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Fault Management (FM) as Controller 

Spacecraft 

Nominal Control 

FDIR* 

observations (y)   commands (u)   

state (xFM)   

• Two loops – one nominal, one FDIR (FM). 
• View FM as a form of feedback control which 

complements nominal control. 
• Leverage methodology of modern control theory. 

goals/setpoints 
(rnom)   

goals/setpoints 
 (rFM)   



Feedback Control - Definitions 
• Cybernetics: “The science of communication and 

control in the animal and in the machine.” [Weiner 48] 

• “Feedback control is the basic mechanism by which 
systems, whether mechanical, electrical, or biological, 
maintain their equilibrium or homeostasis. “[Lewis 
1992] 

• “Feedback control may be defined as the use of 
difference signals, determined by comparing the actual 
values of system variables to their desired values, as a 
means of controlling a system. Since the system output 
is used to regulate its input, such a device is said to be a 
closed-loop control system.” “[Lewis 1992] 

 



Benefits 

• Provides a common language for FM practitioners to 
communicate with Nominal Control practitioners 

• Provides a framework to define FM Requirements and 
Data Requirement Definitions 

• Provides a framework to define formal estimates of 
FM domain complexity to support model development 
and accreditation costing. - TBD 

• Provides a framework to help determine FM FP/FN 
requirements through controller properties of stability, 
observability and stability - TBD 
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Feedback Control Timeline 
• 300 BC – 1200 AD 

– 3rd Century BC Ktesibios – Water Clock 

• 1600 AD – 1875 AD Industrial Revolution – control of machines 
– 1620 Cornelius Drebbel – Temperature Regulator 
– 1780 James Watt -  Governor – Pressure Regulator 
– Mathematics (Least Squares, DiffEq, Linear Algebra, Optimality) 

• 1910 AD – 1945 AD – Frequency Domain Methods - Classic Control 
Theory 
– 1922 Minorsky Proportional-integral-derivative (PID) controller.  
– 1936 George Philbrick – Analog Computer for Process Control 
– 1948 N Wiener – “Cybernetics: or Control and Communication in the 

Animal and Machine” 

• 1957 AD – present – Time Domain Methods – Modern Control Theory 
– 1957 Sputnik 
– [Draper 1960]  inertial navigation system (Polaris, and later Apollo AGC) 
– [Kalman 1960]  “A New Approach to Linear Filtering and Prediction 

Problems” 
– [Åström and Wittenmark 1971]  “On Self-Tuning Regulators” 

 
 

 
Abstracted from  [Lewis 92] + additions 



Mechanical Feedback Mechanisms 
[Mayr 1971] 

300 BC 1620 AD 1780 AD 



Period of Classical Control  

PID Control 
Defined 

1922 AD 1936 AD 1948 AD 

Cybernetics: “The science of communication 
and control in the animal and in the machine.” 

Frequency Domain Approaches 



Period of Modern Control I  

1957 1960 1960s 

[Draper 1960]  inertial navigation system (Polaris, and 
later Apollo AGC) 

Sputnik 

Time Domain Approaches 



Period of Modern Control - II 
[Kalman 1960]  “A New Approach to Linear Filtering and Prediction Problems” 

Kalman’s Advances: 

1. time-domain 
approach 

2. linear algebra and 
matrices 

3. the concept of the 
internal system state 

4. the notion of 
optimality in control 
theory 



Period of Modern Control - II 
[Åström and Wittenmark 1971]  “On Self-Tuning Regulators” 

“ An adaptive controller can be thought of as having two loops. One loop is normal feedback 
with the process[plant]  and the controller. The other loop is the parameter adjustment loop. ” 
[Åström and Wittenmark 1995 ] 

Parameter 
Adjustment 

Controller Plant 

Figure 1.1  Block diagram of an adaptive  system. [Åström and Wittenmark 1995 ] 

Setpoint 

Control 
parameters 

Control 
signal 

Output 
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AI Methods–Timeline 

• 1957 - present 
– [Newell, Simon, Shaw 1958] ““Report of a 

General Problem-Solving Program”  
– 1972 [Nilsson 1984] “Shakey The Robot” 

– [Brooks, 1986] Brooks, R.A., "A robust layered 
control system for a mobile robot 

– [Williams, Nayak 1996] – NASA Deep Space 1 
– Remote Agent Experiment  

– [Dvorak et al 2000] Mission Data Systems 



AI Methods I 

1957 1972 

[Newell, Simon, Shaw 1958] ““Report of a 
General Problem-Solving Program”  

[Nilsson 1984] “Shakey The Robot” 



AI Methods II 
• [Brooks, 1986] Brooks, R.A., "A robust layered control system for a mobile 

robot” 
• Moved away from traditional AI approaches to layers of feedback loops. 

 

Old 
Approach 

New 
Approach 



AI Methods III 
• [Williams, Nayak 1996] – NASA Deep Space 1 Remote Agent 

Experiment (RAX) 
• MI – Mode Identification, MR – Mode Recovery 
• MI, MR – Model-Based (schematic network, each with FSM) 

 

<Picture of DS1> 



AI Methods IV 

• [Dvorak et al 2000] Mission Data Systems 

• Model-Based 
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Fault Management Timeline 

• 1990 – Present 
– [Johnson 1994] – “VHM Generic Architecture” 

– [Leveson 1995] – “Safeware – System Safety and Computers” 

– [Robinson 2003] – “Applying Model-Based Reasoning to the 
FDIR of the Command & Data Handling Subsystem of the 
International Space Station” 

– [Dulac et al. 2007] “Demonstration of a New Dynamic 
Approach to Risk Analysis for NASA’s Constellation Program” 
Leveson (PI) 

– [NPR-8705.2B] NASA Human-Rating Requirements for Space 
Systems 
 
 
 



Fault Management - I 

• [Johnson 1994] “VHM Generic Architecture” Dr. 
Stephen Johnson – personal communication 

 

 



Fault Management - II 

 

 

1. Leveson 1995] “Safeware – System Safety and Computers” 
2. [Dulac et al. 2007] “Demonstration of a New Dynamic 

Approach to Risk Analysis for NASA’s Constellation Program” 
Dulac, Owens, Leveson (PI),  

 
 



Fault Management III 
• [Robinson et al. 2003] “Applying Model-Based Reasoning 

to the FDIR of the Command & Data Handling Subsystem 
of the International Space Station” 



Fault Management IV 

• [NPR-8705.2B]  NASA Human-Rating Requirements for 
Space Systems  

• 3.2.8 The space system shall provide the capability to 
detect and annunciate faults that affect critical systems, 
subsystems, and/or crew health (Requirement 58569). 

• 3.2.9 The space system shall provide the capability to 
isolate and/or recover from faults identified during 
system development that would result in a catastrophic 
event (Requirement 58572). 
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Assertion  
Fault Management can be formally modeled 
as a feedback control process using concepts 
from modern control theory. 



Evidence 
• [Dean, Wellman 1991]  “Planning & Control” 
• First formal attempt to bridge the gap between 

AI symbolic methods and traditional control. 
• AI Methods Identify Three Types of Goals: 

– Achievement 
– Maintenance 
– Prevention. 

• What do they both have in common with FM? 
– The concept of state – however AI methods 

tend to blur state vs. observations 
– The ability to measure a difference between 

the objective and the current state. 
– Use of the difference to drive the next 

action. 
– Goals of Maintenance 

 



Formal Modeling of Feedback Loops 

• [Robinson 1997a] “Feedback to Basics” (AAAI) Fall Symposium 
Model-Directed Autonomous Systems 

• [Robinson 1997b] “Autonomous design and execution of 
process controllers for untended scientific instruments”, 
AGENTS '97 Proceedings of the first international conference 
on Autonomous agents, ACM 

• [Robinson 2001] “Automatic Overset Grid Generation with 
Heuristic Feedback Control” NASA/TM-2001-210931 
November 2001. 

• [Robinson 2003] “Applying Model-Based Reasoning to the 
FDIR of the Command & Data Handling Subsystem of the 
International Space Station”, Robinson et. al. -SAIRAS 2003 

• [Robinson 2005] “A Three Level Autonomous Software 
System for Increased Science Return” Robinson et. Al., 
American Geophysical Union, Fall Meeting 2005 
 



Modern Control Theory 

• Kalman’s  Key Points 

– time-domain approach 

– linear algebra and matrices  

– internal system state 

– the notion of optimality 

 



MCT Definition [Kalman 60] 

[Brogan 1982]  

 

 

 

State equation: x’ = Ax + Bu 
Observation equation: y = Cx 
Gain Equation: u(t) = -Kx 
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Modern Control Theory FM DRDs 

• DRD 1 – Define variables and values 

• DRD 2 – Define matrices which relate variables 

• DRD 3 – Define control law equations from 
matrices and variables –TBD 

• DRD 4 – Define properties of controller - TBD 

 



Data Requirements Definition 1  

• Define vector variables r,y,x,u,e for the domain(s) 

 

 

 

    

Controller  
Parameter 

Variable 
Name 

Vector 
Size 

Possible Values 
 (each element) 

setpoints r  l x 1 reals, integers, discretes 

observations y m x 1 reals, integers, discretes 

state 
variables 

x n x 1 reals, integers, discretes 

loads u r x 1 reals, integers, discretes 

error e l x 1 reals, integers, discretes 



Variable Mapping:  
 Spacecraft Products -> Control Theory 

total spacecraft state space (x) 

nominal spacecraft state space (x) 

flight rules (x) 

flight procedures/software (u) 

CW event (off-nominal state)      (e) 

 nominal event (sensors, state))  (y,x) 

spacecraft schematics (x) 



r – setpoint vector (l x 1) 
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• Each element of the r vector defines a setpoint for the system 

• Different r vector for nominal control vs FM control. 



y – observation vector (m x 1) 
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• Each element of the y vector defines an observation for the system 
• Different y vector for nominal control vs FM control. 



x – state vector (n x 1) 
• Each element of x defines a state variables for the system 

• Different x vector for nominal control vs FM control. 
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u – load vector (r x 1) 
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• Each element of u defines a loads/commands for the system 

• Different u vector for nominal control vs FM control. 

 



e – error vector 
• Two types of error, observation vs. state error. 
• What does symbolic difference mean? (points to transition between  

two states of an FSM) 
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Modern Control Theory FM DRDs 

• DRD 1 – Define variables and values 

• DRD 2 – Define matrices which relate variables 

• DRD 3 – Define control law equations from 
matrices and variables –TBD 

• DRD 4 – Define properties of controller - TBD 

 



Data Requirements Definition 2 
• Matrices which relate y,x,u 
• Definitions for the matrices forces 

modelers to be systematic. 
• y=Cx 

– What is the state x wrt to the sensors y? 

• x’=Ax+Bu 
– How does the state x affect the change 

of the state x? 

• x’=Ax+Bu:  
– How does next loads/actions u affect 

the change  of state x’. 

• u=-Kx:  
– What should the next action u be given 

the current state x? 

 



Observation Matrix: C  

• y=Cx 
• C is an n x m matrix. 
• Cij: the contribution of 

state variable xi on 
observation yj. 
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x=C†y 

• Note: pseudo inverse (or true inverse) of the 
observation equation is diagnosis.  

• For diagnosis, the inverse is not unique – due 
to the fact that there are significantly less 
sensors than state variables. 

• A selling point for FM methods, as many 
traditional control methods will fail due to 
non-unique inverse. 



state vector 

State vector element failed 

State vector element working 

Non-unique Inverse 

Livingstone Example: Support for non-
unique inverse [Robinson 2003] 



State Transition Matrix: A 

• x’=Ax+Bu 
• A is an n x n matrix. 
• Aij: the contribution of state variable xi on the change 

of state variable xj. 
• State Transition 

• Numeric systems: Derivative  
• Symbolic systems: Finite State Transition 
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Nominal and FM A Matrix  
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Loads Matrix: B 

• x’=Ax+Bu 
• B is an n x r matrix. 
• Bij: the contribution of load/command  ui on the 

change of state variable xj. 
• State Transition 

• Numeric Systems: load are forces on system 
• Symbolic Systems: loads are the commands 
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Nominal and FM B Matrix 
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Gain Matrix: K 

• u=-Kx  
• K is an n x r matrix. 
• Kij: the contribution of the state variable xi on the 

next load uj. 
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Nominal and FM K Matrix 
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Modern Control Theory FM DRDs 

• DRD 1 – Define variables and values 

• DRD 2 – Define matrices which relate variables 

• DRD 3 – Define control law equations from 
matrices and variables –TBD 

• DRD 4 – Define properties of controller - TBD 

 



DRD 3 Control Law Equations - TBD 
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Gain Equation: u(t) = -Kx 

State equation: x’ = Ax + Bu 

Observation equation: y = Cx 



Modern Control Theory FM DRDs 

• DRD 1 – Define variables and values 

• DRD 2 – Define matrices which relate variables 

• DRD 3 – Define control law equations from 
matrices and variables –TBD 

• DRD 4 – Define properties of controller - TBD 

 



DRD 4 Controller Properties - TBD 

• Modern Control Theory provides methods to 
prove properties for controllability, 
observability and stability. 

• How do these methods translate to symbolic 
reasoning domains? 



Comparison of Modeling Primitives 
Property Nominal Control FM Control 

Function Definition  Domain, Range in Reals Finite State Machines/Table Lookup 

Derivative of Function Function Derivative or 
Difference 

Finite State Transition 

Integration of Function Summation of Derivative State Transition Path from Initial to Final State. 

Modeling Primitive  Equation Generalized Constraint (components) 

System of Equations System of Equations, 
Linear Algebra operations 

Hierarchical Network of HW/SW components, 
modified Linear Algebra operations (symbolic 
inner-product methods).  

Matrix Inverse 
Capabilities (x=C-†y) 

Fails – due to under /over 
constrained system  

No failure! – part of FM architecture to handle.  

Linearity Assumption: 
(scalability, super-
position properties) 

Foundation of MCT Reflected into fault signatures/ responses which 
are independent. (i.e. multiple fault signatures 
are additive) 

Solving for K (control 
policy). 

Gradient descent search 
for minima or maxima 

Search through parallel FSMs, enforcing 
temporal constraints 
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Conclusions 

• Use of generalized linear algebra formalism: 
– provides a common language for FM practitioners to 

communicate with Nominal Control practitioners 

– Provides a methodology to systematically explore the 
complexity of the domain. 

– Provides a methodology which supports scalability  for 
extremely large systems ( e.g. 50K failure modes, 50K 
tests). 

• However …. Matrix methods will break down and 
where they do innovations should be implemented 
to interface with generalized linear algebra methods. 
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