Office of the Chief Technologist

- Integrates Technology Investment Across the Agency
- Demonstrates and Communicates Societal Impacts of NASA Technology Investments
- Leverages Technology Investment Across the Agency
- Leads Tech Transfer, Partnerships and Commercialization Activities Across the Agency
- Serves as Advisor to Administration
- Direct Technology Management and Budget Authority for the Space Technology Program
- Advocates Externally NASA’s R&D Programs
- Demonstrates and Communicates Societal Impacts of NASA Technology Investments
• **Enabling Our Future in Space:** By investing in high payoff, disruptive technology that industry cannot tackle today, *Space Technology* matures the technology required for NASA’s future missions in science and exploration while proving the capabilities and lowering the cost for other government agencies and commercial space activities.

• **NASA at the Cutting Edge:** Pushing the boundaries of aerospace technology and seizing opportunities, *Space Technology* allows NASA and our Nation to remain at the cutting edge.
Guiding Principles of the Space Technology Program

OCT’s Space Technology Program

- Advances broadly applicable technology to infuse solutions into applications for which there are multiple customers.
- Employs portfolio approach to capture the entire spectrum of technology readiness.
- Competitively selects research by academia, industry, and the NASA centers based on technical merit.
- Leverages the technology investments of our international, other government agency, academic and industrial partners.
- Coordinates with internal and external stakeholders, including academia, industry and other government agencies.
- Results in new inventions, new capabilities and the creation of a pipeline of innovators aimed at serving future National needs.
- Grows the Nation’s innovation economy.
The Ten Programs of Space Technology

Early Stage Innovation
- Space Technology Research Fellowships & Grant Programs
- NASA Innovative Advanced Concepts (NIAC) Program
- Center Innovation Fund Program
- Centennial Challenges Prize Program
- Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Program

Game Changing Technology
- Game Changing Development
- Franklin Small Satellite Subsystem Technology

Technology Capability Demonstrations
- Flight Opportunities
- Technology Demonstration Missions
- Edison Small Satellite Demonstration Missions
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 2013 President's Budget Request</td>
<td></td>
<td>573.7</td>
<td>699.0</td>
<td>699.0</td>
<td>699.0</td>
<td>699.0</td>
</tr>
<tr>
<td>Partnership Development and Strategic Integration</td>
<td>29.5</td>
<td>29.5</td>
<td>29.5</td>
<td>29.5</td>
<td>29.5</td>
<td>29.5</td>
</tr>
<tr>
<td>SBIR/STTR</td>
<td>166.7</td>
<td>173.7</td>
<td>181.9</td>
<td>187.2</td>
<td>195.3</td>
<td>206.0</td>
</tr>
<tr>
<td>Crosscutting Space Technology Development</td>
<td></td>
<td>187.7</td>
<td>293.8</td>
<td>272.1</td>
<td>266.6</td>
<td>259.7</td>
</tr>
<tr>
<td>Early Stage Innovation</td>
<td>39.8</td>
<td>59.0</td>
<td>61.0</td>
<td>61.0</td>
<td>61.0</td>
<td>61.0</td>
</tr>
<tr>
<td>CSTD Game Changing Technology</td>
<td>61.5</td>
<td>66.7</td>
<td>73.7</td>
<td>69.1</td>
<td>58.4</td>
<td>58.4</td>
</tr>
<tr>
<td>CSTD Technology Demonstration Missions</td>
<td>65.3</td>
<td>128.9</td>
<td>103.4</td>
<td>102.5</td>
<td>106.3</td>
<td>93.6</td>
</tr>
<tr>
<td>Edison/Franklin Small Satellites</td>
<td>11.2</td>
<td>24.2</td>
<td>19.0</td>
<td>19.0</td>
<td>19.0</td>
<td>19.0</td>
</tr>
<tr>
<td>Flight Opportunities</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>15.0</td>
<td>15.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Exploration Technology Development</td>
<td></td>
<td>189.9</td>
<td>202.0</td>
<td>215.5</td>
<td>215.7</td>
<td>214.5</td>
</tr>
<tr>
<td>ETD Game Changing Technology</td>
<td>111.2</td>
<td>104.0</td>
<td>70.5</td>
<td>79.8</td>
<td>85.9</td>
<td>90.9</td>
</tr>
<tr>
<td>ETD Technology Demonstration Missions</td>
<td>78.7</td>
<td>98.0</td>
<td>145.0</td>
<td>135.9</td>
<td>128.6</td>
<td>125.6</td>
</tr>
</tbody>
</table>
FY 2011 Competitive Selections

- **NIAC** selected 30 advanced concept proposals from hundreds of submittals. Addresses early-stage concepts addressing challenging problems in space operations research and development.

- **STRF** selected inaugural class of 80, highly-qualified and talented graduate students from 37 universities and colleges.

- **Green Flight Challenge:** 14 teams registered for competition. Three teams met requirements and competed. First prize of $1.35M awarded to Pipistrel-USA.com. Second place prize of $120,000 awarded to team eGenius.

- **SBIR:** Awarded 450 SBIR Phase 1 awards across 37 states - Awarded 215 SBIR Phase 2 awards across 35 states - Awarded 24 SBIR Phase 2E awards

- **STTR:** Awarded 45 STTR Phase I awards across 15 states - Awarded 27 STTR Phase II awards across 18 states

- **Game Changing Development** is soliciting proposals for research and technology development for revolutionary improvements in America’s space capabilities. Initial selections:
 - Lightweight Composite Cryogenic Propellant Tank – Boeing
 - Ultra-high energy density Silicon Nanowire Lithium Ion Batteries – Amprius
 - Ride the Light (Formulation Phase) – 9 companies/universities

- **Flight Opportunities** selected seven companies to integrate and fly technology payloads on commercial suborbital reusable platforms. The seven companies receiving IDIQ contracts are:
 - Armadillo Aerospace; Near Space Corp; Masten Space Systems; Up Aerospace; Virgin Galactic; Whittinghill Aerospace; XCOR.
 - Flight Opportunities made 25 Suborbital/Parabolic Payload Selections

- **Technology Demonstration Mission** proposals were sought in four areas:
 - High-bandwidth deep space communication, navigation and timing; orbital debris mitigation or removal systems; advanced in-space propulsion systems; autonomous rendezvous, docking, close proximity operations and formation flying
 - Selected three proposals for award: Solar Sail (L’Garde); Deep Space Atomic Clock (JPL); Laser Communications Relay Demo (GSFC)
At the end of 2010 NASA drafted roadmaps to guide Agency-wide technology investment. The National Research Council (NRC) led a year-long study to assess these roadmaps, prioritizing prospective technology-investment opportunities in terms of their value to NASA’s future and the Nation as a whole.
Space Technology Roadmap Development Process

NASA Process

1: START & Input from MDs & Center
- Identified MD Goals, Missions, Architectures & Timelines;
- MD Technology Roadmaps & Prioritizations;
- Center Technology Focus Areas

2: Identify Technology Areas
- Identified Technology Areas (TAs)

3: Establish TA Teams
- OCT established NASA internal 6-member subject expert teams for each TA, with one or two chairs

4: Common Approach for TA Teams
- Guidelines, assumptions, deliverables

5: Form Starting Point for TA Roadmaps
- Assessed past roadmaps; MD & Center inputs

6: Roadmapping Process
- Preliminary roadmaps for TA areas

7: Internal Reviews
- Each TA Roadmap reviewed by OCT & extended teams of subject experts

8: DRAFT NASA STRs
- OCT released draft Space Technology Roadmaps to the NRC & to the Public

NRC Process

A: Establish NRC Teams
- NRC to appoint steering committee and 6 panels

B: Identify Common Assessment Approach
- NRC to establish a set of criteria to enable prioritization within and among all TAs

C: Initial Community Feedback
- NRC to solicit external input from industry & academia

D: Additional Community Feedback
- NRC to conduct public workshops

E: Deliberations by NRC Panels
- NRC panels meet individually to prioritize technologies and suggest improvements to roadmaps

F: Documentation by NRC Panels
- NRC Panels to provide written summary to Steering Committee

G: NRC Interim Findings
- NRC to release a brief interim report that addresses high-level issues associated with the roadmaps, such as the advisability of modifying the number or technical focus of the draft NASA roadmaps

H: FINAL NRC REPORT
- With decisional information, including: summary of findings and recommendations for each of the roadmaps; integrated outputs from the workshops and panels; identify key common threads and issues; priorities, by group (e.g., high, medium, low), of the highest priority technologies from the TAs

NASA Space Technology Roadmaps Process

FY 2012

9: FINAL NASA STR REPORTS
- NASA to release Roadmap Reports

Nov. 2010

Dec. 2010

Mar. 2011

Apr. 2010

Sep. 2011

Jan. 2012
Technologies included in the final prioritization, listed by TABS number

<table>
<thead>
<tr>
<th>TABS</th>
<th>Technology Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1</td>
<td>Electric Propulsion</td>
</tr>
<tr>
<td>2.2.3</td>
<td>(Nuclear) Thermal Propulsion</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Solar Power Generation (Photovoltaic and Thermal)</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Fission (Power)</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Extreme Terrain Mobility</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Long-Duration (Crew) Health</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Detectors & Focal Planes</td>
</tr>
<tr>
<td>8.1.3</td>
<td>(Instrument and Sensor) Optical Systems</td>
</tr>
<tr>
<td>8.2.4</td>
<td>High-Contrast Imaging and Spectroscopy Technologies</td>
</tr>
<tr>
<td>8.3.3</td>
<td>In Situ (Instruments and Sensor)</td>
</tr>
<tr>
<td>14.1.2</td>
<td>Active Thermal Control of Cryogenic Systems</td>
</tr>
<tr>
<td>X.1</td>
<td>Radiation Mitigation for Human Spaceflight</td>
</tr>
<tr>
<td>X.2</td>
<td>Lightweight and Multifunctional Materials and Structures</td>
</tr>
<tr>
<td>X.3</td>
<td>Environmental Control and Life Support System</td>
</tr>
<tr>
<td>X.4</td>
<td>Guidance, Navigation, and Control</td>
</tr>
<tr>
<td>X.5</td>
<td>Entry, Descent, and Landing Thermal Protection Systems</td>
</tr>
</tbody>
</table>

X = cross cuts several Technology Areas in the roadmaps
The NRC study was released on February 1. It is a comprehensive report with important observations, analyses and priorities, including:

- Currently, available technology is insufficient to accomplish many upcoming missions in Earth orbit and beyond.
- Success in executing future NASA space missions will depend on advanced technology developments that should already be underway.
- NASA’s technology base is largely depleted. So, revitalizing technology investment at NASA is required if NASA is to achieve the challenges before it.
- Technological breakthroughs have been the foundation of virtually every NASA success. In addition, technological advances have yielded benefits far beyond space itself in down-to-Earth applications.
- Future U.S. leadership in space requires a foundation of sustained technology advances.
- The NRC concurs with the design of NASA’s new Space Technology Program, with its cross-cutting technology projects that span a range of technical maturity and include flight demonstrations.

The NRC study emphasized 16 high-priority technology areas. NASA is currently investing in all 16 at some level.

This assessment will help guide NASA’s technology investment priorities in the years to come, working across the agency to address the findings.
Strategic Perspectives and Process

What NASA could do

- Draft ST Roadmaps:
 - 140 technical challenges (10 per roadmap)
 - 320 technologies
 - 20 year horizon

What NASA should do

- NRC ST Roadmaps Study:
 - Gives priority to:
 - 100 top technical challenges
 - 83 high priority technologies (roadmap-specific)
 - 16 highest of high technologies (looking across all roadmaps)
 - Immediate 5 year horizon

What NASA is doing

- Updated ST Roadmaps:
 - Incorporate NRC Study Results
 - Update with Mission Plans and Technological Developments

 Internal Assessment to create Strategic Plan:
 - Compare to Current Investments
 - Compare to Current Plans
 - Analyze Gaps

What NASA will do

- Implement NASA Technology Portfolio Investments
 - Technology Developments (across full TRL spectrum)
 - Flight Demonstrations
- Must reflect:
 - Affordability
 - Technical Progress and Performance
 - Mission Needs and Commitments
 - Stakeholder Guidance
Strategic Perspectives and Process

NASA Strategic Plan

NASA's
• Current Technology Investments
• MD Technology Priorities
• Budget Constraints
• Center Capabilities/Facilities

NASA Space Technology Roadmaps

NRC Roadmap Analysis & Priorities

and Other Govt. Agency Partnership Opportunities

HEOMD
SMD
STP

DoD
NRL
FAA
NRO
AFRL
Space Command
DoE
DARPA
Space Technology Research Grants Program Overview

PROGRAM: To accelerate the development of push technologies through innovative efforts with high risk/high payoff and develop the next generation of innovators through:

• **Space Technology Research Opportunities** – Early Stage Innovation (STRO-ESI): technology portfolio of groundbreaking research in advanced space technology

• **NASA Space Technology Research Fellowships (NSTRF):** Competitive selection of U.S Citizen / permanent resident graduate students developing promising technologies in support of future NASA missions and strategic goals

ACCOMPLISHMENTS/MILESTONES (FY 2012/2013):

• STRO-ESI: One year awards with possible renewals; ~$200K/year

• NSTRF: 80 Fellows in inaugural class; NSTRF12 class will be announced ~ August 2012
National Asset: The Inaugural Class of NSTRF

80 Students - 37 Universities - 22 States and U.S. Territories
The Solicitation – Application Components

The student shall be the principal author of the Educational Research Area of Inquiry and Goals, with minimal assistance from the current/prospective faculty advisor.

1. Educational Research Area of Inquiry and Goals
 - summary of educational program objectives
 - research interests with associated relevant hypotheses and possible approaches
 - benefits of proposed research
 - benefits of on-site R&D lab experience

2. Schedule of degree program
 - proposed start and completion dates
 - anticipated milestones

3. Curriculum Vitae (one page)
 - faculty advisor
 - student

4. Statement from faculty advisor (one page)
 - planned use of faculty advisor allowance
 - If applicable, brief description of ongoing or pending research awards from NASA that are related to the student’s Educational Research Area of Inquiry and Goals.

5. Three signed letters of recommendation
 - from academic advisor
 - from other faculty members or professionals with detailed knowledge of student’s abilities

6. Transcripts
 - undergraduate
 - graduate

7. GRE general test scores
Application Evaluation and Selection

All eligible fellowship applications will undergo a review by technical experts.

Criteria for Evaluation

Merit of the Applicant’s Proposed Educational Research Area of Inquiry and Goals
- technical merit as appropriate to the candidate’s educational level
- research area description, knowledge of relevant research literature and plans for student/advisor/mentor partnership

Relevance of the proposed research to NASA’s Space Technology Roadmaps

Academic excellence and Potential
- Organizational and analytical skills
- scientific curiosity, creativity, acumen, and success in research appropriate to his/her educational level

NOTE: Subsequent to the technical review, candidates deemed excellent will be submitted to the Office of the Chief Technologist at NASA Headquarters for final consideration and selection.
Annual Award Values

<table>
<thead>
<tr>
<th>Category</th>
<th>Maximum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Stipend</td>
<td>$36,000</td>
</tr>
<tr>
<td>Faculty Advisor Allowance</td>
<td>$9,000</td>
</tr>
<tr>
<td>On-site NASA Center/R&D lab experience Allowance</td>
<td>$10,000</td>
</tr>
<tr>
<td>Health Insurance Allowance</td>
<td>$1,000</td>
</tr>
<tr>
<td>Tuition and Fees Allowance</td>
<td>$10,000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$66,000</td>
</tr>
</tbody>
</table>

* from NSTRF12 solicitation

- A fellowship award is issued as a training grant to the student’s host university.
- Separate from the awards, the Program has allocated resources to cover mentor time and costs associated with hosting/interacting with the Fellow.
- Open Opportunities are advertised via NSPIRES http://nspires.nasaprs.com/external/
Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR)

- **PROGRAM:** Stimulate technological innovation and support NASA’s innovative research to develop technologies for NASA projects while spurring economic growth through commercialization.

- **ACCOMPLISHMENTS/MILESTONES (FY 2012/2013):**
 - Selected 260 SBIR Phase 1 proposals selected across 37 states and 85 SBIR Phase 2 proposals selected across 26 states*
 - Selected 40 STTR Phase I proposals selected across 18 states*
 - STTR Phase 2 selections expected in April 2012
 - Expect to award Phase 2E awards in FY 2012
 - Working with Small Business Administration (SBA) to assess implementation of new requirements in recent SBIR/STTR Reauthorization. Expecting Policy Guidelines from SBA in accordance with schedule from reauthorization.

*Selections still undergoing contract negotiations
• **PROGRAM: NASA Innovative Advanced Concepts (NIAC)** funds early studies of visionary, long term concepts - aerospace architectures, systems, or missions (not focused technologies). The intended scope is very early concepts: Technology Readiness Level 1-2 or early 3; 10+ years focus

• **ACCOMPLISHMENTS/ MILESTONES (2012-2013):**
 - Jan 9 -- NIAC Phase I NRA released
 - March 27-29 -- NIAC Spring Symposium in Pasadena, CA
 - April 3 -- NIAC Phase II NRA released
 - July -- announce Phase I and II selections
 - Sept 1 -- FY12 studies (Phase I and II) commence
 - Sept 30 -- FY11 final reports due
NIAC: Funding Innovation across the Nation

Exploring new concepts to expand aerospace possibilities
PROGRAM: The Centennial Challenge Program (CCP) directly engages non traditional sources advancing technologies of value to NASA’s missions and to the aerospace community. CCP offers challenges set up as competitions that award prize money to the individuals or teams to achieve the specified technology challenge.

ACCOMPLISHMENTS/MILESTONES (FY 2012/2013):

- Green Flight Challenge awarded the largest ever aviation prize for demonstration of over 400 mpg energy efficiency in a full scale, piloted, electric powered aircraft.
- Sample Return Robot Challenge will host a competition in June 2012 to demonstrate that a robot that can locate and retrieve geologic samples from a wide and varied terrain without human control.
- In FY 2013 the Night Rover Challenge will have a competition to demonstrate a high energy density storage systems that will enable a rover to operate throughout lunar darkness cycle and the Nano-Satellite Challenge will have competitions to demonstrate placement of at least one small satellite into Earth orbit, twice within one week.
Edison Small Satellite Demonstration Missions and Flight Opportunities Program Overview

EDISON SMALL SATELLITE DEMONSTRATION MISSIONS PROGRAM: Low-cost flight demonstrations of new capabilities and technologies for small spacecraft.

• **ACCOMPLISHMENTS/MILESTONES (FY 2012/2013):**
 • Preparing PhoneSat 1.0 for launch in Summer 2012 demonstrating use of commercial smart phones for onboard satellite navigation, control and communications
 • Began development of EtherSat mission to demonstrate capabilities of satellite swarms for a range of missions projected launch in 2013
 • Released open solicitation for proposed small spacecraft demonstration missions for communications, propulsion and proximity operations
 • Selecting projects for award in August 2012
 • 2 to 3 year projects, up to $15 million per project

FLIGHT OPPORTUNITIES PROGRAM: Develops and provides opportunities for space technologies to be demonstrated and validated in relevant environments. Fosters the development of the commercial reusable suborbital transportation industry.

• **ACCOMPLISHMENTS/MILESTONES (FY 2012/2013):**
 • Establishing a pipeline of technology payloads to utilize the anticipated commercial suborbital flight opportunities
 • Received 35 proposals for payloads in response to payload solicitation
 • Collaborating with Game-Changing Development Program to release NASA Research Announcement for payload development
 • Planned commercial flight opportunities
 • Three Parabolic Flight Campaigns
 • Flights on Masten Space Systems, Near Space Corp, UP Aerospace, and Virgin Galactic
 • Qualification flights of Armadillo Aerospace, Whittinghill Aerospace, and XCOR Aerospace
 • Formed Partnership with New Mexico Space Grants for flying Student Payloads
 • Development of Commercial Vertical Testbed
 • Integration of Draper Labs Technology on Masten Space Systems’ Vehicle
 • Successfully completed a free-flight demonstration
Big Nine Projects

- **CSTD-TDM Laser Communications**: Increases space-based broadband, delivering data rates 10-to-100 times faster than today's systems, addressing the demands of future missions.

- **ETD-TDM Cryogenic Propellant Storage & Transfer**: Better fuel handling technology will improve spacecraft fuel economy. Required for Cryogenic Propulsion Stage (Space Launch System - SLS - upper-stage).

- **CSTD-TDM Deep Space Atomic Clock**: This tiny atomic clock is 10-times more accurate than today's ground-based navigation systems, enabling precise, in-space navigation.

- **CSTD-TDM Large-Scale Solar Sail**: This solar sail has an area 7 times larger than ever flown in space, enabling propellant free propulsion and next generation space weather systems.

- **CSTD-TDM Low Density Supersonic Decelerators**: Demonstrates new parachutes and inflatable braking systems at supersonic velocities enabling precise landing of large payloads on planetary surfaces.

- **ETD-TDM & ETD-GCD Human Exploration Telerobotics & Human-Robotic Systems**: Developing advanced systems capable of remotely operating robots to assist in future exploration; maturing new robots capable of assisting humans in routine and tedious work.

- **ETD-GCD Composite Cryogenic Propellant Tanks**: Demonstrating large composite, light weight fuel tanks that can reduce the mass and cost of the next generation SLS.

- **ETD-GCD HIAD**: Demonstrates new inflatable braking systems for use at hypersonic velocities enabling precise landing of large payloads on planetary surfaces, and returning payloads from the ISS to Earth.

- **CSTD-GCD Robotic Satellite Servicing**: Develops and improves technology to enable service, repair, refueling and relocating satellites through the use of robotics.
“Big 9” FY 2012 Milestones

<table>
<thead>
<tr>
<th>Projects</th>
<th>Oct-11</th>
<th>Nov-11</th>
<th>Dec-11</th>
<th>Jan-12</th>
<th>Feb-12</th>
<th>Mar-12</th>
<th>Apr-12</th>
<th>May-12</th>
<th>Jun-12</th>
<th>Jul-12</th>
<th>Aug-12</th>
<th>Sept-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite Cryotank Tech and Demo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypersonic Inflatable Aerodynamic Decelators</td>
<td></td>
<td>PDR</td>
</tr>
<tr>
<td>Human Robotic Systems</td>
<td></td>
<td>CDR</td>
</tr>
<tr>
<td>Low Density Supersonic Decelicators</td>
<td></td>
<td>PDR</td>
</tr>
<tr>
<td>Deep Space Atomic Clock</td>
<td></td>
</tr>
<tr>
<td>Mission Capable Solar Sail</td>
<td></td>
<td>KDP</td>
</tr>
<tr>
<td>Laser Comm. Relay Demo.</td>
<td></td>
<td>MCR</td>
</tr>
<tr>
<td>Robotic Satellite Servicing</td>
<td></td>
<td>Workshop</td>
</tr>
</tbody>
</table>

Key:
- KDP
- Review
- Development
- Testing
- Launch
- Critical Event
- Wind Tunnel Test
- LCAT Test
- Multiple Tests
- Integrate Software on Rover
- Complete Design Drawings
- Complete Rover Cannon Assembly
- SDV 1 Test
- SDV 2 Test
- SDV 3 Test
- Tubes Test
- Sail Test
- Mechanism Test
- MDR
- RRM
- Workshop
- MCR
- RFI Released
- RFI Complete
- RRM OPS
- KDP-B
- KDP-C
- KDP-A
- KDP-E
- Build-to-Print Fab. Complete
- Develop 2m-Tank Fab. and Deliver to MSFC
- Develop 5m Demo. Unit
- 2m Pressure Tank Test
Acronyms

- CDR – Critical Design Review
- Comm. – Communications
- Demo. – Demonstration
- DVT – Design Verification Test
- Fab. – Fabrication
- KDP – Key Decision Point
- LCAT – Large Core Arc Tunnel
- M – Meter
- MCR – Mission Control Review
- MRR – Mission Readiness Review
- MSFC – Marshall Space Flight Center
- NFAC – National Full-Scale Aerodynamics Complex
- PDR – Preliminary Design Review
- RFI – Request For Information
- RRM – Robotic Refueling Mission
- SRR – Systems Requirements Review
- TBD – To Be Determined
- Tech. – Technologies