Real-Time Operating Systems (RTOS) 101

Real-Time System Characteristics

® A real-time system is a computer system which is required by
its specification to adhere to:

— functional requirements (behavior)

— temporal requirements (timing constraints, deadlines)

® Specific deterministic timing (temporal) requirements

— “Deterministic" timing means that RTOS services consume only
known and expected amounts of time.

® Small size (footprint)

RTOS Architecture

C
Application

Ada
Application

C++
Application

Other
Application

RTOS

Board Support Package

Rate Monotonic
Scheduling (RMS)

® A priority is assigned based on the inverse of its pe-
riod
— Shorter execution periods = higher priority

— Longer execution periods = lower priority

® Common way to assign fixed priorities

— If there is a fixed-priority schedule that meets all dead-

Hardware

lines, then RMS will produce a feasible schedule

Types of Real-Time Systems

- A generic real-time systemrequires that results be produced
within a specified deadline period.

® Simple to understand and implement

RTOS Task Services

® P, is assigned a higher priority than P,.

- An embedded systenis a computing device that is part of a e Sch EdUIing and DiSpatChing peadines Fr P1lP2 Fr Pfg
larger system. . . T P2 7 P, | | BT 4 Pl
% In ter-taSk Communlcatlon ‘O 1PO 2l0 3OP 40 5|0 EO 7|CI)D ‘80 90 100 ‘:O 1‘20 135140 15|_JO 120 TLPO LBO 190 200

- A safety-critical systemis a real-time system with catastro-
phic results in case of failure.

« Memory System Management

* Input / Output System Management
* Time Management & Timers

* Error Management

 Message Management

Earliest Deadline First (EDF)
Scheduling

® Priorities are assigned according to deadlines:

- A hard realtime systemguarantees that real-time tasks be
completed within their required deadlines. Failure to meet
a single deadline may lead to a critical catastrophic system
failure such as physical damage or loss of life.

- A firm real-time systemtolerates a low occurrence of missing
a deadline. A few missed deadlines will not lead to total
failure, but missing more than a few may lead to complete
and catastrophic system failure.

— the earlier the deadline, the higher the priority

— the later the deadline, the lower the priority

L :
- A soft reattime systemprovides priority of real-time tasks Priorities are dynamically chosen

over non real-time tasks. Performance degradation is toler-

Task Control Block (TCB)

.)) . Deadlines P Ps P Py P
ated by failure to meet several deadline time constraints | | | [
with decreased service quality but no critical consequences. * Taskuses TCB to P 1. Pz, | P TP] P TP, |

* - remember its context 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
* RTOS updates TCB
task harme .
, . e - when task is . i i

Disciplines that Impact o switched Priority Inversion
Real-Time Systems " Controltasks

= ask_priori control tasks , : :

y sk priory ® Lower-priority task effectively blocks a higher-
* Real-time systems engineering is so multidisciplinary, it task_stack pomder priority task
stands out as a highly specialized area. . _ _
fae_progam,_coumtar ®lower-p r I O r | dwNersHip afsotk prevents

higher-priority task from running

Control
Theory

Programming

Languages ® Nasty: makes high-priority task runtime unpredict-

able!

Controlling a Task

Operations

Research
Data Structures (Scheduling e ora
Theory) / | N\ ° ° °
/) Priority Inheritance
Real-time f—————- [uEael®_ - \ N : . . :
Systems 2 4 « Solution to priority inversion
Computer ff___ e (O J,—"‘_‘x.‘l\procesm' availsble endhighest priority - go (2) '—-F\i mingindm . . . ~ iy - e
Architecture u"ld"?S‘T“ \1;1;? ' pre-exupted or tine slie wp (p) "/\‘?.f;e } d ¢ S Y L\J2 N\] N\y\ f e 7\ y @VN% ||t GEC]SII‘ESU I |
N \,1\\ s \ ndible) a lock
\\ I resche dule - -__\-(\/ _\
tiner ¢ xpired (1) reschedule |'I$‘II. . ! . o o .
\\L< k) \;‘;;;‘"3 * Level to increase: highest priority of any task that
\ R S’] .
\ deindresomce sl)/ might want to acquire same lock
Queuin
Software Operating Theoryg — High enough to prevent it from being preempted

Engineering Systems

® dormant (idle} task has no need for computer time » Danger: Low-priority task acquires lock, gets h|gh

priority and hogs the processor
— So much for RMS

® ready: task is ready to go active, but waiting for processor time

® active (running) task is executing associated activities

What is a RTOS?

® An RTOS is a preemptive multitasking operating system intended
for real-time applications.

« Basic rule: low-priority tasks should acquire high-
priority locks only briefly!

® waiting (blocked) task put on temporary hold to allow lower priority task
chance to execute

® suspendedotask is waiting for resource

* |t must support a scheduling method that guarantees re-

sponse time
— Especially to critical tasks

VXxWorks Architecture

embedded real-time application

Priority-Based
Preemptive Scheduling

®* Problem: Multiple tasks at the same priority level?

* Tasks must be able to be given a priority

— Static or dynamic

POSIX library Java library

* An RTOS has to support predictable task synchronization

mechanisms
— Shared memory mutexes / semaphores, etc.

® Solutions:

* A system of priority inheritance has to exist — Give each task a unique priority

graphics

virtual memory ‘
library

VXVMI

®* Manages hardware and software resources. — Time-slice tasks at the same priority

* Extra context-switch overhead
* No starvation dangers at that level

® Deterministic: guarantees task completion at a set deadline.

— A system is deterministic if, for each possible state and each set of in-
puts, a unique set of outputs and next state of the system can be de-
termined.

Wind microkernel

.
y

— Tasks at the same priority never preempt the other
* More efficient
* Still meets deadlines if possible

® Behavior time constraints should be known and minimized
— Interrupt latency (i.e., time from interrupt to task run)
— Minimal task-switching time (context switching)

hardware level
(Pentium, Power PC, MIPS, customized, etc.)

NASA Independent .
Verification and N
Validation Facility N/
Fairmont, West
Virginia

Richard E. Kowalski, richard.e.kowalski@ivv.nasa.gov, TASC Inc.

NASA POC: Frank Huy, Frank. A.Huy@nasa.gov

