
Animating Models atop
Open Source Technologies

NASA IV&V Workshop 2011
Tom Gullion

<tgullion@msisinc.com>

Wednesday, August 10, 11

mailto:tgullion@msisinc.com
mailto:tgullion@msisinc.com

Model Animator Capabilities
Execute UML2 Activities

without lots of configuration, markup or action language
animates control flows, forks, joins, decisions and merges

UML Profile for linking Activities, State Machines and Operations
trigger multiple state machines

mark Actions to trigger UML2 state machine transitions
force transitions to specified state in state machines

useful if input model does not have well-formed triggers
call class operations

mark Actions to call UML2 Class operations
optionally invoke external classes

Visual debugger
Save and load scenarios
Requirements integration

Wednesday, August 10, 11

Heritage

Basic premise built upon Basis Path Testing concepts by Thomas
McCabe

minimum number of test cases will equal Cyclomatic Complexity

Cyclomatic Complexity (CC) is a metric which measures the
number of linearly independent paths

our coverage calculation is based on CC

Initial version attempted to re-animated logged test data

“play back” event data against modeled behaviors

Originally built upon Borland’s Together modeling products

Wednesday, August 10, 11

Port to Open Source Software (OSS)

Why?

support NASA open source initiative

http://www.nasa.gov/open/source/

remove software licensing restrictions

easier to install

adopt latest and greatest Eclipse versions

enable collaborations between agencies?

Wednesday, August 10, 11

http://www.nasa.gov/open/source/
http://www.nasa.gov/open/source/

Activity Model Example

Activity Model Traced requirement

Scenario: linear path
through Activity

Results

Wednesday, August 10, 11

Activity Model Example (recap)
Setup:

select path through Activity

What was tested:

“flow of control” test within Activity

Value:

validate structure of Activity

detect changes if the model is updated later

run suite of tests against model, unaniticipated errors indicate changes

provides evidence for WBS 5.1 (trace behavior to requirement) and 5.2
(design provides capability)

Wednesday, August 10, 11

Activity + State Machine Example

transition

transition

transition

Wednesday, August 10, 11

Activity + State Machine Example (recap)
Setup:

mark Actions as <<StateTransition>> and link to states

What was tested:

“flow of control” test

state machine semantics

Value:

validate structure of UML Activity

ensure flow follows rules specified in state machine

provides evidence of WBS 5.3 (feasibility), 5.5 (algorithms, nominal and off-nominal
conditions)

Note:

it‘s possible to trigger multiple state machines (for complex activities that interact with
multiple controllers)

Wednesday, August 10, 11

Activity + State Machine + Operation example

Wednesday, August 10, 11

Activity + State Machine + Operation Example (recap)

Setup:

mark Actions as <<TriggerTransition>> and link to Triggers

mark Actions as <<CallOperation>> and link to Operations

What was tested:

“flow of control” test

state machine semantics

operation constraints, if any

Value:

validate structure of UML Activity

ensure flow follows rules specified in state machine

establish connection to emerging API

provides evidence of WBS 5.4 (interfaces correct), 5.6 (dependability, fault tolerance)

Wednesday, August 10, 11

Activity + StateMachine + Operation + External Class Example

Instantiate external class
and call method(s)

Wednesday, August 10, 11

Activity + StateMachine + Oper + Ext Class Ex (recap)
Setup:

mark Actions as <<TriggerTransition>> and link to Triggers

mark Actions as <<CallOperation>> and link to Operations

acquire or develop external classes and configure classpath

What was tested:

“flow of control” test

state machine semantics

operation constraints, if any

external classes enable integrations (with external “solvers” or other)

Value:

validate structure of UML Activity

ensure flow follows rules specified in state machine

establish connection to emerging API

provides further evidence of WBS 5.5 (complex algorithms)

Wednesday, August 10, 11

MockObjects

MockObjects are software “stubs” which are used to set and verify
expectations on interactions

Commonly used in Agile programming

Reasons to use Mock Objects

temporarily stand in for servers and/or hardware, until real object
is available

real object is difficult to install and setup, or is unavailable

control object performance under normal and adverse conditions

start testing sooner (rather than waiting for physical hardware)

Wednesday, August 10, 11

Using MockObjects for IV&V

Applicability to IV&V

start IV&V sooner, instead of waiting for test environments

evaluate designs very early (against mock software and/or hardware)

play out “Question 2” and “Question 3” scenarios in a local, easily
configured and always available environment

Mock Hardware demoed today...

Arduino “open source” ~$50 microcontroller

has IDE including gnu C and C++ compiler

well documented

serial communication bus

Wednesday, August 10, 11

Activity + State Machine + Operation + External Class +
External Hardware Example

Tip: customize
statemachine autocoder to

generate mock FSW

External Class

HW serial comm

That’s an extremely
crude mock traffic

light!

Wednesday, August 10, 11

Setup:
mark Actions as <<TriggerTransition>> and link to Triggers

mark Actions as <<CallOperation>> and link to Operations

acquire or develop external classes and configure classpath

deploy state machine code to HW

customize project’s statechart autocoder
What was tested:

“flow of control” test

state machine semantics

operation constraints, if any

external classes enable integrations (with external “solvers” or other)
hardware interaction

Value:

validate structure of UML Activity

ensure flow follows rules specified in state machine

establish connection to emerging API
hardware in the loop simulation

deeper understanding of the system

provides final evidence of WBS 5.5 (complex algorithms), useful for gathering early performance metrics

Activity + State Machine + Operation + External Class +
External Hardware Example

Wednesday, August 10, 11

Thank you!

Tom Gullion
<tgullion@msisinc.com>

Wednesday, August 10, 11

mailto:tgullion@msisinc.com
mailto:tgullion@msisinc.com

Acknowledgements

Special thanks to Frank Huy, Don Kranz, Karl Frank

References

NASA Open Source Summit http://www.nasa.gov/open/source/

NASA IV&V Technical Framework Rev N http://www.nasa.gov/centers/ivv/pdf/
170825main_IVV%2009-1%20-%20Rev%20N.pdf

McCabe Cyclomatic Complexity

http://www.mccabe.com/

MockObjects

http://c2.com/cgi/wiki?MockObject

Arduino

http://www.arduino.cc/

Wednesday, August 10, 11

http://www.nasa.gov/open/source/
http://www.nasa.gov/open/source/
http://www.nasa.gov/centers/ivv/pdf/170825main_IVV%2009-1%20-%20Rev%20N.pdf
http://www.nasa.gov/centers/ivv/pdf/170825main_IVV%2009-1%20-%20Rev%20N.pdf
http://www.nasa.gov/centers/ivv/pdf/170825main_IVV%2009-1%20-%20Rev%20N.pdf
http://www.nasa.gov/centers/ivv/pdf/170825main_IVV%2009-1%20-%20Rev%20N.pdf
http://www.mccabe.com
http://www.mccabe.com
http://c2.com/cgi/wiki?MockObject
http://c2.com/cgi/wiki?MockObject
http://www.arduino.cc
http://www.arduino.cc

