
Static Code Analysis using

CodeSonarCodeSonar

Presented by:

Matthew Cole – NASA

Brandon Miller – KeyLogic

Agenda

• Overview of Static Analysis at NASA IV&V

• Highlights of CodeSonar

– General Setup

– GUI/Configuration– GUI/Configuration

– Metrics

• Comparison against other available tools

• Lessons Learned/Best Practices

• Summary/Conclusion

Overview

• IV&V Projects perform static code analysis to aid
developers in identifying bugs and security
vulnerabilities as early as possible

• Current tools available at IV&V
– Klocwork Inspect

– Flexelint

– CodeSonar– CodeSonar
• JUNO/MMS IV&V Projects performing evaluation on v3.6/v3.5

• General IV&V Static Code Analysis Practice:
– Run source code through tool

– Filter out known unneeded error checks using scripts

– Export error list to Excel spreadsheet

– Divide up error list among analysts (if applicable)

– Using code browser (Understand C/C++, Eclipse, etc.),
inspect each error to determine if a true error exists

Highlights of using CodeSonar

• CodeSonar Setup

• GUI/Configuration
– Browser-based user interface

– Web server and database used for managing analysis
results

– Ability to enable/disable error checks before running – Ability to enable/disable error checks before running
tool

– Ability to suppress unwanted errors before exporting

– Ability to export to text, CSV, SQL, or XML

– Built-in Code Browser

• Metrics
– Comparison against other available tools

CodeSonar Setup

• CodeSonar works by piggybacking on build

system (i.e. gcc, g++, VS, Eclipse) to perform

analysis

– Error-free compilation is preferred, but not – Error-free compilation is preferred, but not

necessary

• Configuration file must be modified to allow

for analysis on non-compilable code

Add to config file

GUI/Configuration

• Error checks can be enabled/disabled in

configuration file depending on project needs

Enables Power of 10 checks

GUI/Configuration

• Browser-based user interface

– False Positive Management

• Suppress errors of certain class or file to streamline

analysis work

Suppress unneeded errors � Reduce manual analysis

GUI/Configuration

• Analysis can be completed in GUI using State or Finding fields

Errors can be assigned to analysts Track final status of each error

GUI/Configuration

Errors can be sorted by

file or error class

• Built-in Code Browser

Built-in Browser

streamlines error analysis

• Project Code Files maintained on CodeSonar web server for instant access

Metrics

Tool Total # of Errors

of Errors Manually

Inspected True Errors % True Errors

Flexelint 320 15 0 0.00%

Klocwork 931 421 72 17.10%

CodeSonar 263 204 21 10.29%

MMS EDI EM Build

Tool Total # of Errors

of Errors Manually

Inspected True Errors % True Errors

Flexelint 32 0 0 0.00%

Klocwork 406 107 9 8.41%

CodeSonar 244 47 6 12.77%

MMS HPCA EM Build

Results indicate no one tool provides complete coverage for static

analysis

Lessons Learned/Best Practices

• Determining what error checks you do/don’t

want enabled can drastically reduce manual

analysis time.

• Creating header file with data type definitions • Creating header file with data type definitions

will eliminate parsing errors to improve

accuracy and reduce false positives.

• Modify configuration file so code does not

have to compile.

Summary/Conclusion

• Use of CodeSonar enhances coverage/scope of
analysis, but does not eliminate need of other
static analysis tools

• CodeSonar allows for greater control and
configuration, reducing false positives and, in configuration, reducing false positives and, in
turn, reducing manual analysis

• Compilation time with CodeSonar watching
increases exponentially as the SLOC increases

• CodeSonar v3.5/3.6 is a valuable addition to the
IV&V tool kit

Backup

Advanced Search

Klocwork vs CodeSonar

CodeSonar

Unchecked Parameters

Redundant Conditions

Type Overruns

Coding Standards (i.e. POW10 checks)

Klocwork

Value Never Used After Assignment

Multiple Definitions of Variable

Unused Functions

We have observed that Klocwork and CodeSonar
are both unique in indentifying different types of

errors.

Abstract Contents

• Static code analysis using Codesonar. Highlights
include:

• - ability to limit/configure types of error checks
the tool will perform

- ease of GUI use• - ease of GUI use

• - ability to complete in quick turn around time

• - benefit to IV&V Facility

• SASS research results summary for using multiple
different static code analysis tools

