
National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Thoughts on an Ontology for Fault Management

Steven Jenkins
Systems and Software Division
Jet Propulsion Laboratory
California Institute of Technology

Copyright © 2012 California Institute of Technology. Government sponsorship acknowledged.
This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration.

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

•  We’d like to use the formalism of ontologies to
represent knowledge in fields of interest to us:
–  Fault management in particular
–  Systems engineering in general

•  We want these knowledge representation conventions
to be stable and durable: independent of particular
programs, projects, organizations, and software tools

•  We want to customize or adapt our modeling and
analysis tools to support our knowledge representation
conventions
–  At least to translate to/from internal representations
–  Even better, to teach the tools to operate on our concepts

and properties as extensions or specializations of their
native counterparts

2

Some Objectives

2012-04-12 NASA Fault Management Workshop

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

•  An ontology is more than a vocabulary or taxonomy
•  In practical terms, it’s a grammar for a particular

domain of discourse
–  It sets rules for well-formed sentences

•  Some (simplified) well-formed sentences in Systems
Engineering (about the MSL Rover Curiosity):
–  Curiosity has type Component.
–  Curiosity has mass 850 kg.
–  Curiosity contains Science Payload.
–  Rover Work Package supplies Curiosity.
–  MSL Project authorizes Curiosity.

•  Some not-well-formed sentences:
–  Curiosity supplies 850 kg.
–  Rover Work Package contains Curiosity.
–  Curiosity authorizes Science Payload.

•  An ontology is an agreement on usage, not a dictionary
3

What Is An Ontology?

2012-04-12 NASA Fault Management Workshop

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

•  Some agreement on usage is necessary for effective
information interchange

•  Formal ontology standards, and OWL1 in particular,
have large communities of practice with tools and
training

•  OWL includes serialization standards; defining an OWL
ontology necessarily defines standard (XML-based)
knowledge interchange formats

•  OWL reasoners can find errors in ontology rules and
facts

•  OWL reasoners can draw inferences (entailments) from
rules and facts

•  OWL supports powerful query languages2 for
application-specific reasoning, transformation, and
reporting

•  OWL/RDF3 databases4 have excellent scaling properties
4

Why Ontologies? Why OWL?

2012-04-12 NASA Fault Management Workshop

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

5

Some Simple Reasoning Examples

Type Given this input A reasoner concludes

Consistency “has mass” is a functional property.
Curiosity has mass 850 kg. Curiosity has
mass 900 kg.

Inconsistent: at least two facts are
mutually contradictory.

Satisfiability Work Package and Organization are
disjoint concepts. Every Project is both a
Work Package and an Organization.

Unsatisfiable: no Project can
exists that satisfies all rules.

Rules Entailment Every Spacecraft is a Component. Every
Orbiter is a Spacecraft.

Every Orbiter is a Component.

Facts Entailment Every Spacecraft is a Component. MSL
Rover (an individual, not a class) is a
Spacecraft.

MSL Rover is a Component.

These examples are given in “equivalent” natural language, not OWL. The purpose is to show the kinds
of problems for which reasoning is useful, not to demonstrate the mechanics.

2012-04-12 NASA Fault Management Workshop

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

•  This example illustrates an actual ontology hygiene
check we apply

•  Literally it says “If p1 and p2 are distinct properties such
that p1 is a subproperty of p2, and p1

-1 and p2
-1 exist,

then report whether p1
-1 is a subproperty of p2

-1”

•  Most important features to note: it’s short and fast
•  A collection of similar queries can form the basis of a

continuous validation suite for ontology and model
development

6

SPARQL Query Example

select distinct ?p1 ?p2 ?inverse_ok
where {
 ?p1 rdfs:subPropertyOf ?p2 .
 { ?p1 owl:inverseOf ?p1_inverse } union { ?p1_inverse owl:inverseOf ?p1 }
 { ?p2 owl:inverseOf ?p2_inverse } union { ?p2_inverse owl:inverseOf ?p2 }

 bind (exists { ?p1_inverse rdfs:subPropertyOf ?p2_inverse } as ?inverse_ok)

 filter (?p1 != ?p2)
}

2012-04-12 NASA Fault Management Workshop

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

•  A domain need not be crisply or formally defined in
order to develop an ontology for it
–  Instead, that can be a good reason to develop an ontology
–  One of the most widely-known ontologies is Friend of a

Friend, which is about human relationships
•  It’s helpful to think about what people say and what

inferences we can draw from that:
–  Blog posting X was written to Lorraine
–  Lorraine is my friend
–  I’m interesting in blog postings by friends
–  Therefore, I’m interested in blog posting X
–  Note: precise definition of friend not required

•  Careful thinking about inferences leads to improved
semantics

•  Terms in an ontology are local: we’re not trying to
define fault for the world, just for the FM community

7

More On Ontologies

2012-04-12 NASA Fault Management Workshop

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

•  There does not appear to be a sharp distinction
between things that are and are not fault management
–  That’s OK

•  The challenge seems to be not to classify things as fault
management or not, but instead to record what fault
management authorities say within the scope of that
authority
–  In that sense, fault management is whatever these

authorities declare it be
–  That’s consistent with the idea that the scope of fault

management for a given system is a design choice that
reflects numerous factors:

•  criticality of mission objectives
•  epistemic and aleatory uncertainties
•  threats
•  programmatic resources
•  etc.

8

Inexpert Thoughts on Fault Management

2012-04-12 NASA Fault Management Workshop

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

•  What is an Anomaly? Or perhaps more usefully, what
would we say about an Anomaly?
–  An Anomaly has a temporal extent

•  So we need to create an Epoch with start and end times
–  An Anomaly declares that some Assertion is inconsistent

with some Assessment during its Epoch
•  “I was expecting Lorraine at 5 but it’s 5:30 and I don’t see her.”

–  So we need to create Assessment and Assertion
–  We do not at this point need to define inconsistent

•  And are better off not trying to
•  Its meaning depends on the details of Assertion and

Assessment

9

Start With A Simple Concept

Epoch
Assessment

Anomaly
Assertion

hasEpoch
hasAssertion

hasAssessment

2012-04-12 NASA Fault Management Workshop

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

•  An Assertion is a predicate involving the world
–  It need not be true, thought to be true, or desired
–  “It is raining.”
–  “Lorraine will be here at 5:00.”
–  “The World will end in 2012.”

•  Like an Anomaly, an Assertion has a temporal extent
over which it is applicable
–  So we should create an abstract concept called

DurativeElement (thing with an Epoch) and make Anomaly
and Assertion refinements of it

•  At this level of abstraction, we capture only the
statement, not what it means in the real world
–  We can create more refined concepts for restricted classes

of predicates
•  “Mean temperature will increase at least 0.3 C by 2025.”

10

Assertion

2012-04-12 NASA Fault Management Workshop

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

•  An Assessment is an Assertion about the actual state of
the world
–  “It is raining.”
–  “The estimated temperature is 32 C.”
–  “I don’t think Lorraine is here.”

•  Because an Assessment is an Assertion, it also has an
Epoch

•  Again, at this level of abstraction, we don’t attempt to
encode the semantics of the assertion
–  But we might for restricted specializations

11

Assessment

Epoch

Assessment

DurativeElement Assertion
hasEpoch isA

isA

Anomaly

isA

2012-04-12 NASA Fault Management Workshop

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

•  We can refine Assertion to convey things we want to be
true

•  Probably need two levels of refinement
–  Desire: something we merely want to be true

•  “I hope it doesn’t rain tomorrow.”
–  Goal: something we will try to make true

•  “I need to be at the bar by 5:00.”

•  Every Desire is an Assertion, every Goal is a Desire
•  Again, the ontology itself does not establish the precise

criteria that distinguish Desire and Goal
–  It provides the vocabulary to express the distinction

12

Asserting Intent

Assertion Desire Goal
isA isA

2012-04-12 NASA Fault Management Workshop

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

•  The general sense I get is that fault denotes something
not as it should be

•  More formally, a Fault is an Anomaly for which the
Assertion is a Desire
–  “I was hoping it wouldn’t rain today but it’s pouring.”

•  The general sense I get is that failure denotes
something we wanted to achieve but didn’t

•  More formally, a Failure is an Anomaly for which the
Assertion is a Goal
–  “I needed to be at the bar by 5:00 but I got there at 5:30.”

•  Every Failure is a Fault because every Goal is a Desire

13

Fault and Failure

Anomaly Fault Failure
isA isA

2012-04-12 NASA Fault Management Workshop

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

•  Is every inconsistency between an Assessment and a
Desire a Failure? Is every inconsistency between an
Assessment and a Goal a Failure?

•  Yes, but only by convention
•  Remember that we’re talking about Fault, Failure, and

Goal in the local context of fault management
•  An intent may be a Goal in the context of a general

control system without being a fault management Goal
•  The decision to make a control system Goal a fault

management Goal is a design choice that places it
within the scope of fault management
–  If that’s not what you mean, don’t say it

•  Again, we don’t attempt to say precisely what being “in
the scope of fault management” means
–  That will vary by project, application, etc.

14

More on Failure and Fault

2012-04-12 NASA Fault Management Workshop

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

•  Everything we’ve discussed can be expressed simply in
OWL
–  Classes: Epoch, Anomaly, Assertion, Assessment,

DurativeElement, Desire, Goal, Fault, Failure
–  Class taxonomy: isA relationships among classes
–  Datatype properties: hasStartTime, hasEndTime
–  Object properties: hasEpoch, hasAssertion, hasAssessment
–  Range restrictions

•  range of hasAssertion restricted to Desire on domain Fault
•  range of hasAssertion restricted to Goal on domain Failure

•  The ontology can be shown to be consistent and
satisfiable
–  Not a big deal, but more important as it grows larger and

more complex

15

A Simple Fault Management Ontology

2012-04-12 NASA Fault Management Workshop

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

16

Summary from Protégé5 OWL Editor

2012-04-12 NASA Fault Management Workshop

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

1.   OWL 2 Web Ontology Language,
http://www.w3.org/TR/owl-overview/

2.   SPARQL 1.1 Query Language,
http://www.w3.org/TR/2012/WD-sparql11-
query-20120105/

3.   RDF Primer,
http://www.w3.org/TR/2004/REC-rdf-
primer-20040210/

4.   Sesame RDF Triple Store,
http://www.openrdf.org/index.jsp

5.   Protégé OWL Editor, http://protege.stanford.edu

17

References

2012-04-12 NASA Fault Management Workshop

