Software Architecture

David Garlan
Carnegie Mellon University

NASA Fault Management Workshop
New Orleans
April 2012

About me

= Professor of Computer Science
At Carnegie Mellon University since 1990
Before then in industry (test and measurement)
= Research interests

Software architecture tools and techniques
Self-healing and self-adaptive systems

= Connection with NASA

Engagement since 2004
Sabbatical at JPL summer of 2006

On-going education offerings for several NASA
Centers

4/14/2012 Garlan

This Talk

= What is Software Architecture?
Why is it important?

What are key principles and concepts of software
architecture?

How can formal “architectural thinking” yield
systems that better satisfy their requirements?

= Prospects for improving Fault Management
through architectural design

How do these ideas relate to the themes of this
workshop?

4/14/2012 Garlan

‘ Examples of Sottware Architecture

Descriptions
Window System
o F
Application errc::t DPS B::;k Display
Program K |
og adap- eme adap- System
ter ter
OS adapter
Operating System

———

Figure 2. Display PostScript interpreter components.

An Overviev of the DISPLAY POSTSCRIPT ™ Syaten, Adobe Systems Incorporated, March 16, 1988, P. 10

4/14/2012

Client Layer*

Access domain-management
Buffering and record-level 1/0
Transaction coordination

Agentlayer T
Implementation of standard server interface
Logger, agent, and Instance tasks

Helix Directorles
Path name to.FID map,

ping
Single-file (d atabase) update by one task
Procedural Interface for queries

Ob]ect (FID directary)
. Identification and capability access (via FIDs)
FID to tree-root mappin? table of (FID,root,ref__count)

Existencé and deletion (reference counts)
Concurrency control (file interlocking)

Secure Tree

Basic crash-resistant file structure
Conditional commit
Provision of secure array of blocks

System

Commit and restart authority
Disk space allocation
Commit domains

Cache

Caching and performance optimization
Commit support (flush)

Frame allocation (to domains)

Optional disk shadowing

Canonical Disk
| Physical disk access B

“Also called client Helix.
Figure 2. Abstraction layering.

IEEE Software, "Helix: The architecture of the XMS Distributed File System,
Marek Fridrich and William Older, May 1985, Vol. 2, No. 3, P. 23

-

4/14/2012 Gatlan

Tine Updose Owley R $
Rowers Noacpwm Nevimw
e Sottwers : Ensbie/Dustde *
Comemioe 1t —'»o et M
Inmruon | 5::; Prasasses And € sahrimy Tormiesns
MTU fesd Proceming
Nepooin l
o e
Coun
"_:”. ' e -
T
Rovees /{’ (Retwrn To
Proces » Apol cation !
Fer.-n l Svene 3 — f
sevimev | ~
Moot l 1 ~l||||ﬂ| l.l‘!
I s
Levw C I Vo e . Don Progrom *
l Procemny I-h-doo.-.‘“
|]
l VO Crrar
l Prim ey
: el o ovey At
B Programs,
| 10P Contret ey
[——;—-——————_ﬂm_—— — b+ — —— —
/ S9N O Progrem 1O Roguuen .} m&“i
"‘Mey lawohe FCOS GIC [V PR, e . Appluation SEND ERAOA Reguents
1Mot Shomn) Roquasns Placonfigue sthen

FIGURE 7. Flight Computer Operating System (The FCOS dispatcher coordinates
and controls all work performed by the on-board computers.)

Communications of the ACM, “Architecture of the Space Shuttle Primary Avionics Software Systems," Gene D. Carlow,
September 1984, Vol. 27, No. 9, P. 933

4/14/2012

Garlan

Software Architecture in Context

Cloud computing arch 2010

Service-oriented arch
Model-driven development

Component-based Systems 2000 Vanishing
; : system
ntegrated product lines b dari
Software architecture oundaries
Object-oriented Patterns izati
J Packages 1990 Den}olcratlzatlon
Pipes and filters of Internet
Software development environments
Inheritance bi 1980 Abstract
Abstract data types / ©U/€cts architectures
Programming-in-the-large
Information hidin ino-
g 1970 gramming

NATO SE conference in-the-large

Separate compilation

1960

ogramming
Subroutines -in-the-small

Macros

1950

4/14/2012 Gaflan

ogramming-
any-which-way

The Promise

m Software Architecture as critical element of
an effective engineering discipline

from ad hoc definition to codified principles

= Develop systems “architecturally”
Improve system quality through conceptual
iIntegrity and coherence
support trade-off analysis & appropriate selection
of architectural approaches
assure that the system will have desired
properties by design
manage essential complexity; hide accidental
complexity

4/14/2012 Garlan

‘ The Big Problem

Implementations

1

272?

!

How to bridge
the gap
between
requirements
and solutions?

4/14/2012

Gar

lan

‘ The Role of Software Architecture

- High level of
system design

- System-level
abstractions
Software Architecture - Satisfy high

priority
Implementations

requirements
4/14/2012 Garlan 10

What is Software Architecture?

The software architecture of a computing
system is the set of structures needed to
reason about the system, which comprise
software elements, relations among them

and properties of both.

4/14/2012

Documenting Software Architecture: Views and Beyond,
2" Ed., Clements et al. 2010.

11

Issues Addressed by Architectural Design

= Structure: decomposition of a system into

interacting components

o assignment of function to components
o selection of component interaction/coordination mechanisms

= Quality attributes: emergent system properties

o performance, reliability, security, evolvability, testability, cost
of maintenance
o tradeoffs

= Design principles: conceptual integrity
o vocabulary and rules for system composition
0 “load-bearing walls”
o use of codified design idioms, styles, and tactics

4/14/2012 Garlan 12

Example: Google Quality Attributes

Applieation

(flle name chunk mdex)

 Performance

GES client |,

(ehk handle,

chunk locations)

(chumk handle, byte range)

» Cost
CFSmaster . foofar * Availability
File namespace /| chunk Jef)
Legand:
Dt messazes
Instructions to chumkserver — Control messages
Climkserver state

clnmk data

Source: “The Google File System”
Sanjay Ghemawat, Howard
Gobioff, and Shun-Tak Leung

4/14/2012

m CFS chunkserver GES chunkszerver

Limx file system Limmx file system
glg. lola_

Figure 1: GFS Architecture

Garlan 13

‘ Example: Google

Application

GES chient

ifile name, chunk md&:-:}/{

+ =7

(chumk handls,

chunk locations)

\

Source: “The Google

File
System” Sanjay Ghemawat,
Howard Gobioff, and Shun-Tak

Leung

Scalability
Cost
— Reliability
45 master = (foobar Performance
File namespace _,,"f chmk Zefl
| Legand:
\ / ey Data meszages
TneTrtiens Eer — Contol messages
SEIVEL Siate
GES chunkzerver GES chunkserver
: = :

L|;=| _

Ala

Figure 1: GFS Architecture

14

Principles ot Architectural Design

= Understand architectural drivers
o functional; quality attributes (QA); constraints

= ldentify relevant architectural approaches
o Styles, idioms, patterns, tactics

= Understand how those approaches impact
achievement of quality attributes

o Consider tradeoffs in achieving multiple QAs

= Select the set of approaches that are optimal
for the particular system

4/14/2012 Garlan

15

Example QA: Availability Tactics

.

4 Availability A
Fault
Fault Recovery Fault Recovery Fault
Detection Preparation and Prevention
l anld Repair ReiItroduction 1
* Ping/Echo ° Voting - Shadow * Removal from
e Heartbeat ° Active - State re-synch Service
- Exception Redundancy - Rollback * Transactions
* Passive * Process
Redundancy Monitor
« Spare

4/14/2012

Garlan

16

This Workshop

= What architectural approaches are currently
used for FM today?

= What factors influence that decision?

= What are the tradeoffs in picking one FM
architecture over another?

= What can we learn by looking at positive and
negative experiences of prior FM architectures?

= How can we address future challenges in FM
through better understanding of architectural
principles?

4/14/2012 Garlan 17

‘ The End

4/14/2012

arlan

18

‘ Supplementary Slides

= Architecture Drivers

= Quality Attributes

= Styles and Tactics

= Architecture tradeoff analysis

4/14/2012 Garlan

19

Architectural Drivers — 1

= Architectural drivers are requirements that
shape the software architecture

Functional

Requirements SCIAVELCS G Quality Attributes
Architecture

Constraints

4/14/2012 Garlan 20

Architectural Drivers — 2

= Functional Requirements — what the system
must do.

2 In architectural design we are concerned with high
level function not implementation details.

= Constraints — design decisions already made
for the designers.
o Business/organizational (e.g., schedule)
o Technical (e.g., required use of legacy platform)

= Quality Attributes — characteristics the system
must possess in addition to the functionality.

4/14/2012 Garlan 21

Quality Attributes

= Example QAs
availability
modifiability
performance
security

= Important notes
There is no standard taxonomy/definitions of QA
Each QA has multiple aspects

System-level QA requirements may induce
functional requirements on a subsystem

4/14/2012 Garlan 22

Example: Availability — 1

= Definition: Availability is concerned with
system failure and its associated
consequences. A system failure occurs
when a system no longer delivers a service
that is consistent with its specification.

4/14/2012 Garlan 23

Example: Availability — 2

= Areas of concern include
preventing catastrophic system failures
detecting system failures
recovering successfully from system failures

the amount of time needed to recover from system
failures

the frequency of system failures

degraded modes of operation due to system
failures

4/14/2012 Garlan 24

Styles and Tactics

= Architectural design can be improved by
reusing prior architectural approaches that
have well-understood properties

= [wo of the most common forms of reuse are

o Styles: general families of systems based on
overall compositional structure

o Tactics: techniques for improving quality attributes

4/14/2012 Garlan 25

A rariial) Catalogue of Styles

= Data flow

batch sequential
pipes and filters
process control

= Call-return

4/14/2012

main program-subroutine
object-oriented
component-based
peer-to-peer
service-oriented

N-tiered

m Event-based

0 asynchronous messaging
2 publish-subscribe

o implicit invocation

o data-triggered

m Data-centered

Garlan

o repository
o blackboard
o shared variable

26

Tactics

= A tactic is a design decision that refines a high
level style and is influential in the control of a
quality attribute response.

design decision xquality attribute } tactic

__

4/14/2012 Garlan 27

Example QA: Availability Tactics

.

4 Availability A
Fault
Fault Recovery Fault Recovery Fault
Detection Preparation and Prevention
l anld Repair ReiItroduction 1
* Ping/Echo ° Voting - Shadow * Removal from
e Heartbeat ° Active - State re-synch Service
- Exception Redundancy - Rollback * Transactions
* Passive * Process
Redundancy Monitor
« Spare

4/14/2012

Garlan

28

R R
| S— Fault
masked

Availability Tactics — 2 Fault

= Fault detection

ping/echo: when one component issues a ping
and expects to receive an echo within a
predefined time from another component

heartbeat: when one component issues a
message periodically while another listens for it

exceptions: using exception mechanisms to raise
faults when an error occurs

4/14/2012 Garlan 29

Architecture Tradeoff Analysis

= A tactic is usually selected because it will
improve a particular QA

= But at the same time it will have an impact on
other QA or other aspects of the same QA

= Example: Detection Tactics for Availability

o Performance: number of messages, timeliness of
detection

o Testability: complexity, non-determinism
o Modifiability: distributed/localized responsibility

4/14/2012 Garlan 30

