Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration

NASA Innovative Advanced Concepts Phase 1

Kevin R. Duda, Ph.D.
The Charles Stark Draper Laboratory, Inc.

NIAC Spring Symposium
March 27-29, 2012
Pasadena, CA
V2Suit for Space Habitation and Exploration

- Spaceflight adaptation countermeasure suit
 - Sensorimotor
 - Musculoskeletal

- Utilizes properties of gyroscopes to provide “viscous resistance” during movement
V2Suit Motivation

- No “down” in 0-G
 - Visual perceptions dominate
 - “Down” direction may change

- Physiological adaptation to weightlessness

- Perceptual and resistance benefits:
 - Sensorimotor adaptation
 - Earth G, Moon G, Mars G
 - Full-body, tactile perception
 - Musculoskeletal de-conditioning

The V2Suit facilitates human adaptation and performance during long-duration spaceflight

V2Suit Phase 1 Progress

- **U.S. Patent Application**
 - “Exoskeleton Suit for Adaptive Resistance to Movement”
 - Submitted: November 30, 2011

- **Media Coverage**
 - The Washington Post, txchnologist.com, \\, Space.com, Space-travel.com, plus others

- **Human-System Integration**
 - Form factor concept
 - Module placement
 - Interface with body/garment

- **Initial V2Suit Module Design**
 - Flywheel orientation and placement
 - Integration and packaging

- **Technology R&D**
 - Alternate uses
 - Key technologies
Human-System Integration
Placement of a V2Suit module on each arm and leg segment
Upper-Body Integration

Lifesize Mannequin

Upper Arm Module

Lower Arm Module

Power & Processing
V2Suit System Architecture & Design
V2Suit for Space Habitation and Exploration

- V2Suit System
 - Low-profile, wearable system
 - Network of sensors and actuators
 - Central power and processing

V2Suit System Architecture

V2Suit Modules
- IMUs
- Flywheels
- Motor controllers

Central Processing and Commanding
- V2Suit Module Orientation
- Parameterized “Down” Tracking
- Motor Commands
- V2Suit Module Pos., Vel.
- Resistance Magnitude
- Power

- IMU Data
- Flywheel rotation rate
- Flywheel gimbal rate

- Navigation
- Initialization
- Actuation
Generating Gyroscopic Torque

- Alternatives for a body-worn system
 - Single Axis Flywheel
 - Change in flywheel spin rate
 - Change orientation via body kinematics
 - Control Moment Gyroscope (CMG)
 - Variations in: spin rate, gimbal rate
 - Command torque direction and magnitude
 - Adds complexity
 - Slip rings & bearings

Multiple 2-axis CMGs have ability to provide desired torque direction and magnitude within a body-worn form factor

\[\vec{\tau} = -\vec{\omega} \times \vec{h} \]
Gyroscopic Torque Parameters

Material:
Stainless steel,
\[\rho = 7950 \text{ kg/m}^3 \]
\[m = 0.0576 \text{ kg} \]
\[I_x = 1.0443 \times 10^{-5} \text{ kg} \cdot \text{m}^2 \]

Variables:
- moment of inertia
- spin rate
- gimbal rate
to generate the desired torque

\[\omega_g = \omega \]
\[h = 0.00635 \text{ m} \]
(0.25 in.)
\[\omega_s = h \]
\[r = 0.01905 \text{ m} \]
(0.75 in.)

100 rad/sec = 954 rpm
Benchtop Concept Demonstration

- LabVIEW
 - Data Processing
 - Commanding

NI Controller

V2Suit Module
Prototype built from RC aircraft/helicopter components to demonstrate concept and develop technology roadmap.
Multiple control moment gyroscopes packaged with on-board IMU, motor controller, and power/communications interface.
Technology R&D
V2Suit Alternate Uses

- **Spacecraft Interior**
 - Sensorimotor
 - Musculoskeletal

- **Low-G EVA**
 - Stabilization
 - Orientation control

- **Exercise/Rehabilitation**
 - Movement trajectories
 - Posture stabilization

- **Industrial**
 - Keep-out zones
 - Safety zones

Platform Technology for Space- and Earth-based Applications
<table>
<thead>
<tr>
<th>System Attribute</th>
<th>Current State</th>
<th>Tech R&D</th>
</tr>
</thead>
</table>
| **Packaging** | • Spin and gimbal motors
• Slip rings, bearings
• IMU
• Motor controllers, comm. | • ~36 in³
• COTS
• Spin motors
• Motor controllers
• MEMS IMUs | • Micro motors
• Slip rings
• Vibration |
| **Navigation** | • Position/Orientation Initialization
• “Down” Tracking | • Kalman filter | • Body worn relative motion
• Initialization
• Temporal drift |
| **Control** | • Response time
• Spin vs. gimbal rate | • > 1000 rpm spin rate
• No gimbal motor
• ~50 ms response delay | • Spin/gimbal coordination, respond to whole body movement |
| **Power** | • Steady state vs. transient
• Operations duration | • 2 W steady state, 12 W spike
(COTS components) | • Motor selection
• Custom controllers
• Battery sizing |
| **Human-System Integration** | • Wearability
• Resistance magnitude
• Perceptual artifacts | • Outer garment
• Central power/cmd | • Don/doff time
• Garment integration
• Perceptual experiments |

Identify and assess risks with key system technologies through early-stage evaluations, prototypes and simulations.
V2Suit Phase 1 Progress Summary

- **U.S. Patent Application**
 - “Exoskeleton Suit for Adaptive Resistance to Movement” (Nov. 30, 2011)

- **Media Coverage**
 - The Washington Post, txchnologist.com, \\, Space.com, Space-travel.com, …

- **Human-System Integration**
 - Form factor and attachment points
 - Mannequin demonstration

- **Initial V2Suit Module Design**
 - CMG orientation and placement
 - Integration and packaging

- **Technology R&D**
 - Alternate uses: earth and space
 - Key technologies for future R&D