Formal Methods for System/Software Engineering: NASA & Army Experiences

Dr. Mike Hinchey/GSFC
Caroline Wang/MSFC
Josh McNeil/ARMY
Introduction

• What are Formal Methods?
• Problem/Approach
• Challenges
• Recommendations
• Future Plans
Formal Methods

- Formal methods are mathematically based techniques for specification, development and verification of systems, both hardware and software.
- The use of formal methods approaches can help to eliminate errors early in the design process.
- Practitioners have also recognized that they can make searching for reusable components more effective by having formal specifications of components.

Current Formal Methods activities within NASA/Army, and International Formal Methods community.

- Pockets of expertise within NASA (specifically ARC, JPL, LaRC) and Army.
- Tools and techniques in use within NASA and Army but not widely used on projects and missions.
- International Formal Methods Community
Problem/Approach

General Problem

- **System/Hardware/Software complexity**
- **Inadequate requirements specifications / misinterpretation of natural language**
- **Significant number of problems introduced due to vague requirements**
- **Significant number of safety and reliability problems are traced to incorrect performance or behavior specifications, or incorrect interfaces**

Approach

- **Provide accurate and appropriate specifications of required system behavior using Formal Methods**
- **Develop requirement specification as Formal Specification (using formal semantics) to eliminate misinterpretation of vague and incomplete natural language requirements**
- **Use Formal methods to prove safety properties derived from safety analyses**
- **Use Formal Methods and deductive apparatus to prove correctness of system behavior and interfaces**
<table>
<thead>
<tr>
<th>Specific Problem</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Formal Methods Learning Process</td>
<td>• Develop specific project related case studies and provide examples for potential users</td>
</tr>
<tr>
<td>Difficult for new users</td>
<td></td>
</tr>
<tr>
<td>• Select development tools</td>
<td>• Based on the project size and resources available, select appropriate Formal Methods development techniques and tools</td>
</tr>
<tr>
<td>No time to learn all the tools</td>
<td></td>
</tr>
<tr>
<td>Inadequate resource</td>
<td></td>
</tr>
<tr>
<td>• Budget and Schedule constraints</td>
<td>• Support program development and in parallel prove potential savings</td>
</tr>
<tr>
<td>• Differences in priorities between Research and Production environments</td>
<td>• Many researchers focus on development of new techniques and tools</td>
</tr>
<tr>
<td></td>
<td>• Production or development programs are concerned with delivery of a product</td>
</tr>
<tr>
<td></td>
<td>• Need to build bridges between the research and production environments</td>
</tr>
</tbody>
</table>
Challenges

- High cost of some commercial development tools.
- Open source free tools do not have adequate training material and support.
- Formal Methods tools require extensive learning process.
- Die-hard Systems and Hardware Engineers are not convinced of the importance of software.
Developing TripleVoter Model

- Double-click the TripleVoter operator to begin modeling.
- Select all variables (speedSensor1, speedSensor2, speedSensor3, speedOut, minorError, majorError, and compareThreshold). Drag them onto the diagram.
- Select the compareThreshold local variable, modify it through Properties → Use, and change its use to Out.
Implementing Model Logic

- Connect speedSensorX to the “+” input and speedSensorX to the “-“ input of the New Minus operator.
- Connect speedSensor1, speedSensor2, and speedSensor3 to the first input of each New Minus operator.
- Connect all outputs of the New Minus operators to the inputs of the Abs operators.
Completing The Model Logic

- Complete other logic components by drag and drop or connections.
- Add new If..Then..Else operators () to the diagram.
- Add comments to model for readability.
- **Design Verification** – Design Verifier can be used to develop properties that can be proven by formal methods.

Formal Methods

- Design Verifier can be used to develop properties that can be proven by formal methods.

Diagram:
- Calculate magnitude of difference in speed sensors.
- Detection of agreement of any two speed sensor pairs.
- Determine the correct speed by majority vote.
- Minor error if any sensor pair disagrees.
- Major error if all sensor pairs disagree.
Army’s experience and Return on Investment

• Formal methods approach using SCADE method found 144 defects their traditional IV&V would miss (73% of all defects found)

• Estimating it would cost approximately 3500 man hours at $100 per man hour to fix the 144 defects later in the lifecycle
• Early defect removal savings is $350K
• The cost to perform formal methods analysis: -$137K
• Net savings of $213K or 5% of the total project

Savings could be even higher if defect detected earlier
The Army “V” concept
Where are faults introduced, discovered and cost for removal

NASA Cost overruns

Formal Methods
NASA MSFC Experience in this study

• Using open source development environments
 – B-Tool kit
 – Rodin Event B
 – EA UML
 – Integrated Rodin Event B and UML B

• Currently migrating all the work to the integrated Rodin Event B and UML B.
• Developed top level diagram and state machine in UML B, and used auto translator to translate into Rodin Event B.
• Using Rodin Event B platform for detailed refinement.
• The community is working on auto coding from Event B.
Auto Translation to Event B

MACHINE
Engine Phases and Modes

VARIABLES
Initialization
Wait
Checkout
Start_prep
Start
Maintsage
Shutdown
Post_shutdown
Diagnosis
ControlFaultDetect

ININVARIANTS
Initialization.type : Initialization \in BOO
Wait.type : Wait \in BOO
Checkout.type : Checkout \in BOO
Start_prep.type : Start_prep \in BOO
Start.type : Start \in BOO
Maintsage.type : Maintsage \in BOO
Shutdown.type : Shutdown \in BOO
Post_shutdown.type : Post_shutdown \in BOO
Diagnosis.type : Diagnosis \in BOO
ControlFaultDetect.type : ControlFaultDetect \in BOO

Engine Phases and Modes.partitionedStates.1 : partition

EVENTS
INITIALISATION

STATUS
ordinary

BEGIN
Post_shutdown.init : Post_shutdown = FALSE
Maintsage.init : Maintsage = FALSE
Event B Editor

Formal Methods
NASA/Army Experience
-Learning curve

- Unlike other tools, Formal Methods requires serious study
 - Formal Methods Language (B, Z…)
 - Formal Methods Development platform (Rodin, Event – B…UML, UML-B…)
 - Mathematical symbols, rules, logic…

- Training on Formal Methods is necessary
 - Engineers with better understanding of the project
 - Eliminate errors
 - Reduce Design complications and time
 - Encourage Engineers with better mathematics and science

- Easy is not the best solution for NASA and Army
 - Easy tools are easy to sell, but not able to solve our real problems
Recommendations

- **High cost tool**
 - Powerful, but not affordable to most of the organizations
 - Army used SCADE and Simulink with Design Verifier as a modeling tool.

- **Open Source**
 - No cost, but high learning curve and lack of support
 - Training program will significantly reduce the learning curve, this can be used for large community.

- **Recommendations:**
 - Project requiring immediate results may need to use high cost tools.
 - Continue monitoring open source tools (e.g. Integrated Rodin Event B and UML B) which will likely become more advanced in the future.
Results

Formal Methods

• Formal methods can have significant cost savings.
• Defects can be found earlier when easier and cheaper to fix (cf. Army experience).
• While FMs are difficult to use and learn, a typical engineer can use them successfully when given appropriate support.
• Numerous tools are available. Choice is determined by:
 – Cost
 – Support
 – Deadlines
• Free (or cheap) is not necessarily best.
Future Plans

• Continue monitoring new and emerging Formal Methods techniques for practical usefulness and applicability to critical NASA/Army systems and software development activities.
• Complete Case study for both NASA/Army subsystems.
• Army is utilizing Formal Methods techniques for current programs.
• Complete Guidebook with road maps for future users.
• Pursue training opportunities with NASA STEP training office.
• Continue to emphasize awareness in Formal Methods and related training program
Contact Information

• Caroline K. Wang
 – Caroline.k.wang@nasa.gov

• Dr. Mike Hinchey
 – mike.hinchey@lero.ie

• Josh McNeil
 – Josh.McNeil@us.army.mil