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•  We’d like to use the formalism of ontologies to 
represent knowledge in fields of interest to us: 
–  Fault management in particular 
–  Systems engineering in general 

•  We want these knowledge representation conventions 
to be stable and durable: independent of particular 
programs, projects, organizations, and software tools 

•  We want to customize or adapt our modeling and 
analysis tools to support our knowledge representation 
conventions 
–  At least to translate to/from internal representations 
–  Even better, to teach the tools to operate on our concepts 

and properties as extensions or specializations of their 
native counterparts 
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Some Objectives 

2012-04-12 NASA Fault Management Workshop 



National Aeronautics and  
Space Administration 
 
Jet Propulsion Laboratory 
California Institute of Technology 
Pasadena, California 

31 Systems + Software 

•  An ontology is more than a vocabulary or taxonomy 
•  In practical terms, it’s a grammar for a particular 

domain of discourse 
–  It sets rules for well-formed sentences 

•  Some (simplified) well-formed sentences in Systems 
Engineering (about the MSL Rover Curiosity): 
–  Curiosity has type Component.  
–  Curiosity has mass 850 kg. 
–  Curiosity contains Science Payload. 
–  Rover Work Package supplies Curiosity. 
–  MSL Project authorizes Curiosity. 

•  Some not-well-formed sentences: 
–  Curiosity supplies 850 kg. 
–  Rover Work Package contains Curiosity. 
–  Curiosity authorizes Science Payload. 

•  An ontology is an agreement on usage, not a dictionary 
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What Is An Ontology? 
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•  Some agreement on usage is necessary for effective 
information interchange 

•  Formal ontology standards, and OWL1 in particular, 
have large communities of practice with tools and 
training 

•  OWL includes serialization standards; defining an OWL 
ontology necessarily defines standard (XML-based) 
knowledge interchange formats 

•  OWL reasoners can find errors in ontology rules and 
facts 

•  OWL reasoners can draw inferences (entailments) from 
rules and facts 

•  OWL supports powerful query languages2 for 
application-specific reasoning, transformation, and 
reporting 

•  OWL/RDF3 databases4 have excellent scaling properties 
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Why Ontologies? Why OWL? 
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Some Simple Reasoning Examples 

Type Given this input A reasoner concludes 

Consistency “has mass” is a functional property. 
Curiosity has mass 850 kg. Curiosity has 
mass 900 kg. 

Inconsistent: at least two facts are 
mutually contradictory. 

Satisfiability Work Package and Organization are 
disjoint concepts. Every Project is both a 
Work Package and an Organization. 

Unsatisfiable: no Project can 
exists that satisfies all rules. 

Rules Entailment Every Spacecraft is a Component. Every 
Orbiter is a Spacecraft. 

Every Orbiter is a Component. 

Facts Entailment Every Spacecraft is a Component. MSL 
Rover (an individual, not a class) is a 
Spacecraft. 

MSL Rover is a Component. 

These examples are given in “equivalent” natural language, not OWL. The purpose is to show the kinds 
of problems for which reasoning is useful, not to demonstrate the mechanics. 
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•  This example illustrates an actual ontology hygiene 
check we apply 

•  Literally it says “If p1 and p2 are distinct properties such 
that p1 is a subproperty of p2, and p1

-1 and p2
-1 exist, 

then report whether p1
-1 is a subproperty of p2

-1” 

•  Most important features to note: it’s short and fast 
•  A collection of similar queries can form the basis of a 

continuous validation suite for ontology and model 
development 
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SPARQL Query Example 

select distinct ?p1 ?p2 ?inverse_ok 
where { 
    ?p1 rdfs:subPropertyOf ?p2 . 
    { ?p1 owl:inverseOf ?p1_inverse } union { ?p1_inverse owl:inverseOf ?p1 } 
    { ?p2 owl:inverseOf ?p2_inverse } union { ?p2_inverse owl:inverseOf ?p2 } 

       
    bind (exists { ?p1_inverse rdfs:subPropertyOf ?p2_inverse } as ?inverse_ok) 
       
    filter (?p1 != ?p2) 
} 

2012-04-12 NASA Fault Management Workshop 



National Aeronautics and  
Space Administration 
 
Jet Propulsion Laboratory 
California Institute of Technology 
Pasadena, California 

31 Systems + Software 

•  A domain need not be crisply or formally defined in 
order to develop an ontology for it 
–  Instead, that can be a good reason to develop an ontology 
–  One of the most widely-known ontologies is Friend of a 

Friend, which is about human relationships 
•  It’s helpful to think about what people say and what 

inferences we can draw from that: 
–  Blog posting X was written to Lorraine 
–  Lorraine is my friend 
–  I’m interesting in blog postings by friends 
–  Therefore, I’m interested in blog posting X 
–  Note: precise definition of friend not required 

•  Careful thinking about inferences leads to improved 
semantics 

•  Terms in an ontology are local: we’re not trying to 
define fault for the world, just for the FM community 
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More On Ontologies 
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•  There does not appear to be a sharp distinction 
between things that are and are not fault management 
–  That’s OK 

•  The challenge seems to be not to classify things as fault 
management or not, but instead to record what fault 
management authorities say within the scope of that 
authority 
–  In that sense, fault management is whatever these 

authorities declare it be 
–  That’s consistent with the idea that the scope of fault 

management for a given system is a design choice that 
reflects numerous factors: 

•  criticality of mission objectives 
•  epistemic and aleatory uncertainties 
•  threats 
•  programmatic resources 
•  etc. 
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Inexpert Thoughts on Fault Management 
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•  What is an Anomaly? Or perhaps more usefully, what 
would we say about an Anomaly? 
–  An Anomaly has a temporal extent 

•  So we need to create an Epoch with start and end times 
–  An Anomaly declares that some Assertion is inconsistent 

with some Assessment during its Epoch 
•  “I was expecting Lorraine at 5 but it’s 5:30 and I don’t see her.” 

–  So we need to create Assessment and Assertion 
–  We do not at this point need to define inconsistent 

•  And are better off not trying to 
•  Its meaning depends on the details of Assertion and 

Assessment 
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Start With A Simple Concept 

Epoch 
Assessment 

Anomaly 
Assertion 

hasEpoch 
hasAssertion 

hasAssessment 
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•  An Assertion is a predicate involving the world 
–  It need not be true, thought to be true, or desired 
–  “It is raining.” 
–  “Lorraine will be here at 5:00.” 
–  “The World will end in 2012.” 

•  Like an Anomaly, an Assertion has a temporal extent 
over which it is applicable 
–  So we should create an abstract concept called 

DurativeElement (thing with an Epoch) and make Anomaly 
and Assertion refinements of it 

•  At this level of abstraction, we capture only the 
statement, not what it means in the real world 
–  We can create more refined concepts for restricted classes 

of predicates 
•  “Mean temperature will increase at least 0.3 C by 2025.” 
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Assertion 
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•  An Assessment is an Assertion about the actual state of 
the world 
–  “It is raining.” 
–  “The estimated temperature is 32 C.” 
–  “I don’t think Lorraine is here.” 

•  Because an Assessment is an Assertion, it also has an 
Epoch 

•  Again, at this level of abstraction, we don’t attempt to 
encode the semantics of the assertion 
–  But we might for restricted specializations 
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Assessment 

Epoch 

Assessment 

DurativeElement Assertion 
hasEpoch isA 

isA 

Anomaly 

isA 
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•  We can refine Assertion to convey things we want to be 
true 

•  Probably need two levels of refinement 
–  Desire: something we merely want to be true 

•  “I hope it doesn’t rain tomorrow.” 
–  Goal: something we will try to make true 

•  “I need to be at the bar by 5:00.” 

•  Every Desire is an Assertion, every Goal is a Desire 
•  Again, the ontology itself does not establish the precise 

criteria that distinguish Desire and Goal 
–  It provides the vocabulary to express the distinction 
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Asserting Intent 

Assertion Desire Goal 
isA isA 
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•  The general sense I get is that fault denotes something 
not as it should be 

•  More formally, a Fault is an Anomaly for which the 
Assertion is a Desire 
–  “I was hoping it wouldn’t rain today but it’s pouring.” 

•  The general sense I get is that failure denotes 
something we wanted to achieve but didn’t 

•  More formally, a Failure is an Anomaly for which the 
Assertion is a Goal 
–  “I needed to be at the bar by 5:00 but I got there at 5:30.” 

•  Every Failure is a Fault because every Goal is a Desire 
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Fault and Failure 

Anomaly Fault Failure 
isA isA 
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•  Is every inconsistency between an Assessment and a 
Desire a Failure? Is every inconsistency between an 
Assessment and a Goal a Failure? 

•  Yes, but only by convention 
•  Remember that we’re talking about Fault, Failure, and 

Goal in the local context of fault management 
•  An intent may be a Goal in the context of a general 

control system without being a fault management Goal 
•  The decision to make a control system Goal a fault 

management Goal is a design choice that places it 
within the scope of fault management 
–  If that’s not what you mean, don’t say it 

•  Again, we don’t attempt to say precisely what being “in 
the scope of fault management” means 
–  That will vary by project, application, etc. 
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More on Failure and Fault 
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•  Everything we’ve discussed can be expressed simply in 
OWL 
–  Classes: Epoch, Anomaly, Assertion, Assessment, 

DurativeElement, Desire, Goal, Fault, Failure 
–  Class taxonomy: isA relationships among classes 
–  Datatype properties: hasStartTime, hasEndTime 
–  Object properties: hasEpoch, hasAssertion, hasAssessment 
–  Range restrictions 

•  range of hasAssertion restricted to Desire on domain Fault 
•  range of hasAssertion restricted to Goal on domain Failure 

•  The ontology can be shown to be consistent and 
satisfiable 
–  Not a big deal, but more important as it grows larger and 

more complex 
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A Simple Fault Management Ontology 
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Summary from Protégé5 OWL Editor 
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1.   OWL 2 Web Ontology Language, 
http://www.w3.org/TR/owl-overview/ 

2.   SPARQL 1.1 Query Language, 
http://www.w3.org/TR/2012/WD-sparql11-
query-20120105/ 

3.   RDF Primer, 
http://www.w3.org/TR/2004/REC-rdf-
primer-20040210/ 

4.   Sesame RDF Triple Store, 
http://www.openrdf.org/index.jsp 

5.   Protégé OWL Editor, http://protege.stanford.edu 
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