<td>MMA Design</td>
<td>ORS-3 Deployed a Minotaur Upper Stage (100)</td>
<td>2.8</td>
<td>N/A</td>
<td>2016</td>
<td>2016</td>
<td>14</td>
<td>7-9</td>
<td>(5)</td>
</tr>
<tr>
<td>Icarus-1</td>
<td>Cranfield Aerospace Solutions</td>
<td>SSTL TechDemoSat-1 (157)</td>
<td>3.5</td>
<td>635 km</td>
<td>2014</td>
<td>2019</td>
<td>6.7</td>
<td>7-9</td>
<td>(6)</td>
</tr>
<tr>
<td>Icarus-3</td>
<td>Cranfield Aerospace Solutions</td>
<td>Carbonite-1 (80)</td>
<td>2.3</td>
<td>650 km 98 deg inc</td>
<td>2015</td>
<td>Future (in-orbit)</td>
<td>2</td>
<td>7-9</td>
<td>(6)</td>
</tr>
<tr>
<td>DOM</td>
<td>Cranfield Aerospace Solutions</td>
<td>ESEO (45)</td>
<td>0.5</td>
<td>572 km × 588 km 97.77 deg</td>
<td>2018</td>
<td>Future (in-orbit)</td>
<td>0.5</td>
<td>7-9</td>
<td>(6)</td>
</tr>
<tr>
<td>Terminator Tape</td>
<td>Tethers Unlimited, Inc.</td>
<td>Prox-1 (71)</td>
<td>0.808</td>
<td>717 km 24 deg</td>
<td>2019</td>
<td>2019</td>
<td>10.5</td>
<td>7-9</td>
<td>(7)</td>
</tr>
<tr>
<td>DragSail</td>
<td>Surrey Space Centre</td>
<td>InflateSail (3.2)</td>
<td>N/A</td>
<td>505 km 97.44 deg</td>
<td>2017</td>
<td>2017</td>
<td>10</td>
<td>7-9</td>
<td>(8)</td>
</tr>
<tr>
<td>Exo-Brake</td>
<td>NASA</td>
<td>TechEdSat 5 (3.4)</td>
<td>TBC</td>
<td>405 km 51.5 deg</td>
<td>2014</td>
<td>2015</td>
<td>0.35</td>
<td>7-9</td>
<td>(9)</td>
</tr>
<tr>
<td>removeDebris</td>
<td>Surrey Space Centre</td>
<td>100</td>
<td>N/A</td>
<td>405 km 51.5 deg</td>
<td>2018</td>
<td>2019</td>
<td>16</td>
<td>7-9</td>
<td>(10)</td>
</tr>
<tr>
<td>CanX-7</td>
<td>UTIAS-SFL</td>
<td>3U CubeSat (3.6)</td>
<td>0.800 (4 modules of 0.200)</td>
<td>688 km 98 deg</td>
<td>2016</td>
<td>2017</td>
<td>4</td>
<td>7-9</td>
<td>(11)</td>
</tr>
</tbody>
</table>
Several small spacecraft missions have built and launched passive deorbit technologies in the past using a drag sail or boom. The NanoSail-D2 mission, which was deployed in 2011 from the minisatellite FASTSat-HSV into a 650 km altitude and 72° inclined orbit, demonstrated the deorbit capability of a low mass, high surface area sail. The 3U spacecraft, developed at NASA Marshall Space Flight Center (MSFC), reentered Earth’s atmosphere in September 2011.

CanX-7, still in orbit at an initial 800 km Sun-synchronous orbit (SSO), deployed a drag sail in May 2017. The sail was developed and tested at University of Toronto Institute for Aerospace Studies Space Flight Laboratory (UTIAS-SFL) figure 14.3).

The CanX-7 deorbit technology consists of a thin film sail that is divided in four individual modules that each provide 1 m² of drag area. These sail sections are deployed mechanically with spring booms, which help to preserve the geometry. Each module also has electronics for individual telemetry and command. This feature allows different sections to be controlled separately to mitigate risk of a single failure, and to allow custom adaptability to various spacecraft geometries and ballistic coefficient requirements for other missions. For the 2017 deployment, all four segments functioned successfully. The deorbit performance was measured after a month. The deorbit profile showed that the effects of the sail segments accounted for an altitude decay rate at the time of measurement of 20 km s⁻¹ per year, which results in a significant increase from the previous 0.5 km s⁻¹ per year. These rates are expected to increase as the atmospheric density increases exponentially with lower altitudes (11).

The Technology Educational Satellite, TechEdSat-n, program at NASA Ames Research Center (ARC) has contributed significantly to the development of drag devices. It consists of a series of nanosatellite technology demonstrations in collaboration with several universities including San Jose State University and the University of Idaho. One of the main goals of the program is to test and improve deorbiting techniques, and develop a unique targeting capability with their own drag device design known as the Exo-Brake. The Exo-Brake deorbit system is an atmospheric braking system that distinguishes itself from other drag devices since it is more akin to a parachute instead of a solar sail due to its primary tension-based elements. This becomes fundamental for accurate deorbit targeting since the device must retain its shape without collapsing during those critical reentry moments occurring at the atmosphere interface altitude of 100 km, known as the Von Karman line (12).

The Exo-Brake was first implemented as a passive deorbit device on the TechEdSat missions TES 3, TES 4, and TES 5. Recent CubeSats have also used it for controlled mission deorbiting. The exo-brake development is funded by the Entry Systems Modeling project within the NASA Space Technology Mission Directorate’s (STMD) Game Changing Development (GCD) program. Two of the four TechEdSat spacecraft using a passive Exo-Brake are TechEdSat-5 and TechEdSat-7, with TechEdSat-12 and TechEdSat-13 also planned to use variations of the TechEdSat-7 design. TechEdSat-5 was deployed from the ISS in 2017 and demonstrated this deorbiting capability after 144 days in orbit with the Exo-Brake deploying at 400 km. TechEdSat-
7 is a 2U CubeSat that launched on January 17, 2021, onboard Virgin Orbit’s LauncherOne rocket and placed into orbit at 500 km (13).

The Surrey Space Centre based in the United Kingdom has developed the DragSail technology, which was implemented in a family of missions. The Inflatesail 3U CubeSat first demonstrated this technology. The European Commission QB50 program and the DEPLOYTECH partnership that included DLR and NASA Marshall Space Flight Center, among others, funded it. This mission was launched in 2017 and included a mast/drag-sail technology that successfully deorbited the satellite in just 72 days. This achievement was the first time a spacecraft has deorbited using European inflatable and drag-sail methods (8).

The RemoveDebris mission was developed under the European Commission FP7 program by a consortium of several institutions such as Airbus and the Surrey Space Centre. The mission consisted of a small spacecraft of 100 kg that was deployed from the ISS in 2018. One of the experiments it carried was a passive drag augmentation device consisting of a sail. The sail was deployed in March 2019, however, trajectory data showed it only partially deployed since no significant altitude change was measured. The lessons learned from this incident were implemented in another version for the Space Flight Industries’ SSO-A mission that incorporated two of these sails. In that case, the assembly did not include an inflatable boom (10).

As part of the ESA CleanSat program, Cranfield Aerospace Solutions in the United Kingdom has also developed a variety of drag augmentation systems. The first demonstrated technology was the Icarus-1, which flew in the TechDemoSat-1 mission from SSTL, launched in 2014 (see figure 13.5). Another version also flew in the Carbonite-1 spacecraft, launched in 2015. The concept is similar to other drag devices in which the drag increases by deploying a membrane sustained by rigid booms. The Icarus technology consists of a thin aluminum structure located around the satellite side panel that contains four stowed Kapton trapezoidal sails and booms. The mass of the system is 3.5 kg for about 5 m² of sail area for the Icarus-1, and 2.3 kg for 2 m² for the Icarus-3. Both sails deployed successfully and are expected to deorbit both spacecraft in less than 10 years. The second technology developed by Cranfield Aerospace Solutions is a De-orbit mechanism (DOM) device which consists of a version of the drag sail presented in a smaller cuboid outline. The mechanical system varies from Icarus since the sails are triangular and the booms work as tape springs themselves. This system flew in the European Student Earth Orbiter on a 45 kg satellite that carried several student payloads. Among them, the
Cranfield University DOM module will deorbit the spacecraft after decommissioning. The sail has an area of 0.5 m² with a mass of 0.5 kg (6).

MMA Design LLC, a company from Colorado, has patented the dragnet deorbit system. The 2.8 kg module (figure 13.6) deorbited the ORS-3 Minotaur Upper Stage in 2.1 years after launch in November 2013. DragNet features four stowed thin membranes that deploy through a single heater-powered actuator. The sail has an area of 14 m² that can effectively deorbit a 180 kg spacecraft at an altitude of 850 km in less than 10 years (5).

Redwire Space holds an exclusive license for the Flexible Unfurlable and Refurlable Lightweight (FURL) solar sail developed and tested by the Air Force Research Laboratory (AFRL). FURL extends and retracts with four booms stored around a common hub. Small satellites can employ solar sails to control attitude, change planes or remain in their proper orbits and then retract the sail once it reached its deep space destination.

13.2.2 Deployable Booms

Deployable booms, while not strictly a deorbit device themselves, compose a vital part of most deorbit systems. They are structural components that can stowed during launch, then deployed once in space to provide the support structure required for various drag sail designs. More specific information regarding deployable booms can be found in the Chapter 6: Structures, Materials, and Mechanisms.

In 2019, the first ROC-FALL drag-based deorbit device was launched on the General Atomics OTB-1 spacecraft (38). Built by Redwire Space, the ROC-FALL device consists of a rectangular sail supported by a High Strain Composite (HSC) boom that is co-wrapped on a spool and restrained with a strap for stowage. The ROC-FALL system is scalable both in width and length to accommodate a variety of spacecraft sizes, and the heritage system sail measures 3.8 x 0.45 m in deployed area and rolls to a 0.04 x 0.45 m tube + supporting mechanism. The ROC-FALL is tip-rolled and passively deployed from the spacecraft. Redwire Space offers a variety of deployable boom technologies with a wide range of applications on small spacecrafts including open lattice mast, rollable tubes, and telescopic booms that can be applied on small spacecraft.

Composite Technology Development, Inc. has developed the Roll-Out DeOrbiting device (RODEO) that consists of a lightweight film attached to a simple, ultra-lightweight, roll-out composite boom structure (figure 13.7). This is a self-deploying system where the stored strain energy of the packaged boom provides the necessary deployment force. It was successfully deployed on suborbital RocketSat-8 (138 kg) on August 13, 2013 (14).

Figure 13.7: RODEO stowed. Credit: Composite Technology Development, Inc.
13.2.3 Electromagnetic Tethers

In addition to drag sails, an electromagnetic tether has proven to be an effective deorbit method (figure 13.8). This technology uses a conductive tether to generate an electromagnetic force as the tether system moves relative to Earth’s magnetic field. Tethers Unlimited developed Terminator Tape that uses a burn-wire release mechanism to actuate the ejection of the Terminator’s cover, deploying a 70 m long conductive tape at the conclusion of the small spacecraft mission (7). There are currently two main modules. The first, NSTT for NanoSats has a mass of 0.808 kg. The second, CSTT, is made for CubeSats and has a mass of just 0.083 kg. Figure 13.9 shows an image of both systems respectively (16). The 70 m long NSTT has been implemented in the 71 kg Prox-1 satellite, launched in mid-2019 by AFRL. Tethers Unlimited is also working with Millennium Space Systems, RocketLab, and TriSept Corp. on an experiment called DragRacer, which will consist of a satellite with the Terminator Tape, and another without, in order to characterize the tape performance (17). The AeroSpace Corporation 2 kg and 1.5 AeroCube 5A and 5B CubeSats, launched in 2015, also incorporated a version of the Terminator Tape and are still on orbit as of June 2021.

![Image of the NSTT (left) and the CSTT modules. Credit: Tethers Unlimited.](image)

Figure 13.8: Image of the NSTT (left) and the CSTT modules. Credit: Tethers Unlimited.

![Figure 13.9: D3 CAD design (left), boom inside thermal vacuum chamber (center), and prototype design (right). Credit: Omar et al., 2019, and Martin et al., 2019.](image)

Figure 13.9: D3 CAD design (left), boom inside thermal vacuum chamber (center), and prototype design (right). Credit: Omar et al., 2019, and Martin et al., 2019.

On the horizon, two universities are developing innovative new drag devices for upcoming missions. The University of Florida is developing the Drag Deorbit Device (D3) 2U CubeSat which provides attitude stabilization and modulation of the satellite drag area at the same time, making the overall solution an alternative to regular ADCS units. Four 3.7 m long tape spring booms form the D3, which can deorbit a 15 kg satellite from an altitude of 700 km. A final design has already been tested and simulated, including thermal vacuum and fatigue testing (18) (19). Figure 13.9 shows two images of the final design. The mission has been selected by NASA through the CubeSat Launch Initiative, which includes eligibility for placement on a launch manifest (20). As of June 2021 it is going through final assembly and testing, and is expected to launch to the ISS in early December.

Purdue University has developed a drag device with a pyramid geometry that can deorbit a satellite placed in a geosynchronous transfer orbit (GTO). The Aerodynamic Deorbit Experiment will be the technology demonstration of this concept, and it will consist of a 1U CubeSat. It will be deployed from a Centaur upper stage in a future Atlas V rocket from United Launch Alliance. Once
deployed, the device will occupy an area of about one m\(^2\) to decrease the ballistic coefficient of
the spacecraft and reduce the perigee altitude during each pass. Consequently, the expected
lifetime of the ADE mission will be 50 – 250 days instead of the estimated seven years (21). The
technology has been licensed to Vestigo Aerospace which is commercializing the drag device
with their Spinnaker series of drag sails and has been awarded funding from NASAs Phase II
Small Business Innovation Research (SBIR) Program (37).

13.3 State-of-the-Art – Active Systems
Several companies have been increasingly offering active spacecraft-based deorbit systems.
Space startups such as AstroScale, ClearSpace, and D-orbit have long-term plans and have
already started initial technology demonstrator missions. These systems consist of separate,
dedicated spacecraft that attach to decommissioned satellites to place them into decaying or
graveyard orbits. In December 2019, Iridium stated that they would like to pay for an active deorbit
system to remove 30 of their defunct satellites (22). In addition, NASA STD-8719.14A stipulates
that all spacecraft using controlled reentry processes must be within 370 km of the target when
landing (10). Therefore, future concepts such as sample return missions are going to need active
reentry devices to satisfy these requirements.

This section covers some of the main stakeholders in the industry that are working towards the
implementation of active space debris removal, as well as some other promising technologies
that can potentially be used for actively deorbiting spacecraft in the future.

Figure 13.10: Targeting of the TES 10 Exo-brake is achieved by modifying the drag area of the
modulating Exo-brake. (Left) the plot includes actual GPS readings and the approximate ballistic
coefficient achieved at different parts of the mission. Credit: Jose Alvarellos et a 2021. (Right)
the simulated reentry location of TES 10. Credit: Sanny Omar. The spacecraft overshot but still
demonstrated the capability to target a particular location by modifying its ballistic coefficient.
Credit: NASA.

13.3.1 TechEdSat Series Exo-Brake
The Exo-Brake introduced earlier in the passive systems also has active control capability. The
TechEdSat-6 mission was the first one implementing this technology, on a 3.5U CubeSat with a
mass of 3.51 kg that deployed its Exo-Brake from the rear of the satellite. It targeted a reentry
over Wallops Flight Facility by modulating the drag device to adjust the ballistic coefficient as
orbital determination about the satellite state became available over time. The Iridium gateway
enabled the command of the brake, which proved to significantly affect the reentry time and
consequently, the location of the Wallops target area. The spacecraft overshot the intended target
range slightly as shown in the second image, since it could not achieve a lower 4 – 5 kg m\(^{-2}\)
ballistic coefficient configuration, which would have yielded suitable results if placed at 300 km. However, the mission successfully demonstrated the reentry experiment and the command/control capability by overflying Wallops right before reentering. This technology was going to be demonstrated again in the TechEdSat-8 mission, and although a power system failure occurred before the targeting process. It should be noted that the Exo-Brake was successfully deployed on TES 8, and was an improved version of the previous TES 5 and TES 6 devices. The ballistic coefficient range was larger (6 – 18 kg m⁻²) which allows better control authority for targeting. TES 10 and upcoming TES 11 are also incorporating this design (12). TES 10 marked the second targeted deorbit flight test and successfully overflew NASA Wallops Flight Facility much like TES (33). There was insufficient control over the ballistic coefficient and the re-entry occurred an orbit later than expected. TES 11 will be using the modulated drag device to perform a GTO aero-pass maneuver and perigee tailoring.

13.3.2 RemoveDebris Consortium Partners

The RemoveDebris mission carried two 2U CubeSats that were ejected from the mothership to simulate space debris and demonstrate active deorbit capabilities. The first CubeSat, known as DebrisSat-1, deployed at a very low velocity from the main spacecraft and subsequently inflated a balloon that provided a larger target area. A 5 m diameter net was ejected from the main spacecraft just 144 seconds after deployment, capturing the CubeSat at a distance of ~11 m from the mothercraft. The object, once enveloped in the net, re-entered the atmosphere in March 2019 (10). The RemoveDebris mission also carried another active debris technology consisting of a harpoon. In this scenario, a target platform attached to a boom was deployed from the main spacecraft. The mothership then released the harpoon at 19 m/s to hit the platform in the center. Once that occurred, the 1.5 m boom that connected the two objects snapped on one end. However, a tether secured the target in place, avoiding the creation of new debris. This resulted in the first demonstration of a harpoon technology in space. The harpoon target assembly had a dry mass of 4.3 kg (10).

13.3.3 Astroscale

Astroscale is a company founded in Japan with offices in the UK, the US, and Singapore. Their two main objectives are to provide services to address the end-of-life (EOL) scenario of newly launched satellites, and to proactively remove existing space debris. They collaborate with a variety of governmental and international organizations around the world (such as the US government, ESA, the European Union, or the United Nations) in order to position themselves as leaders of a more sustainable low-Earth orbit environment.

As part of the EOL campaign, the ELSA-d mission, which launched on March 23, 2021, consists of two spacecraft, with one acting as a ‘servicer’ and the other as a ‘client’ (29). They have launch masses of ~175 kg and ~17 kg respectively. The concept of operations is to perform rendezvous maneuvers by releasing the client from the servicer repeatedly to demonstrate the capability of finding and docking existing debris. The technology demonstrations will include search and inspection of the targets, as well as rendezvous of both tumbling and non-tumbling cases (30).

Regarding their active debris removal campaign, Astroscale is also working with national space agencies to incorporate solutions to remove critical debris such as rocket upper stages or defunct satellites. This campaign started with a partnership with the Japanese Space Agency (JAXA) in February 2020. This collaboration will result in the implementation of the Commercial Removal of Debris Demonstration project (CRD2) which consists of the removal of a large space debris object performed in two mission phases. Astroscale will be involved in the first part, with a satellite that identifies and acquires data from an upper stage rocket object from Japan. The company is responsible for manufacturing and operating the satellite to complete these tasks, with a planned demonstration in 2022 (23) (24).
Astroscale announced in May a $3.5 million funding award from OneWeb, the global communications network, to further develop their technology with the goal of commercial services starting in 2024. The next iteration consists of the ELSA-M satellite which will be capable of deorbiting multiple satellites per mission. One Web has also committed to including a docking plate on their satellites that would facilitate future deorbit missions (31).

13.3.4 ClearSpace

ClearSpace is a Swiss company founded as a spin-off from the Ecole Polytechnique Federale de Lausanne research institute. Their plans also include service contracts for active debris removal. One of their proposed missions, ClearSpace One, which has been backed by ESA, will find, target, and capture a non-cooperative, tumbling 100 kg Vega Secondary Payload Adapter (VESPA) upper stage. The chaser spacecraft will be launched into a 500 km orbit for commissioning and initial testing before raising its altitude to 660 km where the VESPA is located, where it will attempt rendezvous and capture. ClearSpace One will use a group of robotic arms to grab the upper stage and then both spacecraft together will be deorbited to a lower orbit for a final disintegration in the atmosphere. The mission is planned to launch in 2025 to help establish a market for in-orbit servicing and debris removal (25).

13.3.5 Momentus

Momentus is a company founded in 2017 and based in California that operates space transportation systems that can propel or deorbit other spacecraft. Their Vigoride platform can carry satellites with masses up to 250 kg. With a wet mass of 215 kg, it can provide up to 1.6 km s⁻¹ for 50 kg payload, through a water plasma propulsion system (26). Although the main objective of this system is to provide enhanced propulsive capability to their customers, the platform is suitable for active deorbiting. Momentus has booked several Vigoride missions on Falcon 9 launches through 2021 and 2022 with the first operational mission delayed until later in 2021 (32).

13.3.6 D-orbit

D-orbit is a space transportation company founded in 2011 in Italy, with subsidiaries in Portugal, the United Kingdom, and the United States. It provides transportation services onboard their ION CubeSat carrier platform that can provide precision deployment and is able to host satellites from 1 to 12U. The first mission Origin released 12 SuperDove satellites from the Earth-observation company Planet, deploying the first in September 2020 with the last SuperDove deployed about a month later (34). The most recent Pulse mission finished deploying 20 satellites May 11, 2021 (35). Future versions of this technology will consider other applications such as retrieving orbiting spacecraft to deorbit them. In addition, D-orbit provides an external solid motor booster specifically for deorbiting purposes. This independent module, known as D-Orbit Decommissioning Device (D3) shown in figure 13.11, is a proprietary solution that is optimized for end-of-life maneuvers (27).
13.3.7 Altius Space Machines

In 2019, the satellite constellation company OneWeb signed a partnership with Altius Space Machines from Boulder, Colorado, to include a grappling fixture on all their future launched satellites in an effort to make space more sustainable. On January 14, 2021, it was announced that the first batch of DogTags were launched into space on OneWeb satellites (36). The Altius DogTag consists of a universal interface for small satellites that is inexpensive and lightweight. The fixture design enables various grappling techniques to enable servicing or decommissioning. It uses magnetic capabilities as its primary capture mechanism but is also compatible with other techniques in an effort to accommodate other potential customers and act as a standard interface (28). More specifically, it is compatible with magnetic attraction, adhesives, mechanical, and harpooning captures. Figure 13.12 includes an image of the prototype and a table with DogTag main features.

<table>
<thead>
<tr>
<th>Bounding Volume</th>
<th>150mm x 150mm x 65mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Mass</td>
<td>250g</td>
</tr>
<tr>
<td>Mounting Interface</td>
<td>3x M5x0.8 threaded inserts on an 84.5mm bolt-hole circle</td>
</tr>
</tbody>
</table>

Compatible Gripping Methods
- Magnetic Capture
- Adhesive Capture
 - Electrostatic
 - Gecko
- Hot-Melt
- Chemical
- Mechanical Capture
 - Pinch-Grasp
 - Snare
- Penetrating Capture (Harpoon)

Figure 13.12: DogTag prototype. Credit: Altius Space Machines.

13.5 Summary

The new space paradigm and the increasing population of spacecraft in low-Earth orbit requires deorbiting systems that can satisfy space debris requirements. Small spacecraft deorbit systems have matured significantly over the past few years. Several passive systems have flown on various missions and increased to TRL 9 after successful technology demonstrations. Drag sails are the main technology, and several companies have already commercialized and sold these products. Other systems such as electromagnetic tethers, deployable booms, or the NASA Exo-brake have also already been prototyped and demonstrated in space. In addition, active systems that include commanded and modulated systems, as well as independent servicing spacecraft, are also maturing and will play a fundamental role in the upcoming years. A version of the Exo-Brake with pointing capabilities has been demonstrated in the TechEdSat-10 mission, while the RemoveDebris mission has successfully tested two different active methods, a net and a harpoon, for future implementation in active debris removal operations. Companies such as Astroscale, Momentus, D-Orbit, or ClearSpace are already developing and planning to launch servicing spacecraft that can attach to decommissioned satellites to bring them down to a graveyard orbit or disintegrate in the atmosphere. In conclusion, this technology has increased significantly in maturity since the last iteration of this report and is expected to grow as the demand for deorbiting services increases with additional launches.

For feedback solicitation, please email: arc-sst-soa@mail.nasa.gov. Please include a business email so someone may contact you further.
References

359

27. **Controlled Spacecraft Re-Entry of a Drag De-Orbit Device (D3).** Martin, Tanya, Omar, Sanny and Bevilacqua, Riccardo. 1, University of Florida : Journal of Undergraduate Research, 2019, Vol. 21.

35. D-Orbit Press Release. "D-Orbit Successfully Completes Deployment Phase of Ongoing PULSE Mission,

