Real-Time Operating Systems (RTOS) 101

Real-Time System Characteristics

® A real-time system is a computer system which is required by
its specification to adhere to:

— functional requirements (behavior)

— temporal requirements (timing constraints, deadlines)

® Specific deterministic timing (temporal ) requirements

— “Deterministic" timing means that RTOS services consume only
known and expected amounts of time.

® Small size (footprint)
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® A priority is assigned based on the inverse of its pe-
riod
— Shorter execution periods = higher priority

— Longer execution periods = lower priority

® Common way to assign fixed priorities

— If there is a fixed-priority schedule that meets all dead-

Hardware

lines, then RMS will produce a feasible schedule

Types of Real-Time Systems

- A generic real-time systemrequires that results be produced
within a specified deadline period.

® Simple to understand and implement
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- A safety-critical systemis a real-time system with catastro-
phic results in case of failure.
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Scheduling

® Priorities are assigned according to deadlines:

- A hard realtime systemguarantees that real-time tasks be
completed within their required deadlines. Failure to meet
a single deadline may lead to a critical catastrophic system
failure such as physical damage or loss of life.

- A firm real-time systemtolerates a low occurrence of missing
a deadline. A few missed deadlines will not lead to total
failure, but missing more than a few may lead to complete
and catastrophic system failure.

— the earlier the deadline, the higher the priority

— the later the deadline, the lower the priority
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- A soft reattime systemprovides priority of real-time tasks Priorities are dynamically chosen

over non real-time tasks. Performance degradation is toler-
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® dormant (idle} task has no need for computer time » Danger: Low-priority task acquires lock, gets h|gh

priority and hogs the processor
— So much for RMS

® ready: task is ready to go active, but waiting for processor time

® active (running) task is executing associated activities

What is a RTOS?

® An RTOS is a preemptive multitasking operating system intended
for real-time applications.

« Basic rule: low-priority tasks should acquire high-
priority locks only briefly!

® waiting (blocked) task put on temporary hold to allow lower priority task
chance to execute

® suspendedotask is waiting for resource

* |t must support a scheduling method that guarantees re-

sponse time
— Especially to critical tasks
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®* Problem: Multiple tasks at the same priority level?

* Tasks must be able to be given a priority

— Static or dynamic

POSIX library Java library

* An RTOS has to support predictable task synchronization

mechanisms
— Shared memory mutexes / semaphores, etc.

® Solutions:

* A system of priority inheritance has to exist — Give each task a unique priority
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®* Manages hardware and software resources. — Time-slice tasks at the same priority

* Extra context-switch overhead
* No starvation dangers at that level

® Deterministic: guarantees task completion at a set deadline.

— A system is deterministic if, for each possible state and each set of in-
puts, a unique set of outputs and next state of the system can be de-
termined.
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— Tasks at the same priority never preempt the other
* More efficient
* Still meets deadlines if possible

® Behavior time constraints should be known and minimized
— Interrupt latency (i.e., time from interrupt to task run)
— Minimal task-switching time (context switching)

hardware level
(Pentium, Power PC, MIPS, customized, etc.)
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