
Software Architecture

David Garlan
Carnegie Mellon University

NASA Fault Management Workshop
New Orleans
April 2012

4/14/2012 Garlan 2

About me

n  Professor of Computer Science
q  At Carnegie Mellon University since 1990
q  Before then in industry (test and measurement)

n  Research interests
q  Software architecture tools and techniques
q  Self-healing and self-adaptive systems

n  Connection with NASA
q  Engagement since 2004
q  Sabbatical at JPL summer of 2006
q  On-going education offerings for several NASA

Centers

4/14/2012 Garlan 3

This Talk

n  What is Software Architecture?
q  Why is it important?
q  What are key principles and concepts of software

architecture?
q  How can formal “architectural thinking” yield

systems that better satisfy their requirements?
n  Prospects for improving Fault Management

through architectural design
q  How do these ideas relate to the themes of this

workshop?

Garlan 4

Examples of Software Architecture
Descriptions

4/14/2012

4/14/2012 Garlan 5

4/14/2012 Garlan 6

Software Architecture in Context

Programming-
any-which-way

Programming
-in-the-small

Programming-
in-the-large

Abstract
architectures

Software architecture

NATO SE conference

Programming-in-the-large

Software development environments

Subroutines

Separate compilation

Integrated product lines

Information hiding

Inheritance
Abstract data types objects

Packages
Pipes and filters

Object-oriented Patterns

Model-driven development
Component-based Systems

Service-oriented arch

Cloud computing arch

2000

1980

1950

1970

1990

1960

2010

Vanishing
system

boundaries
Democratization

of Internet

Macros

7 4/14/2012 Garlan

4/14/2012 Garlan 8

The Promise
n  Software Architecture as critical element of

an effective engineering discipline
q  from ad hoc definition to codified principles

n  Develop systems “architecturally”
q  improve system quality through conceptual

integrity and coherence
q  support trade-off analysis & appropriate selection

of architectural approaches
q  assure that the system will have desired

properties by design
q  manage essential complexity; hide accidental

complexity

4/14/2012 Garlan 9

The Big Problem

Requirements

Implementations

???

How to bridge
the gap
between
requirements
and solutions?

4/14/2012 Garlan 10

The Role of Software Architecture

Implementations

- High level of
system design

- System-level
abstractions

- Satisfy high
priority
requirements

Software Architecture

Requirements

What is Software Architecture?

11

 The software architecture of a computing
system is the set of structures needed to
reason about the system, which comprise
software elements, relations among them

and properties of both.

Documenting Software Architecture: Views and Beyond,
2nd Ed., Clements et al. 2010.

4/14/2012 Garlan

4/14/2012 Garlan 12

Issues Addressed by Architectural Design
n  Structure: decomposition of a system into

interacting components
q  assignment of function to components
q  selection of component interaction/coordination mechanisms

n  Quality attributes: emergent system properties
q  performance, reliability, security, evolvability, testability, cost

of maintenance
q  tradeoffs

n  Design principles: conceptual integrity
q  vocabulary and rules for system composition
q  “load-bearing walls”
q  use of codified design idioms, styles, and tactics

4/14/2012 Garlan 13

Source: “The Google File System”
Sanjay Ghemawat, Howard
Gobioff, and Shun-Tak Leung"

Example: Google Quality Attributes
•  Performance
•  Cost
•  Availability

Example: Google

Source: “The Google File
System” Sanjay Ghemawat,

Howard Gobioff, and Shun-Tak
Leung!

Scalability
Cost

Reliability
Performance

14

Principles of Architectural Design

n  Understand architectural drivers
q  functional; quality attributes (QA); constraints

n  Identify relevant architectural approaches
q  Styles, idioms, patterns, tactics

n  Understand how those approaches impact
achievement of quality attributes
q  Consider tradeoffs in achieving multiple QAs

n  Select the set of approaches that are optimal
for the particular system

4/14/2012 Garlan 15

16

Example QA: Availability Tactics
Availability

Fault
Detection

• Ping/Echo
• Heartbeat
• Exception

Fault
Recovery

Preparation
and Repair

• Voting
• Active
Redundancy

• Passive
Redundancy

• Spare

Fault Recovery
and

Reintroduction

Fault
Prevention

• Shadow
• State re-synch
• Rollback

• Removal from
Service

• Transactions
• Process
Monitor

4/14/2012 Garlan

This Workshop

n  What architectural approaches are currently
used for FM today?

n  What factors influence that decision?
n  What are the tradeoffs in picking one FM

architecture over another?
n  What can we learn by looking at positive and

negative experiences of prior FM architectures?
n  How can we address future challenges in FM

through better understanding of architectural
principles?

4/14/2012 Garlan 17

The End

4/14/2012 Garlan 18

Supplementary Slides

n  Architecture Drivers
n  Quality Attributes
n  Styles and Tactics
n  Architecture tradeoff analysis

4/14/2012 Garlan 19

20

Architectural Drivers – 1

n  Architectural drivers are requirements that
shape the software architecture

Functional
Requirements Quality Attributes

Constraints

Software
Architecture

4/14/2012 Garlan

21

Architectural Drivers – 2

n  Functional Requirements – what the system
must do.
q  In architectural design we are concerned with high

level function not implementation details.
n  Constraints – design decisions already made

for the designers.
q  Business/organizational (e.g., schedule)
q  Technical (e.g., required use of legacy platform)

n  Quality Attributes – characteristics the system
must possess in addition to the functionality.

4/14/2012 Garlan

22

Quality Attributes

n  Example QAs
q  availability
q  modifiability
q  performance
q  security

n  Important notes
q  There is no standard taxonomy/definitions of QA
q  Each QA has multiple aspects
q  System-level QA requirements may induce

functional requirements on a subsystem
4/14/2012 Garlan

23

Example: Availability – 1

n  Definition: Availability is concerned with
system failure and its associated
consequences. A system failure occurs
when a system no longer delivers a service
that is consistent with its specification.

4/14/2012 Garlan

24

Example: Availability – 2

n  Areas of concern include
q  preventing catastrophic system failures
q  detecting system failures
q  recovering successfully from system failures
q  the amount of time needed to recover from system

failures
q  the frequency of system failures
q  degraded modes of operation due to system

failures

4/14/2012 Garlan

Styles and Tactics

n  Architectural design can be improved by
reusing prior architectural approaches that
have well-understood properties

n  Two of the most common forms of reuse are
q  Styles: general families of systems based on

overall compositional structure
q  Tactics: techniques for improving quality attributes

4/14/2012 Garlan 25

A (Partial) Catalogue of Styles

n  Data flow
q  batch sequential
q  pipes and filters
q  process control

n  Call-return
q  main program-subroutine
q  object-oriented
q  component-based
q  peer-to-peer
q  service-oriented
q  N-tiered

n  Event-based
q  asynchronous messaging
q  publish-subscribe
q  implicit invocation
q  data-triggered

n  Data-centered
q  repository
q  blackboard
q  shared variable

4/14/2012 26 Garlan

27

Tactics

n  A tactic is a design decision that refines a high
level style and is influential in the control of a
quality attribute response.

promotes quality attribute tactic design decision

4/14/2012 Garlan

28

Example QA: Availability Tactics
Availability

Fault
Detection

• Ping/Echo
• Heartbeat
• Exception

Fault
Recovery

Preparation
and Repair

• Voting
• Active
Redundancy

• Passive
Redundancy

• Spare

Fault Recovery
and

Reintroduction

Fault
Prevention

• Shadow
• State re-synch
• Rollback

• Removal from
Service

• Transactions
• Process
Monitor

4/14/2012 Garlan

Garlan 29

Availability Tactics – 2 Fault Fault
masked

n  Fault detection
q  ping/echo: when one component issues a ping

and expects to receive an echo within a
predefined time from another component

q  heartbeat: when one component issues a
message periodically while another listens for it

q  exceptions: using exception mechanisms to raise
faults when an error occurs

4/14/2012

Architecture Tradeoff Analysis

n  A tactic is usually selected because it will
improve a particular QA

n  But at the same time it will have an impact on
other QA or other aspects of the same QA

n  Example: Detection Tactics for Availability
q  Performance: number of messages, timeliness of

detection
q  Testability: complexity, non-determinism
q  Modifiability: distributed/localized responsibility

4/14/2012 Garlan 30

