V&V of Design Consistency

The Need for Design Consistency
“Verification is:

(A) The process of evaluating a system or component to determine
whether the products of a given development phase satisfy the
conditions imposed at the start of that phase.

(B) The process of providing objective evidence that the software and
its associated products conform to requirements (e.g., for
correctness, completeness, consistency, accuracy) for all life cycle
activities during each life cycle process (acquisition, supply,
development, operation, and maintenance); satisfy standards,
practices, and conventions during life cycle processes; and
successfully complete each life cycle activity and satisfy all the criteria
for initiating succeeding life cycle activities (e.g., building the
software correctly).”

-IV&V Technical Framework Revision N

So what does IV&V check for design consistency, and what are some
examples of consistent and inconsistent design features?

L =
T G——
I
El---:fu PraojectMadel ==
ElLEB Componentarchitecturelewvel
=L heritageCal % =
EH—S Components Model Mavigakar 2)
i By Components i
- fiy | & - 5 ¥
= | Uplink, :-:3 ProjectModel =
- heritageCal LEB Componentirchitecturel evel
g3 CormpilteTime =8 pownlinkComponent
F-g ComponentArchitecturelesel ElLEE} Wigns
F-Lg4 DownlinkComponent ElLa; CompileTirme
LEB TelemetryComponent ElLEEt FIt
---ﬂ‘j ProjectModel EH_EE Heritage
f?m, metamadels e EH—$ SOUrCe
-G patterns | =L heritagecal |
#1-{5h PrimitiveTypes _ILI =-Lgt Components
1| | 4 =g Components
o il =
. h:l D':'W"'""l'k Madel Mavigator £3 =]
g heritageCa .
[F-f5 source fil | £ - ﬂ:{} -
[#--g5" Heritage ?ﬂn ProjectModel =
g5 Fle L Componentarchitecturelevel
(-5 CompileTime LEB DownlinkComponent
g Yiews =L TelemetryComponent
F-gy DownlinkComponent E‘ttr TelemetryComponent
E_EI--LEB TelemetryComponent E|¢ Wiews
(- Prajecttodel =g CompileTime
{3 metamodels i =g Fit
{2 patterns =g Heritage
{5k PrimitiveTypes _ILI g source
4| | r I E|1;|z heritageCalI
El---tfj Components
Telemetry
[#--g ProjectMadel
[?i}i. rmekamodels

{?ﬂ; patterns

[?i}:g, PrimitiveTypes _ILI
1| | b

Figure 1: Design Structure Inconsistency

Figure 2, a component diagram, shows that two different hardware
components are providing the same software interface. Figure 3
shows a sequence (interaction) diagram that goes into more detail
than figure 2. While color coded with Figure 2 it does not utilize the
same naming convention. This inconsistency while visually
apparent is also pointed out in an audit report that captures and
summarizes these type of inconsistencies.

«component:s el
«hardwares» =1
RightIonThrusterBoard

e

=73 "
«components | ///
ssoftwarer» = | '(O(
Q Thruster L\ ,
A A
ThrusterControlInterface | ThrusterBoardIntm
" «Component:s

«hardware» —
LeftIonThrusterBoard

;
Figure 2: Interface Consistency

Gary Marchiny
Gary.S.Marchiny@ivv.nasa.gov, TASC Inc.

- -
e e . "

Source: www.spacetoday.org

Methods We Use

Checking the consistency of software code is not a simple
task. It requires a thorough understanding of the developer’s
required system functionality as well as a well-defined
method for bringing subtle design inconsistencies to the
attention of the analyst.

Sometimes no tools at all are needed to notice an
inconsistency in the design of a product. An example of this
can be seen in Figure 1. This figure consists of three
snapshots of the locations of three different mission-critical
software components within the developer’s design. Observe
that the software components all come from the
“heritageCal” package boxed in red. However, this package is
retrieved from a different location for Uplink Component than
it is for Telemetry and Downlink Components. This
inconsistency creates an ambiguity about where the
component data in “heritageCal” actually resides, allowing for
convoluted code and unnecessary duplicates of model
elements.

Aside from simple observation, one very useful tool IV&V
uses to accomplish its more in-depth design consistency
analysis is a UML-based platform that helps with defining
precise relationships and responsibilities among individual
model elements. By utilizing features provided by the UML
platform, different types of diagrams can be computationally
compared with one another to check for consistent uses of
component-provided classes, operations, attributes and
interfaces. This can aid in the check for consistency of the
underlying code that would be generated by the UML model.

sd Turn-Around Maneuver)

‘Thrusters | LLeftIonThruster | ‘RightIonThruster | [SpacecraftAccelerometer ||

1: Fire Left Ton Thruster&/rq:

2: ConfirmAcceleration

§ s | -

i 3: Fire Right Ion Thruster Pyr’;o

Figure 3: Design Inconsistency

NASA Independent
Verification and
Validation Facility
Fairmont, West
Virginia

