Laser Applications for Space Navigation

Medhat Azzazy
Laser Applications for Space Navigation

- Planetary LIDAR
- Laser Optical Cross Link Measurement
- Rendezvous Missions
- Landing (Planetary, Asteroid, Comets)
Planetary LIDAR Navigation Background

- Deep space missions carry onboard at least one laser altimeter (laser range finder):
 - Scientific research (shape, topography ..etc)
 - Aid to navigation (greater proximity to target)

- The shape of the pulse that returns after reflection on the surface contains information about the roughness (topography) of the lighted area. The information is used to construct a 3D model of the terrain.

- The time of flight of the return signals contain information useful for proximity and/or docking operations.
Optimization

- The selection of the components to construct an optimum system is paramount
 - Type of laser (solid state, fiber ..etc) - (pulse duration, pulse rate, pulse energy ..etc)
 - Type of detector (PIN detectors, APD, Geiger mode ..etc) – (pixel size, number of pixels, dark current, quantum efficiency ..etc)
 - Optics (aperture size, optical elements, ensquared energy, MTF ..etc)
 - Beam steering (solid state, Risley prisms ..etc)
 - Beam forming optics
 - Operation issues (FoR, FoV, resolution ..etc)
Synthetic Imagery and Mission Performance Assessment Computational Tool (SIMPACT)

- Adsys Controls proprietary modeling and analysis tool
- The model covers all major expected conditions:
 - The physical features of the instrument (parameters, specifications and transmitter-detector characteristics);
 - The features of the environment where the instrument will operate (radiation degradation, etc.);
 - The physical features of the target surface (bidirectional reflectivity distribution function).
- Incorporates mission dynamics (sensor orbital dynamics, observed object dynamics, LOS jitter)
- Generates synthetic imagery and optical signal data
- Incorporates signal/image processing algorithms
- Executes dynamic simulations
Model Parameters

• Input Parameters
 - Laser Energy per Pulse
 - Laser pulse width
 - Laser pulse repetition rate
 - Receiver efficiency
 - Instantaneous Field of View (IFOV)
 - FPA pixel size/pitch
 - Dark current
 - Electronic noise
 - Laser Wavelength
 - Laser size in detector pixels
 - Transmission efficiency
 - Aperture diameter
 - Surface BRDF
 - FPA quantum efficiency
 - FPA nonuniformity
 - ROIC noise

• Output
 – SNR vs Range
 – GSD vs Range
<table>
<thead>
<tr>
<th>Range to Target</th>
<th>Active Pixels</th>
<th>Pixel Footprint</th>
<th>Illuminated Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1: 0.8 - > 22 km</td>
<td>4 x 4</td>
<td>4m x 4m</td>
<td>16m x 16m</td>
</tr>
<tr>
<td>Mode 2: 27 - 800 m</td>
<td>32 x 32</td>
<td>0.4m x 0.4m</td>
<td>9.6m x 9.6m</td>
</tr>
<tr>
<td>Mode 3: 1 - 30 m</td>
<td>128 x 128</td>
<td>4cm x 4cm</td>
<td>5.5m x 5.5m</td>
</tr>
</tbody>
</table>
A simulation model that takes into consideration all the major conditions regarding the design of a lidar system as a laser altimeter and an aid in navigation and proximity operations has been developed, validated and verified.

The model allows design optimization of the system components.